Skip to main content

Aquaporins in Urinary System

  • Chapter
  • First Online:
Aquaporins

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1398))

Abstract

There are at least eight aquaporins (AQPs) expressed in the kidney. Including AQP1 expressed in proximal tubules, thin descending limb of Henle and vasa recta; AQP2, AQP3, AQP4, AQP5, and AQP6 expressed in collecting ducts; AQP7 expressed in proximal tubules; AQP8 expressed in proximal tubules and collecting ducts; and AQP11 expressed in the endoplasmic reticulum of proximal tubular epithelial cells. Over years, researchers have constructed different AQP knockout mice and explored the effect of AQP knockout on kidney function. Thus, the roles of AQPs in renal physiology are revealed, providing very useful information for addressing fundamental questions about transepithelial water transport and the mechanism of near isoosmolar fluid reabsorption. This chapter introduces the localization and function of AQPs in the kidney and their roles in different kidney diseases to reveal the prospects of AQPs in further basic and clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Field M, Pollock C, Harris D (2011) Basic science and clinical conditions. Renal Syst 2011:1–44

    Google Scholar 

  2. Kortenoeven MLA, Fenton RA (2014) Renal aquaporins and water balance disorders. Biochim Biophys Acta 1840:1533–1549

    Article  CAS  PubMed  Google Scholar 

  3. Michalek K (2016) Aquaglyceroporins in the kidney: present state of knowledge and prospects. J Physiol Pharmacol 67:185–193

    CAS  PubMed  Google Scholar 

  4. Nielsen S, Frør J, Knepper MA (1998) Renal aquaporins: key roles in water balance and water balance disorders. Curr Opin Nephrol Hypertens 7:509–516

    Article  CAS  PubMed  Google Scholar 

  5. Verkman AS (1998) Role of aquaporin water channels in kidney and lung. Am J Med Sci 316:310–320

    CAS  PubMed  Google Scholar 

  6. Yamamoto T, Sasaki S (1998) Aquaporins in the kidney: emerging new aspects. Kidney Int 54:1041–1051

    Article  CAS  PubMed  Google Scholar 

  7. Spector DA, Wade JB, Dillow R, Steplock DA, Weinman EJ (2002) Expression, localization, and regulation of aquaporin-1 to -3 in rat urothelia. Am J Physiol Renal Physiol 282:1034–1042

    Article  Google Scholar 

  8. Spector DA, Yang Q, Liu J, Wade JB (2004) Expression, localization, and regulation of urea transporter B in rat urothelia. Am J Physiol Renal Physiol 287:F102–F1F8

    Article  CAS  PubMed  Google Scholar 

  9. Verkman AS, Shi LB, Frigeri A, Hasegawa H, Farinas J, Mitra A, Skach W, Brown D, Van Hoek AN, Ma T (1995) Structure and function of kidney water channels. Kidney Int 48:1069–1081

    Article  CAS  PubMed  Google Scholar 

  10. Seyahian EA, Cacciagiu L, Damiano AE, Zotta E (2020) AQP1 expression in the proximal tubule of diabetic rat kidney. Heliyon 6:e03192

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nielsen S, Pallone T, Smith BL, Christensen EI, Agre P, Maunsbach AB (1995) Aquaporin-1 water channels in short and long loop descending thin limbs and in descending vasa recta in rat kidney. Am J Physiol Renal Fluid Electrolyte Physiol 268:1023–1037

    Article  Google Scholar 

  12. Maeda Y, Smith BL, Agre P, Knepper MA (1995) Quantification of aquaporin-CHIP water channel protein in microdissected renal tubules by fluorescence-based ELISA. J Clin Investig 95:422–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mobasheri A, Marples D (2004) Expression of the AQP-1 water channel in normal human tissues: a semiquantitative study using tissue microarray technology. Am J Physiol Cell Physiol 286:529–537

    Article  Google Scholar 

  14. Christensen BM, Marples D, Jensen UB, Frøkiaer J, Sheikh-Hamad D, Knepper M, Nielsen S (1998) Acute effects of vasopressin V2-receptor antagonist on kidney AQP2 expression and subcellular distribution. Am J Physiol Renal Physiol 275:285–297

    Article  Google Scholar 

  15. Marples D, Knepper MA, Christensen EI, Nielsen S (1995) Redistribution of aquaporin-2 water channels induced by vasopressin in rat kidney inner medullary collecting duct. Am J Physiol Cell Physiol 269:655–664

    Article  Google Scholar 

  16. Olesen ETB, Fenton RA (2021) Aquaporin 2 regulation: implications for water balance and polycystic kidney diseases. Nat Rev Nephrol 17:765–781

    Article  CAS  PubMed  Google Scholar 

  17. Mobasheri A, Wray S, Marples D (2005) Distribution of AQP2 and AQP3 water channels in human tissue microarrays. J Mol Histol 36:1–14

    Article  CAS  PubMed  Google Scholar 

  18. He J, Yang B (2019) Aquaporins in renal diseases. Int J Mol Sci 20:366

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rubenwolf PC, Georgopoulos NT, Clements LA, Feather S, Holland P, Thomas DFM, Southgate J (2009) Expression and localisation of aquaporin water channels in human urothelium in situ and in vitro. Eur Urol 56:1013–1024

    Article  CAS  PubMed  Google Scholar 

  20. Deen PM, Van Os CH (1998) Epithelial aquaporins. Curr Opin Cell Biol 10:435–442

    Article  CAS  PubMed  Google Scholar 

  21. Kim YH, Earm JH, Ma T, Verkman AS, Knepper MA, Madsen KM, Kim J (2001) Aquaporin-4 expression in adult and developing mouse and rat kidney. J Am Soc Nephrol 12:1795–1804

    Article  CAS  PubMed  Google Scholar 

  22. Terris J, Ecelbarger CA, Marples D, Knepper MA, Nielsen S (1995) Distribution of aquaporin-4 water channel expression within rat kidney. Am J Physiol 269:775–785

