Skip to main content
Log in

Influence of rare earth Ce on hot deformation behavior of as-cast Mn18Cr18N high nitrogen austenitic stainless steel

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The hot deformation behavior of Mn18Cr18N and Mn18Cr18N+Ce high nitrogen austenitic stainless steels at 1173–1473 K and 0.01–1 s−1 were investigated by thermal compression tests. The influence mechanism of Ce on the hot deformation behavior was analyzed by Ce-containing inclusions and segregation of Ce. The results show that after the addition of Ce, large, angular, hard, and brittle inclusions (TiN-Al2O3, TiN, and Al2O3) can be modified to fine and dispersed Ce-containing inclusions (Ce-Al-O-S and TiN-Ce-Al-O-S). During the solidification, Ce-containing inclusions can be used as heterogeneous nucleation particles to refine as-cast grains. During the hot deformation, Ce-containing inclusions can pin dislocation movement and grain boundary migration, induce dynamic recrystallization (DRX) nucleation, and avoid the formation and propagation of micro cracks and gaps. In addition, during the solidification, Ce atoms enrich at the front of solid—liquid interface, resulting in composition supercooling and refining the secondary dendrites. Similarly, during the hot deformation, Ce atoms tend to segregate at the boundaries of DRX grains, inhibiting the growth of grains. Under the synergistic effect of Ce-containing inclusions and Ce segregation, although the hot deformation resistance and hot deformation activation energy are improved, DRX is more likely to occur and the size of DRX grains is significantly refined, and the problem of hot deformation cracking can be alleviated. Finally, the microhardness of the samples was measured. The results show that compared with as-cast samples, the microhardness of hot-deformed samples increases significantly, and with the increase of DRX degree, the microhardness decreases continuously. In addition, Ce can affect the microhardness of Mn18Cr18N steel by affecting as-cast and hot deformation microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.H. Gao, T.L. Ren, and M. Liu, Low-cycle fatigue characteristics of Cr18Mn18N0.6 austenitic steel under strain controlled condition at 100°C, Int. J. Fatigue, 118(2019), p. 35.

    Article  CAS  Google Scholar 

  2. H. Teuber, J. Barnikel, M. Dankert, W. David, A. Ghicov, and S. Voss, Development of a new high-strength steel for low pressure steam turbine end-stage blades, J. Eng. Gas Turbines Power, 141(2019), No. 1, art. No. 011021.

  3. C.Z. Zhao, S.S. Wei, Y.L. Gao, and Y.H. Wang, Progress of heat-resistant steel for supercritical and ultra-supercritical steam turbine, J. Iron Steel Res., 19(2007), No. 9, p. 1.

    Google Scholar 

  4. W.W. He, S.L. Sun, J.S. Liu, and H.G. Guo, Static recrystallization microstructure and model of Mn18Cr18N retaining rings steel, Mater. Sci. Technol., 22(2014), No. 6, p. 17.

    CAS  Google Scholar 

  5. W.W. He, J.S. Liu, Y.F. Guo, H.Q. Chen, and H.G. Guo, Microstructure evolution of multi-heats forging of Mn18Cr18N retaining ring steel and numerical simulation, J. Plast. Eng., 17(2010), No. 2, p. 45.

    CAS  Google Scholar 

  6. F. Li, H.Y. Zhang, W.W. He, H.Q. Chen, and H.G. Guo, Compression and tensile consecutive deformation behavior of Mn18Cr18N austenite stainless steel, Acta Metall. Sin., 52(2016), No. 8, p. 956.

    CAS  Google Scholar 

  7. F.M. Qin, H. Zhu, Z.X. Wang, X.D. Zhao, W.W. He, and H.Q. Chen, Dislocation and twinning mechanisms for dynamic recrystallization of as-cast Mn18Cr18N steel, Mater. Sci. Eng. A, 684(2017), p. 634.

    Article  CAS  Google Scholar 

  8. D.L. Zhu, M. Zhang, and Y. Wang, Electron backscattered diffraction study of microstructural evolution during isothermal deformation of high-N Mn18Cr18 alloy, Metall. Mater. Trans. B, 50(2019), No. 4, p. 1662.

