Skip to main content
Log in

Cadmium-tolerant endophytic Pseudomonas rhodesiae strains isolated from Typha latifolia modify the root architecture of Arabidopsis thaliana Col-0 in presence and absence of Cd

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

In this work, we isolated four Cd-tolerant endophytic bacteria from Typha latifolia roots that grow at a Cd-contaminated site. Bacterial isolates GRC065, GRC066, GRC093, and GRC140 were identified as Pseudomonas rhodesiae. These bacterial isolates tolerate cadmium and have abilities for phosphate solubilization, siderophore production, indole acetic acid (IAA) synthesis, and ACC deaminase activity, suggesting that they are plant growth-promoting rhizobacteria. Bacterial inoculation in Arabidopsis thaliana seedlings showed that P. rhodesiae strains increase total fresh weight and number of lateral roots concerning non-inoculated plants. These results indicated that P. rhodesiae strains promote A. thaliana seedlings growth by modifying the root system. On the other hand, in A. thaliana seedlings exposed to 2.5 mg/l of Cd, P. rhodesiae strains increased the number and density of lateral roots concerning non-inoculated plants, indicating that they modify the root architecture of A. thaliana seedlings exposed to cadmium. The results showed that P. rhodesiae strains promote the development of lateral roots in A. thaliana seedlings cultivated in both conditions, with and without cadmium. These results suggest that P. rhodesiae strains could exert a similar role inside the roots of T. latifolia that grow in the Cd-contaminated environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Smith SG (1987) Typha: its taxonomy and the ecological significance of hybrids. Archiv fü Hydrobiologie 27:129–138

    Google Scholar 

  2. Baldwin B, Cannon A (2007) Typha review. Utah State University, Logan

    Google Scholar 

  3. Jeke NN, Zvomuya F, Cicek N, Ross L, Badiou P (2015) Biomass, nutrient, and trace element accumulation and partitioning in cattail (Typha latifolia L.) during wetland phytoremediation of municipal biosolids. J Environ Qual 44:1541–1549. https://doi.org/10.2134/jeq2015.02.0064

    Article  CAS  PubMed  Google Scholar 

  4. Bansal S, Lishawa SC, Newman S, Tangen BA, Wilcox D, Albert D, Anteau MJ, Chimney MJ, Cressey RL, DeKeyser E, Elgersma KJ, Finkelstein SA, Freeland J, Grosshans R, Klug PE, Larkin DJ, Lawrence BA, Linz G, Marburger J, Noe G, Otto C, Reo N, Richards J, Richardson C, Rodgers LR, Schrank AJ, Svedarsky D, Travis S, Tuchman N, Windham-Myers L (2019) Typha (cattail) invasion in North American wetlands: biology, regional problems, impacts, ecosystem services, and management. Wetlands 39(4):645–684. https://doi.org/10.1007/s13157-019-01174-7

    Article  Google Scholar 

  5. Manoj SR, Karthik C, Kadirvelu K, Arulselvi PI, Shanmugasundaram T, Bruno B, Rajkumar M (2020) Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: a review. J Environ Manag 254:109779. https://doi.org/10.1016/j.jenvman.2019.109779

    Article  CAS  Google Scholar 

  6. Santoyo G, Moreno-Hagelsieb G, del Carmen O-MM, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99. https://doi.org/10.1016/j.micres.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  7. Kong Z, Glick BR (2017) The role of plant growth-promoting bacteria in metal phytoremediation. In: Poole RK (ed) Adv Microb Physiol, vol 71. Academic Press, pp 97-132. doi:https://doi.org/10.1016/bs.ampbs.2017.04.001

  8. Paredes-Páliz KI, Caviedes MA, Doukkali B, Mateos-Naranjo E, Rodríguez-Llorente ID, Pajuelo E (2016) Screening beneficial rhizobacteria from Spartina maritima for phytoremediation of metal polluted salt marshes: comparison of Gram-positive and Gram-negative strains. Environ Sci Pollut Res Int 23(19):19825–19837. https://doi.org/10.1007/s11356-016-7184-1