    Google Scholar 

  23. Van Hoek AN, Ma T, Yang B, Verkman AS, Brown D (2000) Aquaporin-4 is expressed in basolateral membranes of proximal tubule S3 segments in mouse kidney. Am J Physiol Renal Physiol 278:310–316

    Article  Google Scholar 

  24. Yang B, Brown D, Verkman AS (1996) The mercurial insensitive water channel (AQP-4) forms orthogonal arrays in stably transfected Chinese hamster ovary cells. J Biol Chem 271:4577–4580

    Article  CAS  PubMed  Google Scholar 

  25. Procino G, Mastrofrancesco L, Sallustio F, Costantino V, Barbieri C, Pisani F, Schena FP, Svelto M, Valenti G (2011) AQP5 is expressed in type-B intercalated cells in the collecting duct system of the rat, mouse and human kidney. Cell Physiol Biochem 28:683–692

    Article  CAS  PubMed  Google Scholar 

  26. Yasui M, Kwon TH, Knepper MA, Nielsen S, Agre P (1999) Aquaporin-6: an intracellular vesicle water channel protein in renal epithelia. Proc Natl Acad Sci U S A 96:5808–5813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yasul M, Hazama A, Kwon TH, Nielsen S, Guggino WB, Agre P (1999) Rapid gating and artion permeability of an intracellular aquaporin. Nature 402:184–187

    Article  Google Scholar 

  28. Ishibashi K, Imai M, Sasaki S (2000) Cellular localization of aquaporin 7 in the rat kidney. Exp Nephrol 8:252–257

    Article  CAS  PubMed  Google Scholar 

  29. Nejsum LN, Elkjar ML, Hager H, Frokiar J, Kwon TH, Nielsen S (2000) Localization of aquaporin-7 in rat and mouse kidney using RT-PCR, immunoblotting, and immunocytochemistry. Biochem Biophys Res Commun 277:164–170

    Article  CAS  PubMed  Google Scholar 

  30. Elkjær ML, Nejsum LN, Gresz V, Kwon TH, Jensen UB, Frøkiær J, Nielsen S (2001) Immunolocalization of aquaporin-8 in rat kidney, gastrointestinal tract, testis, and airways. Am J Physiol Renal Physiol 281:1047–1057

    Article  Google Scholar 

  31. Nishimura H, Yang Y (2013) Aquaporins in avian kidneys: function and perspectives. Am J Physiol Regul Integr Comp Physiol 305:1201–1214

    Article  Google Scholar 

  32. Ikeda M, Andoo A, Shimono M, Takamatsu N, Taki A, Muta K, Matsushita W, Uechi T, Matsuzaki T, Kenmochi N, Takata K, Sasaki S, Ito K, Ishibashi K (2011) The NPC motif of aquaporin-11, unlike the NPA motif of known aquaporins, is essential for full expression of molecular function. J Biol Chem 286:3342–3350

    Article  CAS  PubMed  Google Scholar 

  33. Inoue Y, Sohara E, Kobayashi K, Chiga M, Rai T, Ishibashi K, Horie S, Su X, Zhou J, Sasaki S, Uchida S (2014) Aberrant glycosylation and localization of polycystin-1 cause polycystic kidney in an AQP11 knockout model. J Am Soc Nephrol 25:2789–2799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Morishita Y, Matsuzaki T, Hara-Chikuma M, Andoo A, Shimono M, Matsuki A, Kobayashi K, Ikeda M, Yamamoto T, Verkman A, Kusano E, Ookawara S, Takata K, Sasaki S, Ishibashi K (2005) Disruption of aquaporin-11 produces polycystic kidneys following vacuolization of the proximal tubule. Mol Cell Biol 25:7770–7779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ma T, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (1998) Severely impaired urinary concentrating ability in transgenic mice lacking aquaporin-1 water channels. J Biol Chem 273:4296–4299

    Article  CAS  PubMed  Google Scholar 

  36. Schnermann J, Chou CL, Ma T, Traynor T, Knepper MA, Verkman AS (1998) Defective proximal tubular fluid reabsorption in transgenic aquaporin-1 null mice. Proc Natl Acad Sci U S A 95:9660–9664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Verkman AS (2008) Dissecting the roles of aquaporins in renal pathophysiology using transgenic mice. Semin Nephrol 28:217–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang B, Folkesson HG, Yang J, Matthay MA, Ma T, Verkman AS (1999) Reduced osmotic water permeability of the peritoneal barrier in aquaporin-1 knockout mice. Am J Physiol Cell Physiol 276:76–81

    Article  Google Scholar 

  39. Yang B, Ma T, Dong JY, Verkman AS (2000) Partial correction of the urinary concentrating defect in aquaporin-1 null mice by adenovirus-mediated gene delivery. Hum Gene Ther 11:567–575

    Article  PubMed  Google Scholar 

  40. Cai Q, McReynolds MR, Keck M, Greer KA, Hoying JB, Brooks HL (2007) Vasopressin receptor subtype 2 activation increases cell proliferation in the renal medulla of AQP1 null mice. Am J Physiol Renal Physiol 293:1858–1864

    Article  Google Scholar 

  41. Chou CL, Knepper MA, Van Hoek AN, Brown D, Yang B, Ma T, Verkman AS (1999) Reduced water permeability and altered ultrastructure in thin descending limb of Henle in aquaporin-1 null mice. J Clin Investig 103:491–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Moore LC, Marsh DJ (1980) How descending limb of Henle’s loop permeability affects hypertonic urine formation. Am J Physiol Renal Fluid Electrolyte Physiol 8:57–71

    Article  Google Scholar 

  43. Knepper MA (1997) Molecular physiology of urinary concentrating mechanism: regulation of aquaporin water channels by vasopressin. Am J Physiol Renal Physiol 272:3–12

