Skip to main content

Pharmaceutical and Biomedical Importance of Regenerated CEL and Composites in Various Morphologies

  • Chapter
  • First Online:
Regenerated Cellulose and Composites

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 258 Accesses

Abstract

Natural biopolymers or biodegradable polymers are the focus areas of researchers as per environmental concerns and wider applications in industries, particularly in the biomedical sector. Cellulose (CEL) is a biopolymer found in almost every plant cell wall that is regenerative, biocompatible, non-toxic, and reusable. It is the most abundant polysaccharide on Earth. It might be discovered in a wide range of areas, including algae, bacteria, and worms, and both plant and wood cell walls have known CEL-containing species. It seems to be a versatile material with adaptable properties that could be used to create biomaterials and tissue engineering. Biomaterials produced from CEL have a lot of benefits over synthetic materials. This inevitable enormous amount naturally facilitates the discovery of new application domains for this adaptable content. This chapter has discussed CEL and its derivatives, as well as its biochemical and structural characteristics and applications including tissue engineering, wound healing, and medicinal delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Seddiqi, H., et al.: CEL and its derivatives: towards biomedical applications. CEL (2021). https://doi.org/10.1007/s10570-020-03674-w

    Article  Google Scholar 

  2. Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J.: CEL nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941–3994 (2011). https://doi.org/10.1039/c0cs00108b

    Article  CAS  Google Scholar 

  3. Ansari, F., Sjostedt, A., Larsson, P.T., Berglund, L.A., Wagberg, L.: Hierarchical wood CEL fiber/epoxy biocomposites–Materials design of fiber porosity and nanostructure. Compos. Part A App.l Sci. 74, 60–68 (2015). https://doi.org/10.1016/j.compositesa.2015.03.024

    Article  CAS  Google Scholar 

  4. Fidale, L.C., Heinze, T., El Seoud, O.A.: Perichromism: a powerful tool for probing the properties of CEL and its derivatives. Carbohydr. Polym. 93, 129–134 (2013). https://doi.org/10.1016/j.carbpol.2012.06.061.

  5. Sultan, S., Mathew, A.P.: 3D printed scaffolds with gradient porosity based on a CEL nanocrystal hydrogel. Nanoscale 10, 4421–4431 (2018). https://doi.org/10.1039/c7nr08966j

    Article  CAS  Google Scholar 

  6. French, A.D.: Glucose, not cellobiose, is the repeating unit of CEL and why that is important. CEL 24, 4605–4609 (2017). https://doi.org/10.1007/s10570-017-1450-3

    Article  CAS  Google Scholar 

  7. Wojnárovits, L., Földváry, C.M., Takács, E.: Radiationinduced grafting of CEL for adsorption of hazardous water pollutants: a review. Radiat. Phys. Chem. 79, 848–862 (2010)

    Article  Google Scholar 

  8. Mochochoko, T., Oluwafemi, O., Adeyemi, O. O., Jumbam, D. N., Songca, S.P.: Natural CEL fibers: sources, isolation, properties and applications. Micro Nanostruct. Polym. Syst.: Synth. Appl. 25 (2016)

    Google Scholar 

  9. Baptist, K.J.: A review on pulp manufacture from non wood plant materials. Int. J. Chem. Eng. Appl. 4, 144 (2013)

    Google Scholar 

  10. Klemm, D., Heublein, B., Fink, H.-P., Bonn, A.: CEL: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44, 3358–3393 (2005)

    Article  CAS  Google Scholar 

  11. Kuga, S., Brown, R.M.: Silver labeling of the reducing ends of bacterial CEL. Carbohyd. Res. 180, 345–350 (1988)

    Google Scholar 

  12. Saxena, I.M., Bown, R.M.: CEL biosynthesis: xurrent views and evolving concepts. Ann. Bot. 96, 9–21 (2005)

    Article  CAS  Google Scholar 

  13. Langan P., Nishiyama Y., Chanzy H.: A revised structure and hydrogen-bonding system in CEL II. From a neutron fiber diffraction analysis. Journal of American Chemical Society, 121, 9940–9946(1999).

    Google Scholar 

  14. Wada M., Heux L., Isogai A., Nishiyama Y., ChanzyH. Sugiyama J.: Improved structural data of CELIIII prepared in supercritical ammonia. Macromolecules, 34, 1237–1243 (2001).

    Google Scholar 

  15. Chanzy, H., Vincendon, M., Henrissat, B., Tanner, S.F., Belton, P.S.: Solid state 13C-NMR and electron microscopy study on the reversible transformation CEL I-CEL IIII in Valonia. Carbohyd. Res. 160, 1–11 (1987)

    Article  CAS  Google Scholar 

  16. Buleon, A., Chanzy, H.: Single crystals of CEL IVII. Preparation and properties. J. Polym. Sci.: Polym. Phys. Ed. 18, 1209–1217(1980).