    Article  CAS  PubMed  Google Scholar 

  9. Paredes-Páliz KI, Mateos-Naranjo E, Doukkali B, Caviedes MA, Redondo-Gómez S, Rodríguez-Llorente ID, Pajuelo E (2017) Modulation of Spartina densiflora plant growth and metal accumulation upon selective inoculation treatments: a comparison of Gram negative and Gram positive rhizobacteria. Mar Pollut Bull 125(1):77–85. https://doi.org/10.1016/j.marpolbul.2017.07.072

    Article  CAS  PubMed  Google Scholar 

  10. Chiboub M, Saadani O, Fatnassi IC, Abdelkrim S, Abid G, Jebara M, Jebara SH (2016) Characterization of efficient plant-growth-promoting bacteria isolated from Sulla coronaria resistant to cadmium and to other heavy metals. Comptes Rendus Biol 339(9):391–398. https://doi.org/10.1016/j.crvi.2016.04.015

    Article  Google Scholar 

  11. Li YH, Liu QF, Liu Y, Zhu JN, Zhang Q (2011) Endophytic bacterial diversity in roots of Typha angustifolia L. in the constructed Beijing Cuihu Wetland (China). Res Microbiol 162(2):124–131. https://doi.org/10.1016/j.resmic.2010.09.021

    Article  PubMed  Google Scholar 

  12. Ghosh UD, Saha C, Maiti M, Lahiri S, Ghosh S, Seal A, Mitra Ghosh M (2014) Root associated iron oxidizing bacteria increase phosphate nutrition and influence root to shoot partitioning of iron in tolerant plant Typha angustifolia. Plant Soil 381(1):279–295. https://doi.org/10.1007/s11104-014-2085-x

    Article  CAS  Google Scholar 

  13. Saha C, Mukherjee G, Agarwal-Banka P, Seal A (2016) A consortium of non-rhizobial endophytic microbes from Typha angustifolia functions as probiotic in rice and improves nitrogen metabolism. Plant Biol J 18(6):938–946. https://doi.org/10.1111/plb.12485

    Article  CAS  Google Scholar 

  14. Diazbarriga F, Santos MA, Mejia JD, Batres L, Yanez L, Carrizales L, Vera E, Delrazo LM, Cebrian ME (1993) Arsenic and cadmium exposure in children living near a smelter complex in San Luis Potosı́, Mexico. Environ Res 62(2):242–250. https://doi.org/10.1006/enrs.1993.1109

    Article  CAS  Google Scholar 

  15. Carranza-Álvarez C, Alonso-Castro AJ, Alfaro-De La Torre MC, García-De La Cruz RF (2008) Accumulation and distribution of heavy metals in Scirpus americanus and Typha latifolia from an artificial lagoon in San Luis Potosí, México. Water Air Soil Pollut 188(1–4):297–309. https://doi.org/10.1007/s11270-007-9545-3

    Article  CAS  Google Scholar 

  16. Sheng X-F, Xia J-J (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64:1036–1042

    Article  CAS  PubMed  Google Scholar 

  17. Ndeddy Aka RJ, Babalola OO (2017) Identification and characterization of Cr-, Cd-, and Ni-tolerant bacteria isolated from mine tailings. Bioremediat J 21(1):1–19. https://doi.org/10.1080/10889868.2017.1282933

    Article  CAS  Google Scholar 

  18. Chen W-P, Kuo T-T (1993) A simple and rapid method for the preparation of gram-negative bacterial genomic DNA. Nucleic Acids Res 21(9):2260–2260. https://doi.org/10.1093/nar/21.9.2260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ (2008) Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74(8):2461–2470. https://doi.org/10.1128/AEM.02272-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zeng X, Tang J, Liu X, Jiang P (2012) Response of P. aeruginosa E1 gene expression to cadmium stress. Curr Microbiol 65(6):799–804. https://doi.org/10.1007/s00284-012-0224-2

    Article  CAS  PubMed  Google Scholar 

  21. Shehata HR, Dumigan C, Watts S, Raizada MN (2017) An endophytic microbe from an unusual volcanic swamp corn seeks and inhabits root hair cells to extract rock phosphate. Sci Rep 7(1):13479. https://doi.org/10.1038/s41598-017-14080-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. King J (1932) The colorimetric determination of phosphorus. Biochem J 26:292–297. https://doi.org/10.1042/bj0260292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tank N, Rajendran N, Patel B, Saraf M (2012) Evaluation and biochemical characterization of a distinctive pyoverdin from a Pseudomonas isolated from chickpea rhizosphere. Braz J Microbiol 43:639–648. https://doi.org/10.1590/S1517-83822012000200028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alexander DB, Zuberer DA (1991) Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soils 12:39–45. https://doi.org/10.1007/BF00369386