    Article  Google Scholar 

  44. Jen JF, Stephenson JL (1994) Externally driven countercurrent multiplication in a mathematical model of the urinary concentrating mechanism of the renal inner medulla. Bull Math Biol 56:491–514

    Article  CAS  PubMed  Google Scholar 

  45. Tajika Y, Matsuzaki T, Suzuki T, Aoki T, Hagiwara H, Tanaka S, Kominami E, Takata K (2002) Immunohistochemical characterization of the intracellular pool of water channel aquaporin-2 in the rat kidney. Anat Sci Int 77:189–195

    Article  PubMed  Google Scholar 

  46. Wu Q, Moeller HB, Stevens DA, Sanchez-Hodge R, Childers G, Kortenoeven MLA, Cheng L, Rosenbaek LL, Rubel C, Patterson C, Pisitkun T, Schisler JC, Fenton RA (2018) CHIP regulates aquaporin-2 quality control and body water homeostasis. J Am Soc Nephrol 29:936–948

    Article  CAS  PubMed  Google Scholar 

  47. Noda Y, Sasaki S (2006) Regulation of aquaporin-2 trafficking and its binding protein complex. Biochim Biophys Acta Biomembr 1758:1117–1125

    Article  CAS  Google Scholar 

  48. Zhang XY, Wang B, Guan YF (2016) Nuclear receptor regulation of aquaporin-2 in the kidney. Int J Mol Sci 17:1105

    Article  PubMed  PubMed Central  Google Scholar 

  49. Trimpert C, Wesche D, de Groot T, Pimentel Rodriguez MM, Wong V, van den Berg DTM, Cheval L, Ariza CA, Doucet A, Stagljar I, Deen PMT (2017) NDFIP allows NEDD4/NEDD4L-induced AQP2 ubiquitination and degradation. PLoS One 12:e0183774

    Article  PubMed  PubMed Central  Google Scholar 

  50. Moeller HB, Fuglsang CH, Pedersen CN, Fenton RA (2018) Basolateral cholesterol depletion alters Aquaporin-2 post-translational modifications and disrupts apical plasma membrane targeting. Biochem Biophys Res Commun 495:157–162

    Article  CAS  PubMed  Google Scholar 

  51. Bichet DG, Bockenhauer D (2016) Genetic forms of nephrogenic diabetes insipidus (NDI): Vasopressin receptor defect (X-linked) and aquaporin defect (autosomal recessive and dominant). Best Pract Res Clin Endocrinol Metab 30:263–276

    Article  CAS  PubMed  Google Scholar 

  52. Deen PMT, Verdijk MAJ, Knoers NVAM, Wieringa B, Monnens LAH, Van Os CH, Van Oost BA (1994) Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science 264:92–95

    Article  CAS  PubMed  Google Scholar 

  53. Rojek A, Füchtbauer EM, Kwon TH, Frøkiær J, Nielsen S (2006) Severe urinary concentrating defect in renal collecting duct-selective AQP2 conditional-knockout mice. Proc Natl Acad Sci U S A 103:6037–6042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Murali SK, Aroankins TS, Moeller HB, Fenton RA (2019) The deubiquitylase USP4 interacts with the water channel AQP2 to modulate its apical membrane accumulation and cellular abundance. Cell 8:265

    Article  CAS  Google Scholar 

  55. Tingskov SJ, Choi HJ, Holst MR, Hu S, Li C, Wang W, Frokiaer J, Nejsum LN, Kwon TH, Norregaard R (2019) Vasopressin-independent regulation of aquaporin-2 by tamoxifen in kidney collecting ducts. Front Physiol 10:948

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wong KY, Wang WL, Su SH, Liu CF, Yu MJ (2020) Intracellular location of aquaporin-2 serine 269 phosphorylation and dephosphorylation in kidney collecting duct cells. Am J Physiol Renal Physiol 319:F592–F602

    Article  CAS  PubMed  Google Scholar 

  57. Procino G, Carmosino M, Tamma G, Gouraud S, Laera A, Riccardi D, Svelto M, Valenti G (2004) Extracellular calcium antagonizes forskolin-induced aquaporin 2 trafficking in collecting duct cells. Kidney Int 66:2245–2255

    Article  CAS  PubMed  Google Scholar 

  58. Sasaki S, Yui N, Noda Y (2014) Actin directly interacts with different membrane channel proteins and influences channel activities: AQP2 as a model. Biochim Biophys Acta Biomembr 1838:514–520

    Article  CAS  Google Scholar 

  59. Whiting JL, Ogier L, Forbush KA, Bucko P, Gopalan J, Seternes OM, Langeberg LK, Scott JD (2016) AKAP220 manages apical actin networks that coordinate aquaporin-2 location and renal water reabsorption. Proc Natl Acad Sci U S A 113:E4328–E4E37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Carney EF (2016) Cell biology: vasopressin-independent AQP2 trafficking. Nat Rev Nephrol 12:509

    Article  CAS  PubMed  Google Scholar 

  61. Fushimi K, Sasaki S, Marumo F (1997) Phosphorylation of serine 256 is required for cAMP-dependent regulatory exocytosis of the aquaporin-2 water channel. J Biol Chem 272:14800–14804

    Article  CAS  PubMed  Google Scholar 

  62. Cheung PW, Nomura N, Nair AV, Pathomthongtaweechai N, Ueberdiek L, Lu HAJ, Brown D, Bouley R (2016) EGF receptor inhibition by erlotinib increases aquaporin 2-mediated renal water reabsorption. J Am Soc Nephrol 27:3105–3116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fenton RA, Moeller HB, Hoffert JD, Yu MJ, Nielsen S, Knepper MA (2008) Acute regulation of aquaporin-2 phosphorylation at Ser-264 by vasopressin. Proc Natl Acad Sci U S A 105:3134–3139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hoffert JD, Fenton RA, Moeller HB, Simons B, Tchapyjnikov D, McDill BW, Yu MJ, Pisitkun T, Chen F, Knepper MA (2008) Vasopressin-stimulated increase in phosphorylation at Ser269 potentiates plasma membrane retention of aquaporin-2. J Biol Chem 283:24617–24627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Park EJ, Kwon TH (2015) A minireview on vasopressin-regulated aquaporin-2 in kidney collecting duct cells. Electrolyte Blood Pressure 13:1–6