    Google Scholar 

  17. Ioelovich. Nanostructured CEL: review. BioResources 3(4), 1403–1418 (2008)

    Google Scholar 

  18. Balter, M.: Clothes Make the (Hu) Man. Science 325(5946):1329 (2009)

    Google Scholar 

  19. Kvavadze, E., Bar-Yosef, O., Belfer-Cohen, A., Boaretto, E.,Jakeli, N., Matskevich, Z., Meshveliani, T.: 30,000-Year-Old Wild Flax Fibers. Science 325(5946), 1359 (2009)

    Google Scholar 

  20. Lavanya, D., Kulkarni, P.K., Dixit, M., Raavi, P.K., Vamsi Krishna, L.N.: Sources of cel and their applications – a review. international journal of drug formulation and research 2(6), 19–38 (2011)

    Google Scholar 

  21. Backdahl, H., Esguerra, M., Delbro, D., Risberg, B., Gatenholm, P.: Engineering microporosity in bacterial CEL scaffolds. J. Tissue Eng. Regen. Med. 2:320–330 (2008). https://doi.org/10.1002/term.97

  22. Courtenay, J.C., Johns, M.A., Galembeck, F., Deneke, C., Lanzoni, E.M., Costa, C.A., Scott, J.L., Sharma, R.I.: Surface modified CEL scaffolds for TENG. CEL 24, 253–267 (2017). https://doi.org/10.1007/s10570-016-1111-y

    Article  CAS  Google Scholar 

  23. Kim, D.S., Jung, S.M., Yoon, G.H., Lee, H.C., Shin, H.S.: Development of a complex bone tissue culture system based on CEL nanowhisker mechanical strain. Colloids Surfaces B Biointerfaces 123, 838–844 (2014). https://doi.org/10.1016/j.colsurfb.2014.10.031

    Article  CAS  Google Scholar 

  24. Stumpf, T.R., Yang, X., Zhang, J., Cao, X.: In situ and ex situ modifications of bacterial CEL for applications in TENG. Mater. Sci. Eng. C 82, 372–383 (2018). https://doi.org/10.1016/j.msec.2016.11.121

    Article  CAS  Google Scholar 

  25. Torgbo, S., Sukyai, P.: Bacterial CEL-based scaffold materials for bone TENG. Appl. Mater. Today 11, 34–49 (2018). https://doi.org/10.1016/j.apmt.2018.01.004

    Article  Google Scholar 

  26. Rodríguez, K., Sundberg, J., Gatenholm, P., Renneckar, S.: Electrospun nanofibrous CEL scaffolds with controlled microarchitecture. Carbohydr. Polym. 100, 143–149 (2014). https://doi.org/10.1016/j.carbpol.2012.12.037

    Article  CAS  Google Scholar 

  27. Chalal, S., Hussain, F.S.J., Yusoff, M.B.M.: Biomimetic growth of bone-like apatite via simulated body fluid on hydroxyethyl CEL/polyvinyl alcohol electrospun nanofibers. Biomed. Mater. Eng. 24, 799–806 (2014). https://doi.org/10.3233/BME-130871

    Article  CAS  Google Scholar 

  28. Li, K., Wang, J., Liu, X., Xiong, X., Liu, H.: Biomimetic growth of hydroxyapatite on phosphorylated electrospun CEL nanofibers. Carbohydr. Polym. 90, 1573–1581 (2012). https://doi.org/10.1016/j.carbpol.2012.07.033

    Article  CAS  Google Scholar 

  29. Eftekhari, S., El Sawi, I., Bagheri, Z.S., Turcotte, G., Bougherara, H.: Fabrication and characterization of novel biomimetic PLLA/CEL/ hydroxyapatite nanocomposite for bone repair applications. Mater. Sci. Eng. C 39, 120–125 (2014). https://doi.org/10.1016/j.msec.2014.02.027

    Article  CAS  Google Scholar 

  30. Garai, S., Sinha, A.: Biomimetic nanocomposites of carboxymethyl CEL-hydroxyapatite: novel three dimensional load bearing bone grafts. Colloids Surfaces B Biointerfaces 115, 182–190 (2014). https://doi.org/10.1016/j.colsurfb.2013.11.042

    Article  CAS  Google Scholar 

  31. Park, M., Lee, D., Shin, S., Hyun, J.: Effect of negatively charged CEL nanofibers on the dispersion of hydroxyapatite nanoparticles for scaffolds in bone TENG. Colloids Surf. B Biointerfaces 130, 222–228 (2015). https://doi.org/10.1016/j.colsurfb.2015.04.014

    Article  CAS  Google Scholar 

  32. Huang, Y., Wang, J., Yang, F., Shao, Y., Zhang, X., Dai, K.: Modification and evaluation of micro-nano structured porous bacterial CEL scaffold for bone TENG. Mater. Sci. Eng. C 75, 1034–1041 (2017). https://doi.org/10.1016/j.msec.2017.02.174

    Article  CAS  Google Scholar 

  33. Chen, C., Zhang, T., Zhang, Q., Feng, Z., Zhu, C., Yu, Y., et al.: Three-dimensional BC/PEDOT composite nanofibers with high performance for electrode-cell interface. ACS Appl. Mater. Interfaces 7, 28244–28253 (2015). https://doi.org/10.1021/acsami.5b07273