    Article  CAS  Google Scholar 

  9. Z.H. Wang, S.H. Sun, B. Wang, Z.P. Shi, R.H. Zhang, and W.T. Fu, Effect of grain size on dynamic recrystallization and hot-ductility behaviors in high-nitrogen CrMn austenitic stainless steel, Metall. Mater. Trans. A, 45(2014), No. 8, p. 3631.

    Article  CAS  Google Scholar 

  10. J.Z. Gao, P.X. Fu, H.W. Liu, and D.Z. Li, Effects of rare earth on the microstructure and impact toughness of H13 steel, Metals, 5(2015), No. 1, p. 383.

    Article  Google Scholar 

  11. F.X. Yin, L. Wang, Z.X. Xiao, J.H. Feng, and L. Zhao, Effect of titanium and rare earth microalloying on microsegregation, eutectic carbides of M2 high speed steel during ESR process, J. Rare Earths, 38(2020), No. 9, p. 1030.

    Article  CAS  Google Scholar 

  12. Y. Huang, W.N. Liu, A.M. Zhao, J.K. Han, Z.G. Wang, and H.X. Yin, Effect of Mo content on the thermal stability of Ti-Mo-bearing ferritic steel, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 412.

    Article  CAS  Google Scholar 

  13. B. Šuler, J. Burja, and J. Medved, Modification of non-metallic inclusions with rare-earth metals in 50CrMoV13-1 steel, Mater. Tehnol., 53(2019), No. 3, p. 441.

    Article  Google Scholar 

  14. H.Q. Hu, X.Y. Zhong, and H. Li, Influence of Ce on crystal morphology of austenite and dendritic segregation of Mn in high-Mn steel, Acta Metall. Sin., 20(1984), No. 4, p. 247.

    Google Scholar 

  15. N. Stanford, M.D. Callaghan, and B.D. Jong, The effect of rare earth elements on the behaviour of magnesium-based alloys: Part 1—Hot deformation behaviour, Mater. Sci. Eng. A, 565(2013), p. 459.

    Article  CAS  Google Scholar 

  16. H.H. Yan, Y. Hu, and D.W. Zhao, Influence of rare earth on dynamic recrystallization behavior of as-cast 30Mn steel, Adv. Mater. Sci. Eng., 2018(2018), p. 8423415.

    Article  Google Scholar 

  17. A. Łukaszek-Sołek, T. Śleboda, J. Krawczyk, S. Bednarek, and M. Wojtaszek, Characterization of the workability of Ni-Fe-Mo alloy by complex processing maps, J. Alloys Compd., 797(2019), p. 174.

    Article  Google Scholar 

  18. L.W. Xu, H.B. Li, Z.H. Jiang, M.H. Cai, W.C. Jiao, H. Feng, S.C. Zhang, and P.C. Lu, Hot deformation behavior of P550 steels for nonmagnetic drilling collars, Steel Res. Int., 91(2020), No. 8, art. No. 2000035.

  19. Q.Y. Zang, Y.F. Jin, T. Zhang, and Y.T. Yang, Effect of yttrium addition on microstructure, mechanical and corrosion properties of 20Cr13 martensitic stainless steel, J. Iron Steel Res. Int., 27(2020), No. 4, p. 451.

    Article  CAS  Google Scholar 

  20. X.Q. Pan, J. Yang, J. Park, and H. Ono, Distribution characteristics of inclusions along with the surface sliver defect on the exposed panel of automobile: A quantitative electrolysis method, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1489.

    Article  CAS  Google Scholar 

  21. C. Gu, W.Q. Liu, J.H. Lian, and Y.P. Bao, In-depth analysis of the fatigue mechanism induced by inclusions for high-strength bearing steels, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 826.

    Article  Google Scholar 

  22. J.L. Lei, Z.L. Xue, H.Y. Zhu, and Y.D. Jiang, Research progress on non-metallic inclusion in tire cord steel for radial tire, J. Iron Steel Res., 30(2018), No. 11, p. 847.