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hoffert JD, Pisitkun T, Saeed F, Song JH, Chou CL, Knepper MA (2012) Dynamics of the G protein-coupled vasopressin V2 receptor signaling network revealed by quantitative phosphoproteomics. Mol Cell Proteomics 11:014613

    Article  Google Scholar 

  67. Ren H, Yang B, Ruiz JA, Efe O, Ilori TO, Sands JM, Klein JD (2016) Phosphatase inhibition increases AQP2 accumulation in the rat IMCD apical plasma membrane. Am J Physiol Renal Physiol 311:F1189–F1F97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hoffert JD, Pisitkun T, Wang G, Shen RF, Knepper MA (2006) Quantitative phosphoproteomics of vasopressin-sensitive renal cells: regulation of aquaporin-2 phosphorylation at two sites. Proc Natl Acad Sci U S A 103:7159–7164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hoffert JD, Nielsen J, Yu MJ, Pisitkun T, Schleicher SM, Nielsen S, Knepper MA (2007) Dynamics of aquaporin-2 serine-261 phosphorylation in response to short-term vasopressin treatment in collecting duct. Am J Physiol Renal Physiol 292:F691–F700

    Article  CAS  PubMed  Google Scholar 

  70. Lu HJ, Matsuzaki T, Bouley R, Hasler U, Qin QH, Brown D (2008) The phosphorylation state of serine 256 is dominant over that of serine 261 in the regulation of AQP2 trafficking in renal epithelial cells. Am J Physiol Renal Physiol 295:F290–F2F4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li S, Qiu M, Kong Y, Zhao X, Choi HJ, Reich M, Bunkelman BH, Liu Q, Hu S, Han M, Xie H, Rosenberg AZ, Keitel V, Kwon TH, Levi M, Li C, Wang W (2018) Bile acid G protein-coupled membrane receptor TGR5 modulates aquaporin 2-mediated water homeostasis. J Am Soc Nephrol 29:2658–2670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Luo R, Hu S, Liu Q, Han M, Wang F, Qiu M, Li S, Li X, Yang T, Fu X, Wang W, Li C (2019) Hydrogen sulfide upregulates renal AQP-2 protein expression and promotes urine concentration. FASEB J 33:469–483

    Article  CAS  PubMed  Google Scholar 

  73. Lei L, Huang M, Su L, Xie D, Mamuya FA, Ham O, Tsuji K, Paunescu TG, Yang B, Lu HAJ (2018) Manganese promotes intracellular accumulation of AQP2 via modulating F-actin polymerization and reduces urinary concentration in mice. Am J Physiol Renal Physiol 314:F306–FF16

    Article  PubMed  Google Scholar 

  74. Ando F, Sohara E, Morimoto T, Yui N, Nomura N, Kikuchi E, Takahashi D, Mori T, Vandewalle A, Rai T, Sasaki S, Kondo Y, Uchida S (2016) Wnt5a induces renal AQP2 expression by activating calcineurin signalling pathway. Nat Commun 7:13636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jung HJ, Raghuram V, Lee JW, Knepper MA (2018) Genome-wide mapping of DNA accessibility and binding sites for CREB and C/EBPbeta in vasopressin-sensitive collecting duct cells. J Am Soc Nephrol 29:1490–1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Noda Y, Sohara E, Ohta E, Sasaki S (2010) Aquaporins in kidney pathophysiology. Nat Rev Nephrol 6:168–178

    Article  CAS  PubMed  Google Scholar 

  77. Yang B, Ma T, Verkman AS (2001) Erythrocyte water permeability and renal function in double knock out mice lacking aquaporin-1 and aquaporin-3. J Biol Chem 276:624–628

    Article  CAS  PubMed  Google Scholar 

  78. Verbavatz JM, Ma T, Gobin R, Verkman AS (1997) Absence of orthogonal arrays in kidney, brain and muscle from transgenic knockout mice lacking water channel aquaporin-4. J Cell Sci 110:2855–2860

    Article  CAS  PubMed  Google Scholar 

  79. Ma T, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (1997) Generation and phenotype of a transgenic knockout mouse lacking the mercurial-insensitive water channel aquaporin-4. J Clin Investig 100:957–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chou CL, Ma T, Yang B, Knepper MA, Verkman AS (1998) Fourfold reduction of water permeability in inner medullary collecting duct of aquaporin-4 knockout mice. Am J Physiol Cell Physiol 274:C549–CC54

    Article  CAS  Google Scholar 

  81. Yang B, Van Hoek AN, Verkman AS (1997) Very high single channel water permeability of aquaporin-4 in baculovirus-infected insect cells and liposomes reconstituted with purified aquaporin-4. Biochemistry 36:7625–7632

    Article  CAS  PubMed  Google Scholar 

  82. Karlberg L, Källskog Ö, Öjteg G, Wolgast M (1982) Renal medullary blood flow studied with the 86-Rb extraction method Methodological considerations. Acta Physiol Scand 115:11–18

    Article  CAS  PubMed  Google Scholar 

  83. Tamma G, Procino G, Svelto M, Valenti G (2012) Cell culture models and animal models for studying the patho-physiological role of renal aquaporins. Cell Mol Life Sci 69:1931–1946

    Article  CAS  PubMed  Google Scholar 

  84. Agre P, Preston GM, Smith BL, Jin Sup J, Raina S, Moon C, Guggino WB, Nielsen S (1993) Aquaporin CHIP: the archetypal molecular water channel. Am J Physiol Renal Fluid Electrolyte Physiol 265:F463–FF76