    Article  CAS  Google Scholar 

  25. Grunennvaldt RL, Degenhardt-Goldbach J, de Cássia TJ, Davila Dos Santos G, Aparecida Vicente V, Deschamps C (2018) Bacillus megaterium: an endophytic bacteria from callus of Ilex paraguariensis with growth promotion activities. Biotecnología Vegetal 18(1):3–13

    Google Scholar 

  26. Dworkin M, Foster J (1958) Experiments with some microorganisms which utilize ethane and hydrogen. J Bacteriol 75:592–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hontzeas N, Richardson AO, Belimov A, Safronova V, Abu-Omar MM, Glick BR (2005) Evidence for horizontal transfer of 1-aminocyclopropane-1-carboxylate deaminase genes. Appl Environ Microbiol 71(11):7556–7558. https://doi.org/10.1128/AEM.71.11.7556-7558.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Remy E, Duque P (2016) Assessing tolerance to heavy-metal stress in Arabidopsis thaliana seedlings. In: Duque P (ed) Environmental responses in plants: methods and protocols. Springer New York, New York, pp 197–208. https://doi.org/10.1007/978-1-4939-3356-3_16

    Chapter  Google Scholar 

  29. Bonanno G, Cirelli GL (2017) Comparative analysis of element concentrations and translocation in three wetland congener plants: Typha domingensis, Typha latifolia and Typha angustifolia. Ecotoxicol Environ Saf 143:92–101. https://doi.org/10.1016/j.ecoenv.2017.05.021

    Article  CAS  PubMed  Google Scholar 

  30. Mazhar SH, Herzberg M, Ben Fekih I, Zhang C, Bello SK, Li YP, Su J, Xu J, Feng R, Zhou S, Rensing C (2020) Comparative insights into the complete genome sequence of highly metal resistant Cupriavidus metallidurans strain BS1 isolated from a gold–copper mine. Front Microbiol 11:47. https://doi.org/10.3389/fmicb.2020.00047

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chow LC (2001) Solubility of calcium phosphates. In: Chow LC, Eanes ED (eds) Octacalcium phosphate, vol 18. Karger, Basel, pp 94–111

    Chapter  Google Scholar 

  32. Alonso-Castro AJ, Carranza-Álvarez C, Alfaro-De la Torre MC, Chávez-Guerrero L, García-De la Cruz RF (2009) Removal and accumulation of cadmium and lead by Typha latifolia exposed to single and mixed metal solutions. Arch Environ Contam Toxicol 57(4):688–696. https://doi.org/10.1007/s00244-009-9351-6

    Article  CAS  PubMed  Google Scholar 

  33. Leura-Vicencio A, Alonso-Castro AJ, Carranza-Álvarez C, Loredo-Portales R, Alfaro-De La Torre MC, García-De La Cruz RF (2013) Removal and accumulation of As, Cd and Cr by Typha latifolia. Bull Environ Contam Toxicol 90(6):650–653. https://doi.org/10.1007/s00128-013-0962-2

    Article  CAS  PubMed  Google Scholar 

  34. Kandasamy S, Loganathan K, Muthuraj R, Duraisamy S, Seetharaman S, Thiruvengadam R, Ponnusamy B, Ramasamy S (2009) Understanding the molecular basis of plant growth promotional effect of Pseudomonas fluorescens on rice through protein profiling. Proteome Sci 7(1):47. https://doi.org/10.1186/1477-5956-7-47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Coroler L, Elomari M, Hoste B, Gillis M, Izard D, Leclerc H (1996) Pseudomonas rhodesiae sp. nov., a new species isolated from natural mineral waters. Syst Appl Microbiol 19(4):600–607. https://doi.org/10.1016/S0723-2020(96)80032-4