    Article  CAS  Google Scholar 

  34. Kuzmenko, V., Kalogeropoulos, T., Thunberg, J., Johannesson, S., Hägg, D., Enoksson, P., et al.: Enhanced growth of neural networks on conductive CEL-derived nanofibrous scaffolds. Mater. Sci. Eng. C 58, 14–23 (2016). https://doi.org/10.1016/j.msec.2015.08.012

    Article  CAS  Google Scholar 

  35. Naseri-Nosar, M., Salehi, M., Hojjati-Emami, S.: CEL acetate/poly lactic acid coaxial wet-electrospun scaffold containing citalopram-loaded gelatin nanocarriers for neural TENG applications. Int. J. Biol. Macromol. 103, 701–708 (2017). https://doi.org/10.1016/j.ijbiomac.2017.05.054

    Article  CAS  Google Scholar 

  36. Canas-Gutierrez, A., Osorio, M., Molina-Ramı´rez, C., ArboledaToro, D., Castro-Herazo, C.: Bacterial CEL: a biomaterial with high potential in dental and oral applications. CEL, 1–18 (2020). https://doi.org/10.1007/s10570-020-03456-4.

  37. Ao, C., Niu, Y., Zhang, X., He, X., Zhang, W., Lu, C.: Fabrication and characterization of electrospun CEL/nanohydroxyapatite nanofibers for bone TENG. Int. J. Biol. Macromol. 97, 568–573 (2017). https://doi.org/10.1016/j.ijbiomac.2016.12.091

    Article  CAS  Google Scholar 

  38. Sajjad, W., Khan, T., Ul-Islam, M., Khan, R., Hussain, Z., Khalid, A., Wahid, F.: Development of modified montmorillonite-bacterial CEL nanocomposites as a novel substitute for burn skin and tissue regeneration. Carbohydr. Polym. 206, 548–556 (2019). https://doi.org/10.1016/j.carbpol.2018.11.023

    Article  CAS  Google Scholar 

  39. Mao, D., Li, Q., Li, D., Chen, Y., Chen, X., Xu, X.: Fabrication of 3D porous poly (lactic acid)-based composite scaffolds with tunable biodegradation for bone TENG. Mater. Des. 142, 1–10 (2018). https://doi.org/10.1016/j.matdes.2018.01.016

    Article  CAS  Google Scholar 

  40. Brown, E.E., Hu, D., Abu Lail, N., Zhang, X.: Potential of nanocrystalline CEL-fibrin nanocomposites for artificial vascular graft applications. Biomacromol 14, 1063–1071 (2013). https://doi.org/10.1021/bm3019467

    Article  CAS  Google Scholar 

  41. Pooyan, P., Tannenbaum, R., Garmestani, H.: Mechanical behavior of a CEL-reinforced scaffold in vascular TENG. J. Mech. Behav. Biomed. Mater. 7, 50–59 (2012). https://doi.org/10.1016/j.jmbbm.2011.09.009

    Article  CAS  Google Scholar 

  42. Tohamy, K.M., Mabrouk, M., Soliman, I.E., Beherei, H.H., Aboelnasr, M.A.: Novel alginate/hydroxyethyl CEL/hydroxyapatite composite scaffold for bone regeneration: in vitro cell viability and proliferation of human mesenchymal stem cells. Int. J. Biol. Macromol. 112, 448–460 (2018). https://doi.org/10.1016/j.ijbiomac.2018.01.181

    Article  CAS  Google Scholar 

  43. Chahal, S., Hussain, F.S.J., Kumar, A., Rasad, M.S.B.A., Yusoff, M.M.: Fabrication, characterization and in vitro biocompatibility of electrospun hydroxyethyl CEL/poly (vinyl) alcohol nanofibrous composite biomaterial for bone TENG. Chem Eng Sci 144, 17–29 (2016). https://doi.org/10.1016/j.ces.2015.12.030

    Article  CAS  Google Scholar 

  44. Luo, H., Cha, R., Li, J., Hao, W., Zhang, Y., Zhou, F.: (2019) Advances in TENG of nanoCEL-based scaffolds: a review. Carbohydr Polym. 224, 115144. https://doi.org/10.1016/j.carbpol.2019.115144

  45. Halib, N., Ahmad, I., Grassi, M., Grassi, G.: The remarkable three-dimensional network structure of bacterial CEL for TENG applications. Int. J. Pharm. 566, 631–640 (2019). https://doi.org/10.1016/j.ijpharm.2019.06.017

    Article  CAS  Google Scholar 

  46. Sulaeva, I., Henniges, U., Rosenau, T., Potthast, A.: Bacterial CEL as a material for wound treatment: properties and modifications: a review. Biotechnol. Adv. 33, 1547–1571 (2015)

    Article  CAS  Google Scholar 

  47. Picheth, G.F., Pirich, C.L., Sierakowski, M.R., Woehl, M.A., Sakakibara, C.N., de Souza, C.F., Martin, A.A., da Silva, R., de Freitas, R.A.: Bacterial CEL in biomedical applications: a review. Int. J. Biol. Macromol. 104, 97–106 (2017)

    Article  CAS  Google Scholar 

  48. Fu, L., Zhang, J., Yang, G.: Present status and applications of bacterial CEL-based materials for skin tissue repair. Carbohydr. Polym. 92, 1432–1442 (2013)