    Article  CAS  Google Scholar 

  85. Hazama A, Kozono D, Guggino WB, Agre P, Yasui M (2002) Ion permeation of AQP6 water channel protein. Single channel recordings after Hg2+ activation. J Biol Chem 277:29224–29230

    Article  CAS  PubMed  Google Scholar 

  86. Holm LM, Klaerke DA, Zeuthen T (2004) Aquaporin 6 is permeable to glycerol and urea. Pflugers Arch - Eur J Physiol 448:181–186

    Article  CAS  Google Scholar 

  87. Promeneur D, Kwon TH, Yasui M, Kim GH, Frøkiæer J, Knepper MA, Agre P, Nielsen S (2000) Regulation of AQP6 mRNA and protein expression in rats in response to altered acid-base or water balance. Am J Physiol Renal Physiol 279:F1014–F1F26

    Article  CAS  PubMed  Google Scholar 

  88. Ohshiro K, Yaoita E, Yoshida Y, Fujinaka H, Matsuki A, Kamiie J, Kovalenko P, Yamamoto T (2001) Expression and immunolocalization of AQP6 in intercalated cells of the rat kidney collecting duct. Arch Histol Cytol 64:329–338

    Article  CAS  PubMed  Google Scholar 

  89. Rabaud NE, Song L, Wang Y, Agre P, Yasui M, Carbrey JM (2009) Aquaporin 6 binds calmodulin in a calcium-dependent manner. Biochem Biophys Res Commun 383:54–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Madsen KM, Tisher CC (1984) Response of intercalated cells of rat outer medullary collecting duct to chronic metabolic acidosis. Lab Investig 51:268–276

    CAS  PubMed  Google Scholar 

  91. Ikeda M, Beitz E, Kozono D, Guggino WB, Agre P, Yasui M (2002) Characterization of aquaporin-6 as a nitrate channel in mammalian cells. Requirement of pore-lining residue threonine 63. J Biol Chem 277:39873–39879

    Article  CAS  PubMed  Google Scholar 

  92. Jun JG, Maeda S, Kuwahara-Otani S, Tanaka K, Hayakawa T, Seki M (2014) Expression of adrenergic and cholinergic receptors in murine renal intercalated cells. J Vet Med Sci 76:1493–1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sohara E, Rai T, Miyazaki JI, Verkman AS, Sasaki S, Uchida S (2005) Defective water and glycerol transport in the proximal tubules of AQP7 knockout mice. Am J Physiol Renal Physiol 289:F1195–FF200

    Article  CAS  PubMed  Google Scholar 

  94. Lin EC (1977) Glycerol utilization and its regulation in mammals. Annu Rev Biochem 46:765–795

    Article  CAS  PubMed  Google Scholar 

  95. Maeda N, Funahashi T, Hibuse T, Nagasawa A, Kishida K, Kuriyama H, Nakamura T, Kihara S, Shimomura I, Matsuzawa Y (2004) Adaptation to fasting by glycerol transport through aquaporin 7 in adipose tissue. Proc Natl Acad Sci U S A 101:17801–17806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sohara E, Rai T, Sasaki S, Uchida S (2006) Physiological roles of AQP7 in the kidney: Lessons from AQP7 knockout mice. Biochim Biophys Acta Biomembr 1758:1106–1110

    Article  CAS  Google Scholar 

  97. Geyer RR, Musa-Aziz R, Qin X, Boron WF (2013) Relative CO2/NH3 selectivities of mammalian aquaporins 0-9. Am J Physiol Cell Physiol 304:C985–CC94

    Article  PubMed  Google Scholar 

  98. Zeuthen T, Litman T, Søgaard R (2009) Ammonia and urea permeability of mammalian aquaporins. Handb Exp Pharmacol 190:327–358

    Article  Google Scholar 

  99. Koeppen BM (2009) The kidney and acid-base regulation. Am J Physiol Adv Physiol Educ 33:275–281

    Article  Google Scholar 

  100. Yang B, Song Y, Zhao D, Verkman AS (2005) Phenotype analysis of aquaporin-8 null mice. Am J Physiol Cell Physiol 288:C1161–C1C70

    Article  CAS  PubMed  Google Scholar 

  101. Jahn TP, Møller ALB, Zeuthen T, Holm LM, Klærke DA, Mohsin B, Kühlbrandt W, Schjoerring JK (2004) Aquaporin homologues in plants and mammals transport ammonia. FEBS Lett 574:31–36

    Article  CAS  PubMed  Google Scholar 

  102. Saparov SM, Liu K, Agre P, Pohl P (2007) Fast and selective ammonia transport by aquaporin-8. J Biol Chem 282:5296–5301

    Article  CAS  PubMed  Google Scholar 

  103. Soria LR, Fanelli E, Altamura N, Svelto M, Marinelli RA, Calamita G (2010) Aquaporin-8-facilitated mitochondrial ammonia transport. Biochem Biophys Res Commun 393:217–221

    Article  CAS  PubMed  Google Scholar 

  104. Molinas SM, Trumper L, Marinelli RA (2012) Mitochondrial aquaporin-8 in renal proximal tubule cells: evidence for a role in the response to metabolic acidosis. Am J Physiol Renal Physiol 303:F458–FF66

    Article  CAS  PubMed  Google Scholar 

  105. Hoshino Y, Sonoda H, Nishimura R, Mori K, Ishibashi K, Ikeda M (2019) Involvement of the NADPH oxidase 2 pathway in renal oxidative stress in Aqp11 (-/-) mice. Biochem Biophys Rep 17:169–176

    PubMed  PubMed Central  Google Scholar 

  106. Li Q, Lu B, Yang J, Li C, Li Y, Chen H, Li N, Duan L, Gu F, Zhang J, Xia W (2021) Molecular characterization of an aquaporin-2 mutation causing nephrogenic diabetes insipidus. Front Endocrinol 12:665145

