Skip to main content

Heavy Metal Pollution in Water: Cause and Remediation Strategies

  • Chapter
  • First Online:
Current Status of Marine Water Microbiology

Abstract

Contamination by heavy metals and metalloids in water resources, soil, and air is one of the most severe problems that compromise food and water safety and public health globally and locally. Water naturally contains heavy metals; however, its increase, although sometimes also determined by natural enrichment when passing through aquifers containing rocks with a high concentration of this material, is mostly linked to human activity, such as mining and industry, which generates waste such as lead, mercury, cadmium, arsenic, and chromium, which reach rivers and contaminate groundwater. The danger of heavy metals is greater since they are not chemically or biologically degradable. Once emitted, they can remain in the environment for hundreds of years. In addition, its concentration in living beings increases as they are ingested by others, so the ingestion of contaminated plants or animals can cause symptoms of poisoning. Today we know a great variety of methods and techniques that can be used for the removal of heavy metals from water, each of which shows advantages and disadvantages that must be analyzed. The search for new materials and alternatives for the disinfection of water contaminated with heavy metals, as well as the optimization of those that we know today, is a permanent task for the scientific community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdi O, Kazemi M (2015) A review study of biosorption of heavy metals and comparison between different biosorbents. J Mater Environ Sci 6(5):1386–1399

    Google Scholar 

  • Abdullah N, Yusof N, Lau WJ, Jaafar J, Ismail AF (2019) Recent trends of heavy metal removal from water/wastewater by membrane technologies. J Ind Eng Chem 76:17–38

    Article  CAS  Google Scholar 

  • Abdulrasheed AA, Jalil AA, Triwahyono S, Zaini MAA, Gambo Y, Ibrahim M (2018) Surface modification of activated carbon for adsorption of SO2 and NOX: a review of existing and emerging technologies. Renew Sustain Energy Rev 94:1067–1085

    Article  CAS  Google Scholar 

  • Abebe A, Tilahun S, Mesfine M, Atlabachew M (2017) Removal of cadmium ions from aqueous solution using very small ionic liquids to water ratio without metal chelator and pH modifications. Ethiop J Sci Technol 10(1):51–64

    Article  Google Scholar 

  • Adams GO, Fufeyin PT, Okoro SE, Ehinomen I (2015) Bioremediation, biostimulation and bioaugmention: a review. Int J Environ Bioremediat Biodegrad 3(1):28–39

    CAS  Google Scholar 

  • Ahmad AL, Kusumastuti A, Derek CJC, Ooi BS (2011) Emulsion liquid membrane for heavy metal removal: an overview on emulsion stabilization and destabilization. Chem Eng J 171(3):870–882

    Article  CAS  Google Scholar 

  • Algieri C, Chakraborty S, Candamano S (2021) A way to membrane-based environmental remediation for heavy metal removal. Environments 8(6):52

    Article  Google Scholar 

  • Alonso-Bravo JN, Montaño-Arias NM, Santoyo-Pizano G, Márquez-Benavides L, Saucedo-Martinez BC, Sánchez-Yáñez JM (2018) Biorecuperación y fitorremediación de suelo impactado por aceite residual automotriz. J Selva Andina Res Soc 9(1):45–51

    Article  Google Scholar 

  • Al-Rashdi BAM, Johnson DJ, Hilal N (2013) Removal of heavy metal ions by nanofiltration. Desalination 315:2–17

    Article  CAS  Google Scholar 

  • Anirudhan TS, Sreekumari SS (2011) Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons. J Environ Sci 23(12):1989–1998

    Article  CAS  Google Scholar 

  • Ashraf S, Ali Q, Zahir ZA, Ashraf S, Asghar HN (2019) Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf 174:714–727. https://doi.org/10.1016/j.ecoenv.2019.02.068

    Article  CAS  PubMed  Google Scholar 

  • Aumesquet-Carreto M-Á, Ortega-Delgado B, García-Rodríguez L (2022) Opportunities of reducing the energy consumption of seawater reverse osmosis desalination by exploiting salinity gradients. Membranes 12(11):1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azevedo-Santos VM, Brito MFG, Manoel PS, Perroca JF, Rodrigues-Filho JL, Paschoal LRP, Goncalves GRL, Wolf MR, Blettler M, Andrade MC (2021) Plastic pollution: a focus on freshwater biodiversity. Ambio 50(7):1313–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babilas D, Dydo P (2018) Selective zinc recovery from electroplating wastewaters by electrodialysis enhanced with complex formation. Sep Purif Technol 192:419–428

    Article  CAS  Google Scholar 

  • Bandosz TJ, Jagiello J, Schwarz JA (1992) Comparison of methods to assess surface acidic groups on activated carbons. Anal Chem 64(8):891–895

    Article  CAS  Google Scholar 

  • Batool A, Saleh TA (2020) Removal of toxic metals from wastewater in constructed wetlands as a green technology; catalyst role of substrates and chelators. Ecotoxicol Environ Saf 189, 109924

    Google Scholar 

  • Benneker AM, Klomp J, Lammertink RGH, Wood JA (2018) Influence of temperature gradients on mono- and divalent ion transport in electrodialysis at limiting currents. Desalination 443:62–69. https://doi.org/10.1016/j.desal.2018.05.005