    Article  CAS  Google Scholar 

  49. Czaja, W., Krystynowicz, A., Bielecki, S., Brown, R.J.: Microbial CEL the natural power to heal wounds. Biomaterials 27(2), 145–151 (2006)

    Article  CAS  Google Scholar 

  50. Klemm, D., Schumann, D., Kramer, F., Hessler, N., Hornung, M., Schmauder, H.P., et al.: NanoCELs as innovative polymers in research and application. Polysaccharides 205, 49–96 (2006)

    CAS  Google Scholar 

  51. MacNeil, S.: Progress and opportunities for tissue-engineered skin. Nature 445, 874–880 (2007)

    Article  CAS  Google Scholar 

  52. Siró, I., Plackett, D.: Microfibrillated CEL and new nanocomposite materials: a review. CEL 17(3), 459–494 (2010)

    Google Scholar 

  53. Hornung, M., Biener, R., Schmauder, H.P.: Dynamic modelling of bacterial CEL formation. Eng. Life Sci. 9(4), 342–347 (2009)

    Article  CAS  Google Scholar 

  54. Helenius, G., Bäckdahl, H., Bodin, A., Nannmark, U., Gatenholm, P., Risberg, B.: In vivo biocompatibility of bacterial CEL. J. Biomed. Mater. Res. A 76, 431–438 (2006)

    Article  Google Scholar 

  55. Dahman, Y.: Nanostructured biomaterials and biocomposites from bacterial CEL nanofibers. J. Nanosci. Nanotechnol. 9, 5105–5122 (2009)

    Article  CAS  Google Scholar 

  56. Wiegand, C., Hipler, U.C.: Polymer-based biomaterials as dressings for chronic stagnating wounds. Macromol. Symp. 294, 1–13 (2010)

    Article  CAS  Google Scholar 

  57. Kucińska-Lipka, J.; Gubanska, I.; Janik, H.: Bacterial CEL in the field of wound healing and regenerative medicine of skin: recent trends and future prospectives. Polym. Bull. 72, 2399–2419 (2015)

    Google Scholar 

  58. Abeer, M.M.; Mohd Amin, M.C.I.; Martin, C. A review of bacterial CEL-based drug delivery systems: their biochemistry, current approaches and future prospects. J. Pharm. Pharmacol. 2014, 66, 1047–1061.

    Google Scholar 

  59. Eslahi, N., Mahmoodi, A., Mahmoudi, N., Zandi, N., Simchi, A.: Processing and properties of nanofibrous bacterial CELcontaining polymer composites: a review of recent advances for biomedical applications. Polym. Rev. 60, 144–170 (2020)

    Article  CAS  Google Scholar 

  60. Gorgieva, S., Trcek, J.: Bacterial CEL: production, modification and perspectives in biomedical applications. Nanomaterials 9, 1352 (2019)

    Article  CAS  Google Scholar 

  61. Maneerung, T., Tokura, S., Rujiravanit, R.: Impregnation of silver nanoparticles into bacterial CEL for antimicrobial wound dressing. Carbohydr. Polym. 72, 43–51 (2008)

    Article  CAS  Google Scholar 

  62. Wu, J., Zheng, Y., Song, W., Luan, J., Wen, X., Wu, Z., Chen, X., Wang, Q., Guo, S.: In situ synthesis of silver-nanoparticles/bacterial CEL composites for slow-released antimicrobial wound dressing. Carbohydr. Polym. 102, 762–771 (2014)

    Article  CAS  Google Scholar 

  63. Yuan, N., Xu, L., Zhang, L., Ye, H., Zhao, J., Liu, Z., Rong, J.: Superior hybrid hydrogels of polyacrylamide enhanced by bacterial CEL nanofiber clusters. Mater. Sci. Eng. C 67, 221–230 (2016)

    Article  CAS  Google Scholar 

  64. Sureshkumar, M., Siswanto, D.Y., Lee, C.K.: Magnetic antimicrobial nanocomposite based on bacterial CEL and silver nanoparticles. J. Mater. Chem. 20, 6948–6955 (2010)

    Article  CAS  Google Scholar 

  65. Medusheva, E.O., Filatov, V.N., Ryl’tsev, V.V., Kazakova, N.A., Filatov, N.V., Kulagina, A.S., Avagyan, A.A.: New medical materials with an integral lasting efect based on fbre-forming polymers. Fibre Chem. 39(4), 268–271 (2007)

    Google Scholar 

  66. Basu, A., Celma, G., Strømme, M., Ferraz, N.: In vitro and in vivo evaluation of the wound healing properties of nanofibrillated CEL hydrogels. ACS Appl. Bio. Mater. 1, 1853–1863 (2018)

    Article  CAS  Google Scholar 

  67. Asanarong, O.: Vo Minh Quan, Suwimon Boonrungsiman Prakit Sukyai, Bioactive wound dressing using bacterial CEL loaded with papain composite: morphology, loading/release and antibacterial properties. Eur. Polymer J. 143(15), 110224 (2021)

    Article  CAS  Google Scholar 

  68. Pei, Y., Ye, D., Zhao, Q., Wang, X., Zhang, C., Huang, W., Zhang, N, Liu, S., Zhang, L.: Effectively promoting wound healing with CEL/gelatin sponges constructed directly from a CEL solution. J. Mater. Chem. B, 38 (2015)