    Article  Google Scholar 

  107. Ren H, Yang B, Molina PA, Sands JM, Klein JD (2015) NSAIDs alter phosphorylated forms of AQP2 in the inner medullary tip. PLoS One 10:e0141714

    Article  PubMed  PubMed Central  Google Scholar 

  108. Schernthaner-Reiter MH, Stratakis CA, Luger A (2017) Genetics of diabetes insipidus. Endocrinol Metab Clin N Am 46:305–334

    Article  Google Scholar 

  109. Mahia J, Bernal A (2021) Animal models for diabetes insipidus. Handb Clin Neurol 181:275–288

    Article  PubMed  Google Scholar 

  110. Eichet DG (1998) Nephrogenic diabetes insipidus. Am J Med 105:431–442

    Google Scholar 

  111. Marples D, Christensen S, Christensen EI, Ottosen PD, Nielsen S (1995) Lithium-induced downregulation of Aquaporin-2 water channel expression in rat kidney medulla. J Clin Investig 95:1838–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tingskov SJ, Hu S, Frokiaer J, Kwon TH, Wang W, Norregaard R (2018) Tamoxifen attenuates development of lithium-induced nephrogenic diabetes insipidus in rats. Am J Physiol Renal Physiol 314:1020–1025

    Article  Google Scholar 

  113. Dollerup P, Thomsen TM, Nejsum LN, Færch M, Österbrand M, Gregersen N, Rittig S, Christensen JH, Corydon TJ (2015) Partial nephrogenic diabetes insipidus caused by a novel AQP2 variation impairing trafficking of the aquaporin-2 water channel. BMC Nephrol 16:217

    Article  PubMed  PubMed Central  Google Scholar 

  114. Klein N, Kümmerer N, Hobernik D, Schneider D (2015) The AQP2 mutation V71M causes nephrogenic diabetes insipidus in humans but does not impair the function of a bacterial homolog. FEBS Open Biol 5:640–646

    Article  CAS  Google Scholar 

  115. Tamarappoo BK, Verkman AS (1998) Defective aquaporin-2 trafficking in nephrogenic diabetes insipidus and correction by chemical chaperones. J Clin Investig 101:2257–2267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yang B, Ma T, Xu Z, Verkman AS (1999) cDNA and genomic cloning of mouse aquaporin-2: functional analysis of an orthologous mutant causing nephrogenic diabetes insipidus. Genomics 57:79–83

    Article  CAS  PubMed  Google Scholar 

  117. Lin Y, Zhang T, Feng P, Qiu M, Liu Q, Li S, Zheng P, Kong Y, Levi M, Li C, Wang W (2017) Aliskiren increases aquaporin-2 expression and attenuates lithium-induced nephrogenic diabetes insipidus. Am J Physiol Renal Physiol 313:914–925

    Article  Google Scholar 

  118. Sauer B (1998) Inducible gene targeting in mice using the Cre/lox system. Methods: A Companion to. Methods Enzymol 14:381–392

    Article  CAS  Google Scholar 

  119. Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (2001) Neonatal mortality in an aquaporin-2 knock-in mouse model of recessive nephrogenic diabetes insipidus. J Biol Chem 276:2775–2779

    Article  CAS  PubMed  Google Scholar 

  120. Yang B, Zhao D, Qian L, Verkman AS (2006) Mouse model of inducible nephrogenic diabetes insipidus produced by floxed aquaporin-2 gene deletion. Am J Physiol Renal Physiol 291:465–472

    Article  Google Scholar 

  121. Yang B, Zhao D, Verkman AS (2009) Hsp90 inhibitor partially corrects nephrogenic diabetes insipidus in a conditional knock-in mouse model of aquaporin-2 mutation. FASEB J 23:503–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Rieg T, Tang T, Murray F, Schroth J, Insel PA, Fenton RA, Hammond HK, Vallon V (2010) Adenylate cyclase 6 determines cAMP formation and aquaporin-2 phosphorylation and trafficking in inner medulla. J Am Soc Nephrol 21:2059–2068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Rao R, Patel S, Hao C, Woodgett J, Harris R (2010) GSK3beta mediates renal response to vasopressin by modulating adenylate cyclase activity. J Am Soc Nephrol 21:428–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ando F, Mori S, Yui N, Morimoto T, Nomura N, Sohara E, Rai T, Sasaki S, Kondo Y, Kagechika H, Uchida S (2018) AKAPs-PKA disruptors increase AQP2 activity independently of vasopressin in a model of nephrogenic diabetes insipidus. Nat Commun 9:1411

    Article  PubMed  PubMed Central  Google Scholar 

  125. Gao M, Cao R, Du S, Jia X, Zheng S, Huang S, Han Q, Liu J, Zhang X, Miao Y, Kang J, Gustafsson JA, Guan Y (2015) Disruption of prostaglandin E2 receptor EP4 impairs urinary concentration via decreasing aquaporin 2 in renal collecting ducts. Proc Natl Acad Sci U S A 112:8397–8402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Suzuki T, Seki S, Hiramoto K, Naganuma E, Kobayashi EH, Yamaoka A, Baird L, Takahashi N, Sato H, Yamamoto M (2017) Hyperactivation of Nrf2 in early tubular development induces nephrogenic diabetes insipidus. Nat Commun 8:14577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hatem-Vaquero M, Griera M, Giermakowska W, Luengo A, Calleros L, Gonzalez Bosc LV, Rodriguez-Puyol D, Rodriguez-Puyol M, De Frutos S (2017) Integrin linked kinase regulates the transcription of AQP2 by NFATC3. Biochim Biophys Acta Gene Regul Mech 1860:922–935

    Article  CAS  PubMed  Google Scholar 

  128. Bonfrate L, Procino G, Wang DQ, Svelto M, Portincasa P (2015) A novel therapeutic effect of statins on nephrogenic diabetes insipidus. J Cell Mol Med 19:265–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Preston GM, Smith BL, Zeidel ML, Moulds JJ, Agre P (1994) Mutations in aquaporin-1 in phenotypically normal humans without functional CHIP water channels. Science 265:1585–1587