    Article  CAS  Google Scholar 

  • Bhattacharyya D, Moffitt M, Grieves RB (1978) Charged membrane ultrafiltration of toxic metal oxyanions and cations from single- and multisalt aqueous solutions. Sep Sci Technol 13(5):449–463

    Article  CAS  Google Scholar 

  • Bhattacharyya D, Jumawan AB Jr, Grieves RB (1979) Separation of toxic heavy metals by sulfide precipitation. Sep Sci Technol 14(5):441–452

    Article  CAS  Google Scholar 

  • Bolisetty S, Peydayesh M, Mezzenga R (2019) Sustainable technologies for water purification from heavy metals: review and analysis. Chem Soc Rev 48(2):463–487

    Article  CAS  PubMed  Google Scholar 

  • BrbootI MM, AbiD BA, Al-ShuwaikI NM (2011) Removal of heavy metals using chemicals precipitation. Eng Technol J 29(3):595–612

    Article  Google Scholar 

  • Březinová T, Vymazal J (2015) Evaluation of heavy metals seasonal accumulation in Phalaris arundinacea in a constructed treatment wetland. Ecol Eng 79:94–99

    Article  Google Scholar 

  • Briffa J, Sinagra E, Blundell R (2020) Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6(9):e04691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruch LW, Cole MW, Zaremba E (2007) Physical adsorption: forces and phenomena. Courier Dover Publications, Mineola

    Google Scholar 

  • Chai WS, Cheun JY, Kumar PS, Mubashir M, Majeed Z, Banat F, Ho S-H, Show PL (2021) A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J Clean Prod 296:126589. https://doi.org/10.1016/j.jclepro.2021.126589

    Article  CAS  Google Scholar 

  • Chang SH (2016) Types of bulk liquid membrane and its membrane resistance in heavy metal removal and recovery from wastewater. Desalination Water Treat 57(42):19785–19793

    Article  Google Scholar 

  • Chang J, Peng D, Deng S, Chen J, Duan C (2022) Efficient treatment of mercury (II)-containing wastewater in aerated constructed wetland microcosms packed with biochar. Chemosphere 290:133302

    Article  CAS  PubMed  Google Scholar 

  • Charerntanyarak L (1999) Heavy metals removal by chemical coagulation and precipitation. Water Sci Technol 39(10–11):135–138

    Article  CAS  Google Scholar 

  • Chaudhry FN, Malik MF (2017) Factors affecting water pollution: a review. J Ecosyst Ecography 7(225):1–3

    CAS  Google Scholar 

  • Chen R, Sheehan T, Ng JL, Brucks M, Su X (2020) Capacitive deionization and electrosorption for heavy metal removal. Environ Sci Water Res Technol 6(2):258–282. https://doi.org/10.1039/C9EW00945K

    Article  Google Scholar 

  • Chon K, Cho J, Kim SJ, Jang A (2014) The role of a combined coagulation and disk filtration process as a pre-treatment to microfiltration and reverse osmosis membranes in a municipal wastewater pilot plant. Chemosphere 117:20–26

    Article  CAS  PubMed  Google Scholar 

  • Chung S, Kim S, Kim J-O, Chung J (2014) Feasibility of combining reverse osmosis–ferrite process for reclamation of metal plating wastewater and recovery of heavy metals. Ind Eng Chem Res 53(39):15192–15199

    Article  CAS  Google Scholar 

  • Çimen A (2015) Removal of chromium from wastewater by reverse osmosis. Russ J Phys Chem A 89(7):1238–1243

    Article  Google Scholar 

  • Cohen I, Avraham E, Soffer A, Aurbach D (2013) Water desalination by capacitive deionization - advantages limitations and modification. ECS Trans 45(17):43–59. https://doi.org/10.1149/04517.0043ECST/XML

    Article  Google Scholar 

  • de Morais Nepel TC, Landers R, Vieira MGA, de Almeida Neto AF (2020) Metallic copper removal optimization from real wastewater using pulsed electrodeposition. J Hazard Mater 384, 121416

    Google Scholar 

  • Dialynas E, Diamadopoulos E (2009) Integration of a membrane bioreactor coupled with reverse osmosis for advanced treatment of municipal wastewater. Desalination 238(1–3):302–311

    Article  CAS  Google Scholar 

  • Dwivedi AK (2017) Researches in water pollution: a review. Int Res J Nat Appl Sci 4(1):118–142

    Google Scholar 

  • Esmaeili A, Ghasemi S (2012) Investigation of Cr (VI) adsorption by dried brown algae Sargassum sp. and its activated carbon. Iran J Chem Chem Eng 31(4):11–19

    Google Scholar 

  • Esmaeili A, Ghasemi S, Sohrabipour J (2010) Biosorption of copper from wastewater by activated carbon preparation from alga Sargassum sp. Nat Prod Res 24(4):341–348

    Article  CAS  PubMed  Google Scholar 

  • Fang L, Li L, Qu Z, Xu H, Xu J, Yan N (2018) A novel method for the sequential removal and separation of multiple heavy metals from wastewater. J Hazard Mater 342:617–624

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Sun S-P, Zhu W-P, Chung T-S (2014) Chelating polymer modified P84 nanofiltration (NF) hollow fiber membranes for high efficient heavy metal removal. Water Res 63:252–261

    Article  CAS  PubMed  Google Scholar 

  • González Gómez JD (2010). Fitorremediación-una herramienta viable para la descontaminación de aguas y suelo

    Google Scholar 

  • González-Chávez, M. C. A. (2017). Definiciones y problemática en la investigación científica en aspectos de fitoremediación de suelos. Agro Productividad 10(4).