    Google Scholar 

  69. Joorabloo, A., Taghi, M., Adeli, H., Mansoori-Moghadam, Z., Moghaddam, A.: Fabrication of heparinized nano ZnO/poly(vinylalcohol)/ carboxymethyl CEL bionanocomposite hydrogels using artificial neural network for wound dressing application. J. Ind. Eng. Chem. 70, 253–263 (2019)

    Article  CAS  Google Scholar 

  70. Gupta, A., Keddie, D.J., Kannappan, V., Gibson, H., Khalil, I.R., Kowalczuk, M., Martin, C., Shuai, X., Radecka, I.: Production and characterisation of bacterial CEL hydrogels loaded with curcumin encapsulated in cyclodextrins as wound dressings. Eur. Polym. J. 118, 437–450 (2019)

    Article  CAS  Google Scholar 

  71. Fan, X., Yang, L., Wang, T., Sun, T., Lu, S.: pH-responsive CEL-based dual drug-loaded hydrogel for wound dressing. Eur. Polym. J. 121, 109290 (2019)

    Article  CAS  Google Scholar 

  72. Erdagi, S.I., Ngwabebhoh, F.A., Yildiz, U.: Genipin crosslinked gelatin-diosgenin-nanoCEL hydrogels for potential wound dressing and healing applications. Int. J. Biol. Macromol. 149, 651–663 (2020)

    Article  Google Scholar 

  73. Liu, D.; Cao, Y.; Qu, R.; Gao, G.; Chen, S.; Zhang, Y.;Wu, M.; Ma, T.; Li, G. Production of bacterial CEL hydrogels with tailored crystallinity from Enterobacter sp. FY-07 by the controlled expression of colanic acid synthetic genes. Carbohydr. Polym. 2019, 207, 563–570.

    Google Scholar 

  74. Shefa, A.A., Sultana, T., Park, M.K., Lee, Y.S., Gwon, J., Lee, B.: Curcumin incorporation into an oxidized CEL nanofiber-polyvinyl alcohol hydrogel system promotes wound healing. Mater. Des. 186, 108313 (2020)

    Article  CAS  Google Scholar 

  75. Sulaeva, I., Hettegger, H., Bergen, A., Rohrer, C., Kostic, M., Konnerth, J., Rosenau, T., Potthast, A.: Fabrication of bacterial CEL-based wound dressings with improved performance by impregnation with alginate. Mater. Sci. Eng. C 110, 110619 (2020)

    Article  CAS  Google Scholar 

  76. Yang, H., Shen, L., Bu, H., Li, G.: Stable and biocompatible hydrogel composites based on collagen and dialdehyde carboxymethyl CEL in a biphasic solvent system. Carbohydr. Polym. 222, 114974 (2019)

    Article  CAS  Google Scholar 

  77. Fontes, P.R., Ribeiro, S.J.L., Gaspar, A.M.M.: Bacterial CEL/phytotherapic hydrogels as dressings for wound healing. Mater. Sci. Eng. Int. J. 3, 162–173 (2019)

    Google Scholar 

  78. Liu, X., Yang, K., Chang, M., Wang, X., Ren, J.: Fabrication of CEL nanocrystal reinforced nanocomposite hydrogel with self-healing properties. Carbohydr. Polym. 240, 116289 (2020)

    Article  CAS  Google Scholar 

  79. Jiji, S., Udhayakumar, S., Rose, C., Muralidharan, C., Kadirvelu, K.: Thymol enriched bacterial CEL hydrogel as selective material for third degree burn wound repair. Int. J. Biol. Macromol. 122, 452–460 (2019)

    Article  CAS  Google Scholar 

  80. Sadeghi, S., Nourmohammadi, J., Ghaee, A., Soleimani, N.: Carboxymethyl CEL-human hair keratin hydrogel with controlled clindamycin release as antibacterial wound dressing. Int. J. Biol. Macromol. 147, 1239–1247 (2020)

    Article  CAS  Google Scholar 

  81. Deng, Y., Yang, X., Zhang, X., Cao, H., Mao, L., Yuan, M., Liao, W.: Novel fenugreek gum-CEL composite hydrogel with wound healing synergism: facile preparation, characterization and wound healing activity evaluation. Int. J. Biol. Macromol. 160, 1242–1251 (2020)

    Article  CAS  Google Scholar 

  82. Mohamad, N., Loh, E., Fauzi, M.B., Ng, M., Amin, M.C.: In vivo evaluation of bacterial CEL/acrylic acid wound dressing hydrogel containing keratinocytes and fibroblasts for burn wounds. Drug Deliv. Transl. Res. 9, 444–452 (2019)

    Article  CAS  Google Scholar 

  83. Gupta, A., Bria, S.M., Swingler, S., Gibson, H., Kannappan, V., Adamus, G., Kowalczuk, M., Martin, C., Radecka, I.: Synthesis of silver nanoparticles using curcumin-cyclodextrins loaded into bacterial CEL-based hydrogels for wound dressing applications. Biomacromol 21, 1802–1811 (2020)