    Article  CAS  PubMed  Google Scholar 

  130. Bachinsky DR, Sabolic I, Emmanouel DS, Jefferson DM, Carone FA, Brown D, Perrone RD (1995) Water channel expression in human ADPKD kidneys. Am J Physiol Renal Fluid Electrolyte Physiol 268:398–403

    Article  Google Scholar 

  131. Wang W, Li F, Sun Y, Lei L, Zhou H, Lei T, Xia Y, Verkman AS, Yang B (2015) Aquaporin-1 retards renal cyst development in polycystic kidney disease by inhibition of Wnt signaling. FASEB J 29:1551–1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Devuyst O (1998) The expression of water channels AQP1 and AQP2 in a large series of ADPKD kidneys. Nephron 78:116–117

    Article  CAS  PubMed  Google Scholar 

  133. Devuyst O, Burrow CR, Smith BL, Agre P, Knepper MA, Wilson PD (1996) Expression of aquaporins-1 and -2 during nephrogenesis and in autosomal dominant polycystic kidney disease. Am J Physiol 271:169–183

    Google Scholar 

  134. Aboudehen K, Noureddine L, Cobo-Stark P, Avdulov S, Farahani S, Gearhart MD, Bichet DG, Pontoglio M, Patel V, Igarashi P (2017) Hepatocyte nuclear factor-1beta regulates urinary concentration and response to hypertonicity. J Am Soc Nephrol 28:2887–2900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Noitem R, Yuajit C, Soodvilai S, Muanprasat C, Chatsudthipong V (2018) Steviol slows renal cyst growth by reducing AQP2 expression and promoting AQP2 degradation. Biomed Pharmacother 101:754–762

    Article  CAS  PubMed  Google Scholar 

  136. Wang W, Geng X, Lei L, Jia Y, Li Y, Zhou H, Verkman AS, Yang B (2019) Aquaporin-3 deficiency slows cyst enlargement in experimental mouse models of autosomal dominant polycystic kidney disease. FASEB J 33:6185–6196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Saito T, Tanaka Y, Morishita Y, Ishibashi K (2018) Proteomic analysis of AQP11-null kidney: Proximal tubular type polycystic kidney disease. Biochem Biophys Rep 13:17–21

    PubMed  Google Scholar 

  138. Ohshiro K, Yaoita E, Yoshida Y, Fujinaka H, Matsuki A, Kamiie J, Kovalenko P, Yamamoto T (2001) Expression and immunto I, Ishibashi K, Sasaki S, Abe K (2008) Aquaporin-11 knockout mice and polycystic kidney disease animals share a common mechanism of cyst formation. FASEB J 22:3672–3684

    Google Scholar 

  139. Atochina-Vasserman EN, Biktasova A, Abramova E, Cheng DS, Polosukhin VV, Tanjore H, Takahashi S, Sonoda H, Foye L, Venkov C, Ryzhov SV, Novitskiy S, Shlonimskaya N, Ikeda M, Blackwell TS, Lawson WE, Gow AJ, Harris RC, Dikov MM, Tchekneva EE (2013) Aquaporin 11 insufficiency modulates kidney susceptibility to oxidative stress. Am J Physiol Renal Physiol 304:1295–1307

    Article  Google Scholar 

  140. Matsuzaki T, Yaguchi T, Shimizu K, Kita A, Ishibashi K, Takata K (2016) The distribution and function of aquaporins in the kidney: resolved and unresolved questions. Anat Sci Int 92:187–199

    Article  PubMed  Google Scholar 

  141. Wang W, Li C, Summer SN, Falk S, Wang W, Ljubanovic D, Schrier RW (2008) Role of AQP1 in endotoxemia-induced acute kidney injury. Am J Physiol Renal Physiol 294:F1473–F1480

    Article  CAS  PubMed  Google Scholar 

  142. Liu C, Li B, Tang K, Dong X, Xue L, Su G, Jin Y (2020) Aquaporin 1 alleviates acute kidney injury via PI3K-mediated macrophage M2 polarization. Inflamm Res 69:509–521

    Article  CAS  PubMed  Google Scholar 

  143. Hussein AA, El-Dken ZH, Barakat N, Abol-Enein H (2012) Renal ischaemia/reperfusion injury: possible role of aquaporins. Acta Physiol 204:308–316

    Article  CAS  Google Scholar 

  144. Asvapromtada S, Sonoda H, Kinouchi M, Oshikawa S, Takahashi S, Hoshino Y, Sinlapadeelerdkul T, Yokota-Ikeda N, Matsuzaki T, Ikeda M (2018) Characterization of urinary exosomal release of aquaporin-1 and -2 after renal ischemia-reperfusion in rats. Am J Physiol Renal Physiol 314:F584–F601

    Article  CAS  PubMed  Google Scholar 

  145. Fan Y, Ma M, Feng X, Song T, Wei Q, Lin T (2021) Overexpression of aquaporin 2 in renal tubular epithelial cells alleviates pyroptosis. Transl Androl Urol 10:2340–2350

    Article  PubMed  PubMed Central  Google Scholar 

  146. Chan MJ, Chen YC, Fan PC, Lee CC, Kou G, Chang CH (2022) Predictive value of urinary aquaporin 2 for acute kidney injury in patients with acute decompensated heart failure. Biomedicine 10:613

    CAS  Google Scholar 

  147. Lei L, Wang W, Jia Y, Su L, Zhou H, Verkman AS, Yang B (2017) Aquaporin-3 deletion in mice results in renal collecting duct abnormalities and worsens ischemia-reperfusion injury. Biochim Biophys Acta Mol basis Dis 1863:1231–1241