    Google Scholar 

  • Gu J-n, Liang J, Chen C, Li K, Zhou W, Jia J, Sun T (2020) Treatment of real deplating wastewater through an environmental friendly precipitation-electrodeposition-oxidation process: recovery of silver and copper and reuse of wastewater. Sep Purif Technol 248(117):82. https://doi.org/10.1016/J.SEPPUR.2020.117082

    Article  Google Scholar 

  • Gurreri L, Tamburini A, Cipollina A, Micale G (2020) Electrodialysis applications in wastewater treatment for environmental protection and resources recovery: a systematic review on progress and perspectives. Membranes 10(7):146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harharah RH, Abdalla GMT, Elkhaleefa A, Shigidi I, Harharah HN (2022) A study of copper (II) ions removal by reverse osmosis under various operating conditions. Separations 9(6):155

    Article  CAS  Google Scholar 

  • He M, Li WD, Chen JC, Zhang ZG, Wang XF, Yang GH (2022) Immobilization of silver nanoparticles on cellulose nanofibrils incorporated into nanofiltration membrane for enhanced desalination performance. npj Clean Water 5(1):64

    Google Scholar 

  • Huang Y, Feng X (2019) Polymer-enhanced ultrafiltration: fundamentals, applications and recent developments. J Membr Sci 586:53–83

    Article  CAS  Google Scholar 

  • Hutten IM (2016) Filtration mechanisms and theory. In: Handbook of nonwoven filter media, vol 53–107. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-08-098301-1.00002-2

    Chapter  Google Scholar 

  • Ihsanullah I, Jamal A, Ilyas M, Zubair M, Khan G, Atieh MA (2020) Bioremediation of dyes: current status and prospects. J Water Process Eng 38:101680

    Article  Google Scholar 

  • Imdad S, Dohare RK (2022) A critical review on heavy metals removal using ionic liquid membranes from the industrial wastewater. Chem Eng Process Process Intensif 108:812

    Google Scholar 

  • Inyinbor Adejumoke A, Adebesin Babatunde O, Oluyori Abimbola P, Adelani Akande Tabitha A, Dada Adewumi O, Oreofe Toyin A (2018) Water pollution: effects, prevention, and climatic impact. Water Challenges Urbaniz World 33:33–47

    Google Scholar 

  • Irfan M, Xu T, Ge L, Wang Y, Xu T (2019) Zwitterion structure membrane provides high monovalent/divalent cation electrodialysis selectivity: investigating the effect of functional groups and operating parameters. J Membr Sci 588:117211

    Article  CAS  Google Scholar 

  • Iwamoto T, Nasu M (2001) Current bioremediation practice and perspective. J Biosci Bioeng 92(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Juve J-MA, Christensen FM, Wang Y, Wei Z (2022) Electrodialysis for metal removal and recovery: a review. Chem Eng J 435:134857

    Article  Google Scholar 

  • Kalfa A, Shapira B, Shopin A, Cohen I, Avraham E, Aurbach D (2020) Capacitive deionization for wastewater treatment: opportunities and challenges. Chemosphere 241:125003. https://doi.org/10.1016/J.CHEMOSPHERE.2019.125003

    Article  CAS  PubMed  Google Scholar 

  • Khanna R, Gupta S (2018) Agrochemicals as a potential cause of ground water pollution: a review. Int J Chem Stud 6(3):985–990

    Google Scholar 

  • Kim J-H, Lee SY, Rha S, Lee YJ, Jo HY, Lee S (2021) Treatment of heavy metal wastewater by ceramic microfilter functionalized with magnesium oxides. Water Air Soil Pollut 232(12):1–13

    Article  Google Scholar 

  • Knox AS, Paller MH, Seaman JC, Mayer J, Nicholson C (2021) Removal, distribution and retention of metals in a constructed wetland over 20 years. Sci Total Environ 796:149062

    Article  CAS  PubMed  Google Scholar 

  • Kobya M, Demirbas E, Senturk E, Ince M (2005) Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresour Technol 96(13):1518–1521

    Article  CAS  PubMed  Google Scholar 

  • Kour D, Kaur T, Devi R, Yadav A, Singh M, Joshi D, Singh J, Suyal DC, Kumar A, Rajput VD (2021) Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: present status and future challenges. Environ Sci Pollut Res 28(20):24917–24939

    Article  CAS  Google Scholar 

  • Kuleyin A, Uysal HE (2020) Recovery of copper ions from industrial wastewater by electrodeposition. Int J Electrochem Sci 15:1474–1485. https://doi.org/10.20964/2020.02.39

    Article  CAS  Google Scholar 

  • Kumar M, Nandi M, Pakshirajan K (2021) Recent advances in heavy metal recovery from wastewater by biogenic sulfide precipitation. J Environ Manag 278:111555

    Article  CAS  Google Scholar 

  • Kushwaha A, Rani R, Kumar S, Gautam A (2015) Heavy metal detoxification and tolerance mechanisms in plants: implications for phytoremediation. Environ Rev 24(1):39–51