    Article  CAS  Google Scholar 

  84. Koivuniemi, R., Hakkarainen, T., Kiiskinen, J., Kosonen, M., Vuola, J., Valtonen, J., Luukko, K., Kavola, H., Yliperttula, M.: Clinical study of nanofibrillar CEL hydrogel dressing for skin graft donor site treatment. Adv. Wound Care. 9, 199–210 (2020)

    Article  Google Scholar 

  85. Deng, Y., Chen, J., Huang, J., Yang, X., Zhang, X., Yuan, S., Liao, W.: Preparation and characterization of CEL/flaxseed gum composite hydrogel and its hemostatic and wound healing functions evaluation. CEL 18, 1–8 (2020)

    Google Scholar 

  86. Khamrai, M., Sanerjee, S., Paul, S., Samanta, S., Kundu, P.P.: Curcumin entrapped gelatin/ionically modified bacterial CEL based self-healable hydrogel film: An eco-friendly sustainable synthesis method of wound healing patch. Int. J. Biol. Macromol. 122, 940–953 (2019)

    Article  CAS  Google Scholar 

  87. Forero-Doria, O., Polo, E., Marican, A., Guzmán, L., Venegas, B., Vijayakumar, S., Wehinger, S., Guerrero, M., Gallego, J., Durán-Lara, E.F.: Supramolecular hydrogels based on CEL for sustained release of therapeutic substances with antimicrobial and wound healing properties. Carbohydr. Polym. 23, 116383 (2020)

    Article  Google Scholar 

  88. Muchová, M., Münster, L., Capáková, Z., Mikulcová, V., Kuˇritka, I., Ícha, J.: Design of dialdehyde CEL crosslinked poly (vinyl alcohol) hydrogels for transdermal drug delivery and wound dressings. Mater. Sci. Eng. C 26, 111242 (2020)

    Article  Google Scholar 

  89. Wang, C., Niu, H., Ma, X., Hong, H., Yuan, Y., Liu, C.: Bioinspired, injectable, quaternized hydroxyethyl CEL composite hydrogel coordinated by mesocellular silica foam for rapid, noncompressible hemostasis and wound healing. ACS Appl. Mater. Interfaces 11, 34595–34608 (2019)

    Article  CAS  Google Scholar 

  90. Li, X.X., Dong, J.Y., Li, Y.H., Zhong, J., Yu, H., Yu, Q.Q., Lei, M.: Fabrication of Ag–ZnO@carboxymethyl CEL/K-carrageenan/graphene oxide/konjac glucomannan hydrogel for elective wound dressing in nursing care for diabetic foot ulcers. Appl. Nanosci. 10, 729–738 (2020)

    Article  CAS  Google Scholar 

  91. Wan,W., and Millon, L.(2005). Poly (vinyl alcohol) – bacterial CEL nanocomposite. US Patent 2005/0037082 A1.

    Google Scholar 

  92. Liechty, W.B., Kryscio, D.R., Slaughter, B.V., Peppas, N.A.: Polymers for drug delivery systems. Annu. Rev. Chem. Biomol. Eng. 1, 149–173 (2010). https://doi.org/10.1146/annurev-chembioeng-073009-100847

    Article  CAS  Google Scholar 

  93. Heller, A.: Integrated medical feedback systems for drug delivery. AIChE J. 51(4), 1054–1066 (2005)

    Article  CAS  Google Scholar 

  94. Langer, R., Peppas, N.A.: Advances in biomaterials, drug delivery, and bionanotechnology. AIChE J. 49(12), 2990–3006 (2003)

    Article  CAS  Google Scholar 

  95. Barikani, M., Oliaei, E., Seddiqi, H., Honarkar, H.: Preparation and application of chitin and its derivatives: a review. Iran Polym. J. 23, 307–326 (2014). https://doi.org/10.1007/s13726-014-0225-z

    Article  CAS  Google Scholar 

  96. Abeer, M.M., Amin, M.C.I.M., Lazim, A.M., Pandey, M., Martin, C.: Synthesis of a novel acrylated abietic acid-g-bacterial CEL hydrogel by gamma irradiation. Carbohydr. Polym. 110, 505–512 (2014). https://doi.org/10.1016/j.carbpol.2014.04.052

    Article  CAS  Google Scholar 

  97. Yan, H., Chen, X., Feng, M., Shi, Z., Zhang, W., Wang, Y., Ke, C., Lin, Q.: Entrapment of bacterial CEL nanocrystals stabilized pickering emulsions droplets in alginate beads for hydrophobic drug delivery. Colloids Surf. B. 177, 112–120 (2019). https://doi.org/10.1016/j.colsurfb.2019.01.057

    Article  CAS  Google Scholar 

  98. Godakanda, V.U., Li, H., Alquezar, L., Zhao, L., Zhu, L.-M., de Silva, R., de Silva, K.N., Williams, G.R.: Tunable drug release from blend poly(vinyl pyrrolidone)-ethyl CEL nanofibers. Int J Pharm. 562, 172–179 (2019). https://doi.org/10.1016/j.ijpharm.2019.03.035