    Article  CAS  Google Scholar 

  36. Yoon B-J, Lee D-H, Kang Y-S, Oh D-C, Kim S-I, Oh K-H, Kahng H-Y (2002) Evaluation of carbazole degradation by Pseudomonas rhodesiae strain KK1 isolated from soil contaminated with coal tar. J Basic Microbiol 42(6):434–443. https://doi.org/10.1002/1521-4028(200212)42:6<434::Aid-jobm434>3.0.Co;2-c

    Article  CAS  PubMed  Google Scholar 

  37. Rolli E, Marasco R, Saderi S, Corretto E, Mapelli F, Cherif A, Borin S, Valenti L, Sorlini C, Daffonchio D (2017) Root-associated bacteria promote grapevine growth: from the laboratory to the field. Plant Soil 410(1):369–382. https://doi.org/10.1007/s11104-016-3019-6

    Article  CAS  Google Scholar 

  38. John-Jimtha C, Radhakrishnan EK (2016) Multipotent plant probiotic rhizobacteria from western ghats and its effect on quantitative enhancement of medicinal natural product biosynthesis. Proc Natl A Sci India B 88(2):755–768. https://doi.org/10.1007/s40011-016-0810-3

    Article  Google Scholar 

  39. Romero FM, Marina M, Pieckenstain FL (2016) Novel components of leaf bacterial communities of field-grown tomato plants and their potential for plant growth promotion and biocontrol of tomato diseases. Res Microbiol 167(3):222–233. https://doi.org/10.1016/j.resmic.2015.11.001

    Article  CAS  PubMed  Google Scholar 

  40. Zhang R, Zhang Q, Huang X, Guo X (2016) Endophytic bacterial diversity in roots of typha and the relationship of water quality factors in reclaimed water replenishment constructed wetland. China Environ Sci 36(3):875–886

    CAS  Google Scholar 

  41. Satchanska G, Topalova Y, Ivanov I, Golovinsky E (2006) Xenobiotic biotransformation potential of Pseudomonas rhodesiae KCM-R5 and Bacillus subtilis KCM-RG5, tolerant to heavy metals and phenol derivatives. Biotechnol Biotechnol Equip 20(1):97–102. https://doi.org/10.1080/13102818.2006.10817312

    Article  CAS  Google Scholar 

  42. Kim S-I, Kukor JJ, Oh K-H, Kahng H-Y (2006) Evaluating the genetic diversity of dioxygenases for initial catabolism of aromatic hydrocarbons in Pseudomonas rhodesiae KK1. Enzym Microb Technol 40(1):71–78. https://doi.org/10.1016/j.enzmictec.2005.10.041

    Article  CAS  Google Scholar 

  43. Phillips LA, Germida JJ, Farrell RE, Greer CW (2008) Hydrocarbon degradation potential and activity of endophytic bacteria associated with prairie plants. Soil Biol Biochem 40(12):3054–3064. https://doi.org/10.1016/j.soilbio.2008.09.006

    Article  CAS  Google Scholar 

  44. Poirier I, Jean N, Guary JC, Bertrand M (2008) Responses of the marine bacterium Pseudomonas fluorescens to an excess of heavy metals: physiological and biochemical aspects. Sci Total Environ 406(1–2):76–87

    Article  CAS  PubMed  Google Scholar 

  45. Hu N, Zhao B (2009) Key genes involved in heavy-metal resistance in Pseudomonas putida CD2. FEMS Microbiol Lett 267:17–22

    Article  Google Scholar 

  46. Maynaud G, Brunel B, Mornico D, Durot M, Severac D, Dubois E, Navarro E, Cleyet-Marel J-C, Le Quéré A (2013) Genome-wide transcriptional responses of two metal-tolerant symbiotic Mesorhizobium isolates to zinc and cadmium exposure. BMC Genomics 14(1):292. https://doi.org/10.1186/1471-2164-14-292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen Y, Chao Y, Li Y, Lin Q, Bai J, Tang L, Wang S, Ying R, Qiu R (2016) Survival strategies of the plant-associated bacterium Enterobacter sp. strain EG16 under cadmium stress. Appl Environ Microbiol 82(6):1734–1744. https://doi.org/10.1128/aem.03689-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, Van Gijsegem F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162(1):328–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chellaiah ER (2018) Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: a minireview. Appl Water Sci 8(6):154. https://doi.org/10.1007/s13201-018-0796-5