    Article  Google Scholar 

  • Ladole MR, Patil SS, Paraskar PM, Pokale PB, Patil PD (2021) Desalination using electrodialysis. In: Advances in science, technology and innovation. Springer, Berlin, pp 15–38. https://doi.org/10.1007/978-3-030-72873-1_2/COVER

    Chapter  Google Scholar 

  • Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC (2019) Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol Res Innov 3(2):275–290

    Article  Google Scholar 

  • Li J, Wang X, Zhao G, Chen C, Chai Z, Alsaedi A, Hayat T, Wang X (2018) Metal–organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem Soc Rev 47(7):2322–2356

    Article  CAS  PubMed  Google Scholar 

  • Li P, Lan H, Chen K, Ma X, Wei B, Wang M, Li P, Hou Y, Niu QJ (2022) Novel high-flux positively charged aliphatic polyamide nanofiltration membrane for selective removal of heavy metals. Sep Purifi Technol 280:119949

    Article  CAS  Google Scholar 

  • Liang L, Chen Q, Jiang F, Yuan D, Qian J, Lv G, Xue H, Liu L, Jiang H-L, Hong M (2016) In situ large-scale construction of sulfur-functionalized metal–organic framework and its efficient removal of Hg (II) from water. J Mater Chem A 4(40):15370–15374

    Article  CAS  Google Scholar 

  • Lin Q, Li L, Liang S, Liu M, Bi J, Wu L (2015) Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities. Appl Catal B Environ 163:135–142. https://doi.org/10.1016/j.apcatb.2014.07.053

    Article  CAS  Google Scholar 

  • Liu X, Jiang B, Yin X, Ma H, Hsiao BS (2020) Highly permeable nanofibrous composite microfiltration membranes for removal of nanoparticles and heavy metal ions. Sep Purif Technol 233:115976

    Article  CAS  Google Scholar 

  • López RAN, Vong YM, Borges RO, Olguín EJ (2004) Fitorremediación: fundamentos y aplicaciones. Revista Ciencia:69–83

    Google Scholar 

  • Luo J-S, Zhang Z (2021) Mechanisms of cadmium phytoremediation and detoxification in plants. Crop J 9(3):521–529

    Article  Google Scholar 

  • Ma Y, Rajkumar M, Luo Y, Freitas H (2011) Inoculation of endophytic bacteria on host and non-host plants—effects on plant growth and Ni uptake. J Hazard Mater 195:230–237

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Inoculation of Brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions. J Hazard Mater 320:36–44

    Article  CAS  PubMed  Google Scholar 

  • Malik LA, Bashir A, Qureashi A, Pandith AH (2019) Detection and removal of heavy metal ions: a review. Environ Chem Lett 17(4):1495–1521

    Article  CAS  Google Scholar 

  • Mariana M, Abdul AK, Mistar EM, Yahya EB, Alfatah T, Danish M, Amayreh M (2021) Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption. J Water Process Eng 43:102221

    Article  Google Scholar 

  • Marrero-Coto J, Amores-Sánchez I, Coto-Pérez O (2012) Phytoremediation, a technology that involves plants and microorganisms in environmental remediation. ICIDCA Sobre Los Derivados de La Caña de Azúcar 46(3):52–61

    Google Scholar 

  • Matlock MM, Howerton BS, Atwood DA (2002) Chemical precipitation of heavy metals from acid mine drainage. Water Res 36(19):4757–4764

    Article  CAS  PubMed  Google Scholar 

  • Mekonnen MM, Hoekstra AY (2016) Four billion people facing severe water scarcity. Sci Adv 2(2):e1500323

    Article  PubMed  PubMed Central  Google Scholar 

  • Min KJ, Choi SY, Jang D, Lee J, Park KY (2019) Separation of metals from electroplating wastewater using electrodialysis. Energy Sources A Recov Utiliz Environ Effects 41(20):2471–2480

    Article  CAS  Google Scholar 

  • Min KJ, Kim JH, Park KY (2021) Characteristics of heavy metal separation and determination of limiting current density in a pilot-scale electrodialysis process for plating wastewater treatment. Sci Total Environ 757:143762

    Article  CAS  PubMed  Google Scholar 

  • Mnif A, Bejaoui I, Mouelhi M, Hamrouni B (2017) Hexavalent chromium removal from model water and car shock absorber factory effluent by nanofiltration and reverse osmosis membrane. Int J Anal Chem 2017:7415708

    Article  PubMed  PubMed Central  Google Scholar 

  • Moctezuma Granados CE (2017) Evaluación de Pseudomonas endófitas de la raíz de Typha latifolia en la fitoextracción de Cd (II). Repositorio Nacional Conacyt

    Google Scholar 

  • Moss B (2008) Water pollution by agriculture. Philos Trans R Soc B Biol Sci 363(1491):659–666

    Article  CAS  Google Scholar 

  • Muddemann T, Haupt D, Sievers M, Kunz U (2019) Electrochemical reactors for wastewater treatment. ChemBioEng Rev 6(5):142–156. https://doi.org/10.1002/CBEN.201900021

    Article  CAS  Google Scholar 

  • Mungray AA, Kulkarni SV, Mungray AK (2012) Removal of heavy metals from wastewater using micellar enhanced ultrafiltration technique: a review. Cent Eur J Chem 10(1):27–46