    Article  CAS  Google Scholar 

  99. Jeddi, M.K., Mahkam, M.: Magnetic nano carboxymethyl CEL-alginate/chitosan hydrogel beads as biodegradable devices for controlled drug delivery. Int. J. Biol. Macromol. 135, 829–838 (2019). https://doi.org/10.1016/j.ijbiomac.2019.05.210

    Article  CAS  Google Scholar 

  100. Guo, H.X., Heinämäki, J., Yliruusi, J.: Amylopectin as a subcoating material improves the acidic resistance of enteric-coated pellets containing a freely soluble drug. Int J Pharm. 235, 79–86 (2002). https://doi.org/10.1016/s0378-5173(01)00978-4

    Article  CAS  Google Scholar 

  101. Marques-Marinho, F.D., Vianna-Soares, C.D.: CEL and its derivatives use in the pharmaceutical compounding practice. In: van de Ven T, Godbout L (ed) CEL-Medical, Pharmaceutical and Electronic Applications, 1st edn, pp. 141–162. IntechOpen, London (2013). https://doi.org/10.5772/56637

  102. Roberts, R., Rowe, R.: The effect of punch velocity on the compaction of a variety of materials. J. Pharm. Pharmacol. 37, 377–384 (1985). https://doi.org/10.1111/j.2042-7158.1985.tb03019.x

    Article  CAS  Google Scholar 

  103. Thoorens, G., Krier, F., Leclercq, B., Carlin, B., Evrard, B.: Microcrystalline CEL, a direct compression binder in a quality by design environment - a review. Int. J. Pharm. 473, 64–72 (2014). https://doi.org/10.1016/j.ijpharm.2014.06.055

    Article  CAS  Google Scholar 

  104. Hu, Y., Zhang, S., Han, D., Ding, Z., Zeng, S., Xiao, X.: Construction and evaluation of the hydroxypropyl methyl CEL-sodium alginate composite hydrogel system for sustained drug release. J. Polym. Res. 25, 148 (2018). https://doi.org/10.1007/s10965-018-1546-y

    Article  CAS  Google Scholar 

  105. Mahmoudian, M., Ganji, F.: Vancomycin-loaded HPMC microparticles embedded within injectable thermosensitive chitosan hydrogels. Prog. Biomater. 6, 49–56 (2017). https://doi.org/10.1007/s40204-017-0066-x

    Article  CAS  Google Scholar 

  106. Takeuchi, H.; Handa, T.; Kawashima, Y. Spherical solid dispersion containing amorphous tolbutamide embedded in enteric coating polymers or colloidal silica prepared by spray-drying technique. Chem. Pharm. Bull. 1987, 35, 3800–3806.

    Google Scholar 

  107. Pastor, M.; Esquisabel, A.; Marquínez, I.; Talavera, A.; Pedraz, J.L. CEL acetate phthalate microparticles containing Vibrio cholerae: Steps toward an oral cholera vaccine. J. Drug Target. 2014, 22, 478–487

    Google Scholar 

  108. Hoang, B.; Ernsting, M.J.; Tang, W.-H.S.; Bteich, J.; Undzys, E.; Kiyota, T.; Li, S.-D. Cabazitaxel-conjugated nanoparticles for docetaxel-resistant and bone metastatic prostate cancer. Cancer Lett. 2017, 410, 169–179

    Google Scholar 

  109. Chen, Z., Wang, T., Yan, Q.: Building a polysaccharide hydrogel capsule delivery system for control release of ibuprofen. J. Biomater. Sci. Polym. Ed. 29, 309–324 (2017)

    Article  Google Scholar 

  110. Hosny, K.M., Alkhalidi, H.M., Alharbi, W.S., Md, S., Sindi, A.M., Ali, S.A., Bakhaidar, R.B., Almehmady, A.M., Alfayez, E., Kurakula, M.: Recent trends in assessment of CEL derivatives in designing novel and nanoparticulate-based drug delivery systems for improvement of oral health. Polymers 14(1), 92 (2022). https://doi.org/10.3390/polym14010092

    Article  CAS  Google Scholar 

  111. Vijaya Shanti, B., et al.: An imperative note on novel drug delivery systems. J. Nanomedic. Nanotechnol. 2, 125 (2011)

    Google Scholar 

  112. Agrawal, P.: Significance of polymers in drug delivery system. J. Pharmacovigil. 3, e127 (2015)

    Article  Google Scholar 

  113. Nikalje, A.P.: Nanotechnology and its applications in medicine. Med chem. 5, 081–089 (2015)

    Article  Google Scholar 

  114. Liu, M., Zhang, S., Cui, S., Chen, F., Jia, L., Wang, S., Gai, X., Li, P., et al.: Preparation and evaluation of Vinpocetine self-emulsifying pH gradient release pellets. Drug Deliv. 24, 1598–1604 (2017)

    Article  CAS  Google Scholar 

  115. Rao Z, Ge H, Liu L, et al. Carboxymethyl CEL modified graphene oxide as pH-sensitive drug delivery system. Int. J. Biol. Macromol. 2018;107, 1184–1192.