    Article  CAS  Google Scholar 

  50. Ullah A, Heng S, Munis MFH, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40. https://doi.org/10.1016/j.envexpbot.2015.05.001

    Article  CAS  Google Scholar 

  51. Baca BE, Elmerich C (2007) Microbial production of plant hormones. In: Elmerich C, Newton WE (eds) Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Springer, Netherlands, pp 113–143

    Chapter  Google Scholar 

  52. Khan A, Hossain MT, Park HC, Yun D-J, Shim SH, Chung YR (2016) Development of root system architecture of Arabidopsis thaliana in response to colonization by Martelella endophytica YC6887 depends on auxin signaling. Plant Soil 405(1):81–96. https://doi.org/10.1007/s11104-015-2775-z

    Article  CAS  Google Scholar 

  53. Hammad Y, Nalin R, Marechal J, Fiasson K, Pepin R, Berry AM, Normand P, Domenach A-M (2003) A possible role for phenyl acetic acid (PAA) on Alnus glutinosa nodulation by Frankia. Plant Soil 254(193):193–205. https://doi.org/10.1023/A:1024971417777

    Article  CAS  Google Scholar 

  54. Kang JG, Kim ST, Kang KY (1999) Production of the antifungal compound phenylacetic acid by antagonistic bacterium Pseudomonas sp. J Appl Biol Chem 42(2):197–201

    CAS  Google Scholar 

  55. Hwang BK, Lim SW, Kim BS, Lee JY, Moon SS (2001) Isolation and in vivo and in vitro antifungal activity of phenylacetic acid and sodium phenylacetate from Streptomyces humidus. Appl Environ Microbiol 67(8):3739–3745. https://doi.org/10.1128/AEM.67.8.3739-3745.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sajid I, Shaaban KA, Hasnain S (2011) Identification, isolation and optimization of antifungal metabolites from the Streptomyces malachitofuscus ctf9. Braz J Microbiol 42(2):592–604. https://doi.org/10.1590/S1517-838220110002000024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Johnston-Monje D, Raizada MN (2011) Plant and endophyte relationships: nutrient management. In: Moo-Young M (ed) Comprehensive biotechnology, 2nd edn. Elsevier, Oxford, pp 713–727

    Chapter  Google Scholar 

  58. Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39. https://doi.org/10.1016/j.micres.2013.09.009

    Article  CAS  PubMed  Google Scholar 

  59. Osmolovskaya N, Dung VV, Kuchaeva L (2018) The role of organic acids in heavy metal tolerance in plants. Bio Comm 63(1):9–16. https://doi.org/10.21638/spbu03.2018.103

    Article  Google Scholar 

  60. Zhou C, Zhu L, Ma Z, Wang J (2017) Bacillus amyloliquefaciens SAY09 increases cadmium resistance in plants by activation of auxin-mediated signaling pathways. Genes 8(7):173. https://doi.org/10.3390/genes8070173

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

The work reported was funded by grants from CONACYT (Fondo Sectorial de Investigación para la Educación, CB2017-2018 A1-S-40454), Fondo de Apoyo a la Investigación (UASLP 2019 C19-FAI-05-40.40), and Fondos Concurrentes de la UASLP (FCR UASLP 210920280) to Alejandro Hernández-Morales. Gisela Adelina Rolón-Cárdenas (CVU 712240) thanks CONACYT-Mexico for the financial support given to carry out her Ph.D. studies.

Author information

Authors and Affiliations

Authors

Contributions

GARC (Ph. D. student) performed the research, analyzed data, and wrote the paper. JLAG, JRPA, and JVM participated in experimental design, contributed to bacterial characterization, and analyzed data. AHM conceived the study, analyzed data, and participated in the paper writing. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Alejandro Hernández-Morales.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Responsible Editor: Ieda Carvalho Mendes

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 1923 kb)

ESM 2

(XLSX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rolón-Cárdenas, G.A., Arvizu-Gómez, J.L., Pacheco-Aguilar, J.R. et al. Cadmium-tolerant endophytic Pseudomonas rhodesiae strains isolated from Typha latifolia modify the root architecture of Arabidopsis thaliana Col-0 in presence and absence of Cd. Braz J Microbiol 52, 349–361 (2021). https://doi.org/10.1007/s42770-020-00408-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00408-9

Keywords

Navigation