    CAS  Google Scholar 

  • Nisa KU, Tarfeen N, Nisa Q (2022) Potential role of wetlands in remediation of metals and metalloids: a review. In: Metals metalloids soil plant water systems. Elsevier, Amsterdam, pp 427–444

    Chapter  Google Scholar 

  • Ortiz Cáceres EA (2020) Análisis y propuesta de técnicas de fitorremediación para disminuir la presencia de compuestos orgánicos volátiles en el aire en la industria de pinturas de Lima Metropolitana, durante el período 2014 al 2019

    Google Scholar 

  • Ozaki H, Sharma K, Saktaywin W (2002) Performance of an ultra-low-pressure reverse osmosis membrane (ULPROM) for separating heavy metal: effects of interference parameters. Desalination 144(1–3):287–294

    Article  CAS  Google Scholar 

  • Pang FM, Teng SP, Teng TT, Omar AKM (2009) Heavy metals removal by hydroxide precipitation and coagulation-flocculation methods from aqueous solutions. Water Qual Res J 44(2):174–182

    Article  CAS  Google Scholar 

  • Paunovic M, Schlesinger M (2006) Fundamentals of electrochemical deposition. john wiley & sons

    Google Scholar 

  • Petrinic I, Korenak J, Povodnik D, Hélix-Nielsen C (2015) A feasibility study of ultrafiltration/reverse osmosis (UF/RO)-based wastewater treatment and reuse in the metal finishing industry. J Clean Prod 101:292–300

    Article  CAS  Google Scholar 

  • Peydayesh M, Mohammadi T, Nikouzad SK (2020) A positively charged composite loose nanofiltration membrane for water purification from heavy metals. J Membr Sci 611:118205

    Article  CAS  Google Scholar 

  • Pohl A (2020) Removal of heavy metal ions from water and wastewaters by sulfur-containing precipitation agents. Water Air Soil Pollut 231(10):1–17

    Article  Google Scholar 

  • Punamiya P, Datta R, Sarkar D, Barber S, Patel M, Das P (2010) Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass [Chrysopogon zizanioides (L.)]. J Hazard Mater 177(1–3):465–474

    Article  CAS  PubMed  Google Scholar 

  • Qi Y, Zhu L, Shen X, Sotto A, Gao C, Shen J (2019) Polythyleneimine-modified original positive charged nanofiltration membrane: removal of heavy metal ions and dyes. Sep Purif Technol 222:117–124

    Article  CAS  Google Scholar 

  • Rai PK, Lee SS, Zhang M, Tsang YF, Kim K-H (2019) Heavy metals in food crops: health risks, fate, mechanisms, and management. Environ Int 125:365–385

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77(2):153–160

    Article  CAS  PubMed  Google Scholar 

  • Ramos VC, Han W, Yeung KL (2020a) A comparative study between ionic liquid coating and counterparts in bulk for toluene absorption. Green Chem Eng 1(2):147–154. https://doi.org/10.1016/J.GCE.2020.10.008

    Article  Google Scholar 

  • Ramos VC, Han W, Zhang X, Zhang S, Yeung KL (2020b) Supported ionic liquids for air purification. Curr Opin Green Sustain Chem 25:100391. https://doi.org/10.1016/j.cogsc.2020.100391

    Article  Google Scholar 

  • Ran J, Wu L, He Y, Yang Z, Wang Y, Jiang C, Ge L, Bakangura E, Xu T (2017) Ion exchange membranes: new developments and applications. J Membr Sci 522, 267–291

    Google Scholar 

  • Regel-Rosocka M, Rzelewska M, Baczynska M, Janus M, Wisniewski M (2015) Removal of palladium (II) from aqueous chloride solutions with cyphos phosphonium ionic liquids as metal ion carriers for liquid-liquid extraction and transport across polymer inclusion membranes. Physicochem Probl Miner Process 51:621–631

    Google Scholar 

  • Ricci BC, Ferreira CD, Aguiar AO, Amaral MCS (2015) Integration of nanofiltration and reverse osmosis for metal separation and sulfuric acid recovery from gold mining effluent. Sep Purif Technol 154:11–21

    Article  CAS  Google Scholar 

  • Ricco R, Konstas K, Styles MJ, Richardson JJ, Babarao R, Suzuki K, Scopece P, Falcaro P (2015) Lead (II) uptake by aluminium based magnetic framework composites (MFCs) in water. J Mater Chem A 3(39):19822–19831

    Article  CAS  Google Scholar 

  • Rodriguez-Reinoso F (1997) Activated carbon. In: Introduction to carbon technologies. Elsevier, Amsterdam

    Google Scholar 

  • Rolón-Cárdenas GA, Arvizu-Gómez JL, Pacheco-Aguilar JR, Vázquez-Martínez J, Hernández-Morales A (2021) Cadmium-tolerant endophytic Pseudomonas rhodesiae strains isolated from Typha latifolia modify the root architecture of Arabidopsis thaliana Col-0 in presence and absence of Cd. Braz J Microbiol 52(1):349–361

    Article  PubMed  Google Scholar 

  • Rossner A, Snyder SA, Knappe DRU (2009) Removal of emerging contaminants of concern by alternative adsorbents. Water Res 43(15):3787–3796