    Google Scholar 

  116. Furst, T., Piette, M., Lechanteur, A., Evrard, B., Piel, G.: Mucoadhesive cellulosic derivative sponges as drug delivery system for vaginal application. Eur. J. Pharm. Biopharm. 95, 128–135 (2015)

    Article  CAS  Google Scholar 

  117. Qi, X., Chen, H., Rui, Y., Yang, F., Ma, N., Wu, Z.: Floating tablets for controlled release of ofloxacin via compression coating of hydroxypropyl CEL combined with effervescent agent. Int. J. Pharm. 489, 210–217 (2015)

    Article  CAS  Google Scholar 

  118. Pooresmaeil, M., Nia, S.B., Namazi, H.: Green encapsulation of LDH(Zn/Al)-5-Fu with carboxymethyl CEL biopolymer; new nanovehicle for oral colorectal cancer treatment. Int. J. Biol. Macromol. 139, 994–1001 (2019)

    Article  CAS  Google Scholar 

  119. Kono, H.: Characterization and properties of carboxymethyl CEL hydrogels crosslinked by polyethylene glycol. Carbohydr. Polym. 106, 84–93 (2014)

    Article  CAS  Google Scholar 

  120. Nochos, A., Douroumis, D., Bouropoulos, N.: In vitro release of bovine serum albumin from alginate/HPMC hydrogel beads. Carbohydr. Polym. 74, 451–457 (2008)

    Article  CAS  Google Scholar 

  121. Patel, M.M., Amin, A.F.: Formulation and development of release modulated colon targeted system of meloxicam for potential application in the prophylaxis of colorectal cancer. Drug Deliv. 18, 281–293 (2010)

    Article  Google Scholar 

  122. Eiamtrakarn, S., Itoh, Y., Kishimoto, J., Yoshikawa, Y., Shibata, N., Murakami, M., Takada, K.: Gastrointestinal mucoadhesivepatch system (GI-MAPS) for oral administration of G-CSF, a model protein. Biomaterials 23, 145–152 (2001)

    Article  Google Scholar 

  123. Shaji, J., Patole, V.: Protein and peptide drug delivery: oral approaches. Indian J. Pharm. Sci. 70, 269–277 (2008)

    Article  Google Scholar 

  124. Makhlof, A., Tozuka, Y., Takeuchi, H.: Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery. Eur. J. Pharm. Sci. 42, 445–451 (2011)

    Article  CAS  Google Scholar 

  125. Del Curto, M.D., Maroni, A., Palugan, L., Zema, L., Gazzaniga, A., Sangalli, M.E.: Oral delivery dystem for two-pulse colonic release of protein drugs and protease inhibitor/absorption enhancer compounds. J. Pharm. Sci. 100, 3251–3259 (2011)

    Article  Google Scholar 

  126. Teodoro, K.B., Sanfelice, R.C., Migliorini, F.L., Pavinatto, A., Facure, M.H., Correa, D.S.: A review on the role and performance of CEL nanomaterials in sensors. ACS Sens. 6, 2473–2496 (2021)

    Article  CAS  Google Scholar 

  127. Labib, G.S., Aldawsari, H.M., Badr-Eldin, S.M.: Metronidazole and Pentoxifylline films for the local treatment of chronicperiodontal pockets: preparation, in vitro evaluation and clinical assessment. Expert Opin. Drug Deliv. 11, 855–865 (2014)

    Article  CAS  Google Scholar 

  128. Laffleur, F., Krouská, J., Tkacz, J., Pekaˇr, M., Aghai, F., Netsomboon, K.: Buccal adhesive films with moisturizer-the next level fordry mouth syndrome? Int. J. Pharm. 550, 309–315 (2018)

    Article  CAS  Google Scholar 

  129. Yamamura, K., Yotsuyanagi, T., Okamoto, T., Nabeshima, T.: Pain relief of oral ulcer by dibucaine-film. Pain 83, 625–626 (1999)

    Article  CAS  Google Scholar 

  130. Kohda, Y., Kobayashi, H., Baba, Y., Yuasa, H., Ozeki, T., Kanaya, Y., Sagara, E.: Controlled release of lidocaine hydrochloride frombuccal mucosa-adhesive films with solid dispersion. Int. J. Pharm. 158, 147–155 (1997)

    Article  CAS  Google Scholar 

  131. Ceschel, G.C., Maffei, P., Lombardi Borgia, S., Ronchi, C.: Design and evaluation of buccal adhesive hydrocortisone acetate (HCA)tablets. Drug Deliv. 8, 161–167 (2001)

    Article  CAS  Google Scholar 

  132. Kamel, S., Ali, N., Jahangir, K., Shah, S.M., El-Gendy, A.A.: Pharmaceutical significance of CEL: a review. Express Polym. Lett. 2, 758–778 (2008)

    Article  CAS  Google Scholar 

  133. Bansal, K., Rawat, M.K., Jain, A., Rajput, A., Chaturvedi, T.P., Singh, S.: Development of satranidazole mucoadhesive gel for the treatment of periodontitis. AAPS PharmSciTech 10, 716–723 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arti A. Bagada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bagada, A.A., Patel, P.V., Paun, J.S. (2023). Pharmaceutical and Biomedical Importance of Regenerated CEL and Composites in Various Morphologies. In: Shabbir, M. (eds) Regenerated Cellulose and Composites. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-1655-9_11

Download citation

Publish with us

Policies and ethics