    CAS  Google Scholar 

  23. A.L.V.D. Costa e Silva, The effects of non-metallic inclusions on properties relevant to the performance of steel in structural and mechanical applications, J. Mater. Res. Technol., 8(2019), No. 2, p. 2408.

    Article  CAS  Google Scholar 

  24. B.L. Bramfitt, The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron, Metall. Trans., 1(1970), No. 7, p. 1987.

    Article  CAS  Google Scholar 

  25. M. Li, J.M. Li, D. Qiu, Q. Zheng, G. Wang, and M.X. Zhang, Crystallographic study of grain refinement in low and medium carbon steels, Philos. Mag., 96(2016), No. 15, p. 1556.

    Article  CAS  Google Scholar 

  26. Y.C. Yu, S.H. Zhang, H. Li, and S.B. Wang, Effects of rare earth lanthanum on the solidification structure and hot ductility of Fe-43Ni expansion alloy, High Temp. Mater. Process., 37(2018), No. 3, p. 261.

    Article  CAS  Google Scholar 

  27. M. El Wahabi, L. Gavard, F. Montheillet, J.M. Cabrera, and J.M. Prado, Effect of initial grain size on dynamic recrystallization in high purity austenitic stainless steels, Acta Mater., 53(2005), No. 17, p. 4605.

    Article  CAS  Google Scholar 

  28. N. Choi, N. Park, J.K. Kim, A.V. Karasev, P.G. Jönsson, and J.H. Park, Influence of manufacturing conditions on inclusion characteristics and mechanical properties of FeCrNiMnCo alloy, Metals, 10(2020), No. 10, art. No. 1286.

  29. N. Nayan, S.V.S.N. Murty, S. Chhangani, A. Prakash, M.J.N.V. Prasad, and I. Samajdar, Effect of temperature and strain rate on hot deformation behavior and microstructure of Al-Cu-Li alloy, J. Alloys Compd., 723(2017), p. 548.

    Article  CAS  Google Scholar 

  30. S.M. Lv, C.L. Jia, X.B. He, Z.P. Wan, Y. Li, and X.H. Qu, Hot deformation characteristics and dynamic recrystallization mechanisms of a novel nickel-based superalloy, Adv. Eng. Mater., 22(2020), No. 12, art. No. 2000622.

  31. R. Schmid-Fetzer and A. Kozlov, Thermodynamic aspects of grain growth restriction in multicomponent alloy solidification, Acta Mater., 59(2011), No. 15, p. 6133.

    Article  CAS  Google Scholar 

  32. J.B. Zhang, Y.C. Zhang, F. Zhang, D.X. Cui, Y.M. Zhao, H.X. Wu, X.Z. Wang, Q. Zhou, and H.F. Wang, Dendrite growth and grain “coarsening” in an undercooled CoNi equiatomic alloy, J. Alloys Compd., 816(2020), art. No. 152529.

  33. Q.X. Yang, A. Wang, M. Gao, H.Q. Wu, and T.B. Guo, Effect of rare earth elements on austenite growth dynamics of steel 9Cr2Mo, J. Iron Steel Res. Int., 3(1996), No. 1, p. 43.

    Google Scholar 

  34. H. Wang, Y.P. Bao, M. Zhao, M. Wang, X.M. Yuan, and S. Gao, Effect of Ce on the cleanliness, microstructure and mechanical properties of high strength low alloy steel Q690E in industrial production process, Int. J. Miner. Metall. Mater., 26(2019), No. 11, p. 1372.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51874084) and the Fundamental Research Funds for the Central Universities (No. 2125026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanwu Dong or Zhouhua Jiang.

Additional information

Conflict of Interest

The authors declare that no conflict of interest exists.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Dong, Y., Jiang, Z. et al. Influence of rare earth Ce on hot deformation behavior of as-cast Mn18Cr18N high nitrogen austenitic stainless steel. Int J Miner Metall Mater 30, 324–334 (2023). https://doi.org/10.1007/s12613-021-2355-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2355-6

Keywords

Navigation