    Article  CAS  PubMed  Google Scholar 

  • Ruhal R, Choudhury B (2012) Membrane separation and design. In: Handbook of food process design. Wiley, New York, pp 769–788

    Chapter  Google Scholar 

  • Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley, New York

    Google Scholar 

  • Sales da Silva IG, Gomes de Almeida FC, Padilha da Rocha e Silva NM, Casazza AA, Converti A, Asfora Sarubbo L (2020) Soil bioremediation: overview of technologies and trends. Energies 13(18):4664

    Article  Google Scholar 

  • Sato T, Imaizumi M, Kato O, Taniguchi Y (1977) RO applications in wastewater reclamation for re-use. Desalination 23(1–3):65–76

    Article  CAS  Google Scholar 

  • Schück M, Greger M (2020) Screening the capacity of 34 wetland plant species to remove heavy metals from water. Int J Environ Res Public Health 17(13):4623

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwarzenbach RP, Egli T, Hofstetter TB, Von Gunten U, Wehrli B (2010) Global water pollution and human health. Annu Rev Environ Resour 35(1):109–136

    Article  Google Scholar 

  • Shah V, Daverey A (2020) Phytoremediation: a multidisciplinary approach to clean up heavy metal contaminated soil. Environ Technol Innov 18:100774

    Article  Google Scholar 

  • Shahrokhi-Shahraki R, Benally C, El-Din MG, Park J (2021) High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: insights into the adsorption mechanisms. Chemosphere 264:128455

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Jiang H, Mao H, Pan G, Zhou L, Cao Y (2007) Simultaneous determination of seven phthalates and four parabens in cosmetic products using HPLC-DAD and GC-MS methods. J Sep Sci 30(1):48–54

    Article  CAS  PubMed  Google Scholar 

  • Shocron AN, Atlas I, Suss ME (2022) Predicting ion selectivity in water purification by capacitive deionization: electric double layer models. Curr Opin Colloid Interface Sci 60:101602. https://doi.org/10.1016/J.COCIS.2022.101602

    Article  CAS  Google Scholar 

  • Singh S, Benny CK, Chakraborty S (2022) An overview on the application of constructed wetlands for the treatment of metallic wastewater. In: Biodegradation and detoxification of micropollutants in industrial wastewater. Elsevier, Amsterdam, pp 103–130

    Chapter  Google Scholar 

  • Srivastava NK, Majumder CB (2008) Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. J Hazard Mater 151(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Stando G, Hannula PM, Kumanek B, Lundström M, Janas D (2021) Copper recovery from industrial wastewater - synergistic electrodeposition onto nanocarbon materials. Water Resour Ind 26:100156. https://doi.org/10.1016/J.WRI.2021.100156

    Article  CAS  Google Scholar 

  • Suzuki M, Suzuki M (1990) Adsorption engineering (vol. 14). Kodansha Tokyo

    Google Scholar 

  • Sylwan I, Thorin E (2021) Removal of heavy metals during primary treatment of municipal wastewater and possibilities of enhanced removal: a review. Water 13(8):1121

    Article  Google Scholar 

  • Tang W, Liang J, He D, Gong J, Tang L, Liu Z, Wang D, Zeng G (2019) Various cell architectures of capacitive deionization: recent advances and future trends. Water Res 150:225–251. https://doi.org/10.1016/J.WATRES.2018.11.064

    Article  CAS  PubMed  Google Scholar 

  • Tatiparti SSV, Ebrahimi F (2012) Potentiostatic versus galvanostatic electrodeposition of nanocrystalline Al-Mg alloy powders. J Solid State Electrochem 16(3):1255–1262. https://doi.org/10.1007/S10008-011-1522-5/FIGURES/6

    Article  CAS  Google Scholar 

  • Tortora F, Innocenzi V, Prisciandaro M, Vegliò F, Mazziotti di Celso G (2016) Heavy metal removal from liquid wastes by using micellar-enhanced ultrafiltration. Water Air Soil Pollut 227(7):1–11

    Article  CAS  Google Scholar 

  • Van der Perk M (2014) Soil and water contamination. CRC Press, Boca Raton

    Google Scholar 

  • Vardhan KH, Kumar PS, Panda RC (2019) A review on heavy metal pollution, toxicity and remedial measures: current trends and future perspectives. J Mol Liquids 290:111197

    Article  CAS  Google Scholar 

  • Ventura D, Ferrante M, Copat C, Grasso A, Milani M, Sacco A, Licciardello F, Cirelli GL (2021) Metal removal processes in a pilot hybrid constructed wetland for the treatment of semi-synthetic stormwater. Sci Total Environ 754:142221

    Article  CAS  PubMed  Google Scholar 

  • Verma S, Kuila A (2019) Bioremediation of heavy metals by microbial process. Environ Technol Innov 14:100369

    Article  Google Scholar 

  • Verma B, Balomajumder C, Sabapathy M, Gumfekar SP (2021) Pressure-driven membrane process: a review of advanced technique for heavy metals remediation. Processes 9(5):752

    Article  CAS  Google Scholar 

  • Vidali M (2001) Bioremediation. an overview. Pure Appl Chem 73(7):1163–1172

    Article  CAS  Google Scholar 

  • Vigliotta G, Matrella S, Cicatelli A, Guarino F, Castiglione S (2016) Effects of heavy metals and chelants on phytoremediation capacity and on rhizobacterial communities of maize. J Environ Manag 179:93–102

    Article  CAS  Google Scholar 

  • Vincent M, Laurio O, Velandres JA, Alfafara CG, Migo VP, Concepcion M, Detras M, Sunga-Amparo JM, Mendoza M (2020) Potentiostatic electrodeposition as an option to the traditional recovery of silver in artisanal gold smelting wastewater in Bulacan, Philippines. Philipp Eng J 41(1):67–86. https://journals.upd.edu.ph/index.php/pej/article/view/7148

    Google Scholar 

  • Viramontes-Acosta A, Hernández-López M, Velasquez-Chavez TE, Mendez-Almaraz R (2020) Construcción de un Humedal para la fitorremediación de agua residual en el Instituto Tecnológico Superior de Lerdo. Revista Ciencia 1

    Google Scholar 

  • Volesky B (2003) Sorption and biosorption. BV Sorbex, St. Lambert, p 326

    Google Scholar 

  • Wang L, Lin S (2018) Membrane capacitive deionization with constant current vs constant voltage charging: which is better? Environ Sci Technol 52(7):4051–4060. https://doi.org/10.1021/ACS.EST.7B06064/SUPPL_FILE/ES7B06064_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Lin S (2019) Mechanism of selective ion removal in membrane capacitive deionization for water softening. Environ Sci Technol 53(10):5797–5804. https://doi.org/10.1021/ACS.EST.9B00655/SUPPL_FILE/ES9B00655_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  • Wang LK, Vaccari DA, Li Y, Shammas NK (2005) Chemical precipitation. In: Physicochemical treatment processes. Springer, Berlin, pp 141–197

    Chapter  Google Scholar 

  • Wang Y, Di Y, Antonietti M, Li H, Chen X, Wang X (2010) Excellent visible-light photocatalysis of fluorinated polymeric carbon nitride solids. Chem Mater 22(18):5119–5121

    Article  CAS  Google Scholar 

  • Wang R, Guan S, Sato A, Wang X, Wang Z, Yang R, Hsiao BS, Chu B (2013) Nanofibrous microfiltration membranes capable of removing bacteria, viruses and heavy metal ions. J Membr Sci 446:376–382

    Article  CAS  Google Scholar 

  • Wang C, Liu X, Chen JP, Li K (2015a) Superior removal of arsenic from water with zirconium metal-organic framework UiO-66. Sci Rep 5(1):1–10

    Google Scholar 

  • Wang X, Gao Y, Wang J, Wang Z, Chen L (2015b) Chemical adsorption: another way to anchor polysulfides. Nano Energy 12:810–815

    Article  CAS  Google Scholar 

  • Wang L, Shi C, Pan L, Zhang X, Zou J-J (2020a) Rational design, synthesis, adsorption principles and applications of metal oxide adsorbents: a review. Nanoscale 12(8):4790–4815

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Shu G, Tian H, Zhu X (2020b) Removals of Cu(II), Ni(II), Co(II) and Ag(I) from wastewater and electricity generation by bimetallic thermally regenerative electro-deposition batteries. Sep Purif Technol 235:116230. https://doi.org/10.1016/J.SEPPUR.2019.116230

    Article  CAS  Google Scholar 

  • Wang C, Li T, Yu G, Deng S (2021) Removal of low concentrations of nickel ions in electroplating wastewater by combination of electrodialysis and electrodeposition. Chemosphere 263:128208. https://doi.org/10.1016/J.CHEMOSPHERE.2020.128208

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Long Y, Yu G, Wang G, Zhou Z, Li P, Yang YZK, Wang S (2022a) A review on microorganisms in constructed wetlands for typical pollutant removal: species, function, and diversity. In: Environmental monitoring and remediation using microbiotechnology, vol 845. Frontiers Media SA, Lausanne, p 725176

    Google Scholar 

  • Wang L, Xu D, Zhang Q, Liu T, Tao Z (2022b) Simultaneous removal of heavy metals and bioelectricity generation in microbial fuel cell coupled with constructed wetland: an optimization study on substrate and plant types. Environ Sci Pollut Res 29(1):768–778

    Article  Google Scholar 

  • Wang G, Yu G, Chi T, Li Y, Zhang Y, Wang J, Li P, Liu J, Yu Z, Wang Q (2023) Insights into the enhanced effect of biochar on cadmium removal in vertical flow constructed wetlands. J Hazard Mater 443:130148

    Article  CAS  PubMed  Google Scholar 

  • Wdowczyk A, Szymańska-Pulikowska A, Gałka B (2022) Removal of selected pollutants from landfill leachate in constructed wetlands with different filling. Bioresour Technol 353:127136

    Article  CAS  PubMed  Google Scholar 

  • Webb PA (2003) Introduction to chemical adsorption analytical techniques and their applications to catalysis. Micromeritics Instrument Corp. Technical Publications, Norcross, pp 1–12

    Google Scholar 

  • Wu Y, Pang H, Yao W, Wang X, Yu S, Yu Z, Wang X (2018) Synthesis of rod-like metal-organic framework (MOF-5) nanomaterial for efficient removal of U (VI): batch experiments and spectroscopy study. Sci Bull 63(13):831–839

    Article  CAS  Google Scholar 

  • Wu C, Gao J, Liu Y, Jiao W, Su G, Zheng R, Zhong H (2022) High-gravity intensified electrodeposition for efficient removal of Cd2+ from heavy metal wastewater. Sep Purif Technol 289:120809. https://doi.org/10.1016/J.SEPPUR.2022.120809

    Article  CAS  Google Scholar 

  • Xiang H, Min X, Tang C-J, Sillanpää M, Zhao F (2022) Recent advances in membrane filtration for heavy metal removal from wastewater: a mini review. J Water Process Eng 49:103023

    Article  Google Scholar 

  • Xu Z, Li K, Li W, Wu C, Chen X, Huang J, Zhang X, Ban Y (2022) The positive effects of arbuscular mycorrhizal fungi inoculation and/or additional aeration on the purification efficiency of combined heavy metals in vertical flow constructed wetlands. Environ Sci Pollut Res 29:68950–68964

    Article  CAS  Google Scholar 

  • Yahaya YA, Don MM (2014) Pycnoporus sanguineus as potential biosorbent for heavy metal removal from aqueous solution: a review. J Phys Sci 25(1):1

    CAS  Google Scholar 

  • Yang RT (2003) Adsorbents: fundamentals and applications. Wiley, New York

    Book  Google Scholar 

  • Yang J-C, Yin X-B (2017) CoFe2O4@ MIL-100 (Fe) hybrid magnetic nanoparticles exhibit fast and selective adsorption of arsenic with high adsorption capacity. Sci Rep 7(1):1–15

    Google Scholar 

  • Yang Q, Zhao Q, Ren S, Lu Q, Guo X, Chen Z (2016) Fabrication of core-shell Fe3O4@ MIL-100 (Fe) magnetic microspheres for the removal of Cr (VI) in aqueous solution. J Solid State Chem 244:25–30

    Article  CAS  Google Scholar 

  • Yang L, Zhang Y, Wang F, Luo Z, Guo S, Strähle U (2020) Toxicity of mercury: molecular evidence. Chemosphere 245:125586

    Article  CAS  PubMed  Google Scholar 

  • Ye C-C, An Q-F, Wu J-K, Zhao F-Y, Zheng P-Y, Wang N-X (2019) Nanofiltration membranes consisting of quaternized polyelectrolyte complex nanoparticles for heavy metal removal. Chem Eng J 359:994–1005

    Article  CAS  Google Scholar 

  • Yesil H, Tugtas AE (2019) Removal of heavy metals from leaching effluents of sewage sludge via supported liquid membranes. Sci Total Environ 693:133608

    Article  CAS  PubMed  Google Scholar 

  • Yu G, Li P, Wang G, Wang J, Zhang Y, Wang S, Yang K, Du C, Chen H (2021) A review on the removal of heavy metals and metalloids by constructed wetlands: bibliometric, removal pathways, and key factors. World J Microbiol Biotechnol 37(9):1–12

    Article  Google Scholar 

  • Yu G, Wang G, Chi T, Du C, Wang J, Li P, Zhang Y, Wang S, Yang K, Long Y (2022) Enhanced removal of heavy metals and metalloids by constructed wetlands: a review of approaches and mechanisms. Sci Total Environ 821:153516

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhao X, Huang H, Li Z, Liu D, Zhong C (2015) Selective removal of transition metal ions from aqueous solution by metal–organic frameworks. RSC Adv 5(88):72107–72112

    Article  CAS  Google Scholar 

  • Zhang X, Li X, Yang H, Cui Z (2018) Biochemical mechanism of phytoremediation process of lead and cadmium pollution with Mucor circinelloides and Trichoderma asperellum. Ecotoxicol Environ Saf 157:21–28

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Ma J, Wu L, Sun J, Wang L, Li T, Waite TD (2021) Flow electrode capacitive deionization (FCDI): recent developments, environmental applications, and future perspectives. Environ Sci Technol 55(8):4243–4267. https://doi.org/10.1021/ACS.EST.0C06552/ASSET/IMAGES/LARGE/ES0C06552_0008.JPEG

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Wei H, Zhao H, Wang Y, Tang N (2020) Electrode materials for capacitive deionization: a review. J Electroanal Chem 873:114416. https://doi.org/10.1016/J.JELECHEM.2020.114416

    Article  CAS  Google Scholar 

  • Zheng X, Ni C, Xiao W, Liang Y, Li Y (2022) Ionic liquid grafted polyethersulfone nanofibrous membrane as recyclable adsorbent with simultaneous dye, heavy metal removal and antibacterial property. Chem Eng J 428:132111

    Article  CAS  Google Scholar 

  • Zulkefeli NSW, Weng SK, Abdul Halim NS (2018) Removal of heavy metals by polymer inclusion membranes. Curr Pollut Rep 4(2):84–92

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahum Andrés Medellín-Castillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

González-Fernández, L.A. et al. (2023). Heavy Metal Pollution in Water: Cause and Remediation Strategies. In: Soni, R., Suyal, D.C., Morales-Oyervides, L., Fouillaud, M. (eds) Current Status of Marine Water Microbiology. Springer, Singapore. https://doi.org/10.1007/978-981-99-5022-5_10

Download citation

Publish with us

Policies and ethics