    Article  CAS  PubMed  Google Scholar 

  148. Abo-Elmaaty AMA, Behairy A, El-Naseery NI, Abdel-Daim MM (2020) The protective efficacy of vitamin E and cod liver oil against cisplatin-induced acute kidney injury in rats. Environ Sci Pollut Res Int 27:44412–44426

    Article  CAS  PubMed  Google Scholar 

  149. Li J, Zhang M, Mao Y, Li Y, Zhang X, Peng X, Yu F (2018) The potential role of aquaporin 1 on aristolochic acid I induced epithelial mesenchymal transition on HK-2 cells. J Cell Physiol 233:4919–4925

    Article  CAS  PubMed  Google Scholar 

  150. Lovisa S, LeBleu VS, Tampe B, Sugimoto H, Vadnagara K, Carstens JL, Wu CC, Hagos Y, Burckhardt BC, Pentcheva-Hoang T, Nischal H, Allison JP, Zeisberg M, Kalluri R (2015) Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med 21:998–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ampawong S, Klincomhum A, Likitsuntonwong W, Singha O, Ketjareon T, Panavechkijkul Y, Zaw KM, Kengkoom K (2012) Expression of aquaporin-1, -2 and -4 in mice with a spontaneous mutation leading to hydronephrosis. J Comp Pathol 146:332–337

    Article  CAS  PubMed  Google Scholar 

  152. Wang W, Luo R, Lin Y, Wang F, Zheng P, Levi M, Yang T, Li C (2015) Aliskiren restores renal AQP2 expression during unilateral ureteral obstruction by inhibiting the inflammasome. Am J Physiol Renal Physiol 308:910–922

    Article  Google Scholar 

  153. Liu N, Zhang Y, Su H, Wang J, Liu Z, Kong J (2018) Effects of cholecalciferol cholesterol emulsion on renal fibrosis and aquaporin 2 and 4 in mice with unilateral ureteral obstruction. Biomed Pharmacother 102:633–638

    Article  CAS  PubMed  Google Scholar 

  154. MacManes MD (2017) Severe acute dehydration in a desert rodent elicits a transcriptional response that effectively prevents kidney injury. Am J Physiol Renal Physiol 313:262–272

    Article  Google Scholar 

  155. Li ZZ, Xing L, Zhao ZZ, Li JS, Xue R, Chandra A, Nørregaard R, Wen JG (2012) Decrease of renal aquaporins 1-4 is associated with renal function impairment in pediatric congenital hydronephrosis. World J Pediatr 8:335–341

    Article  CAS  PubMed  Google Scholar 

  156. Procino G, Romano F, Torielli L, Ferrari P, Bianchi G, Svelto M, Valenti G (2011) Altered expression of renal aquaporins and α-adducin polymorphisms may contribute to the establishment of salt-sensitive hypertension. Am J Hypertens 24:822–828

    Article  CAS  PubMed  Google Scholar 

  157. King LS, Agre P (1996) Pathophysiology of the aquaporin water channels. Annu Rev Physiol 58:619–648

    Article  CAS  PubMed  Google Scholar 

  158. Liu J, Zhang WY, Ding DG (2015) Expression of aquaporin 1 in bladder uroepithelial cell carcinoma and its relevance to recurrence. Asian Pac J Cancer Prev 16:3973–3976

    Article  PubMed  Google Scholar 

  159. Morrissey JJ, Mobley J, Figenshau RS, Vetter J, Bhayani S, Kharasch ED (2015) Urine aquaporin 1 and perilipin 2 differentiate renal carcinomas from other imaged renal masses and bladder and prostate cancer. Mayo Clin Proc 90:35–42

    Article  CAS  PubMed  Google Scholar 

  160. Saadoun S, Papadopoulos MC, Hara-Chikuma M, Verkman AS (2005) Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature 434:786–792

    Article  CAS  PubMed  Google Scholar 

  161. Kourghi M, Pei JV, De Ieso ML, Nourmohammadi S, Chow PH, Yool AJ (2018) Fundamental structural and functional properties of aquaporin ion channels found across the kingdoms of life. Clin Exp Pharmacol Physiol 45:401–409

    Article  CAS  PubMed  Google Scholar 

  162. Mazal PR, Exner M, Haitel A, Krieger S, Thomson RB, Aronson PS, Susani M (2005) Expression of kidney-specific cadherin distinguishes chromophobe renal cell carcinoma from renal oncocytoma. Hum Pathol 36:22–28

    Article  CAS  PubMed  Google Scholar 

  163. Mobasheri A, Airley R, Hewitt SM, Marples D (2005) Heterogeneous expression of the aquaporin 1 (AQP1) water channel in tumors of the prostate, breast, ovary, colon and lung: a study using high density multiple human tumor tissue microarrays. Int J Oncol 26:1149–1158

    CAS  PubMed  Google Scholar 

  164. Yu S, Li LH, Lee CH, Jeyakannu P, Wang JJ, Hong CH (2021) Arsenic leads to autophagy of keratinocytes by increasing aquaporin 3 expression. Sci Rep 11:17523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Tan MH, Wong CF, Tan HL, Yang XJ, Ditlev J, Matsuda D, Khoo SK, Sugimura J, Fujioka T, Furge KA, Kort E, Giraud S, Ferlicot S, Vielh P, Amsellem-Ouazana D, Debré B, Flam T, Thiounn N, Zerbib M, Benoît G, Droupy S, Molinié V, Vieillefond A, Tan PH, Richard S, Teh BT (2010) Genomic expression and single-nucleotide polymorphism profiling discriminates chromophobe renal cell carcinoma and oncocytoma. BMC Cancer 10:196

    Article  PubMed  PubMed Central  Google Scholar 

  166. Yusenko MV, Zubakov D, Kovacs G (2009) Gene expression profiling of chromophobe renal cell carcinomas and renal oncocytomas by Affymetrix GeneChip using pooled and individual tumours. Int J Biol Sci 5:517–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Rocchetti MT, Tamma G, Lasorsa D, Suriano IV, D’Apollo A, Papale M, Mastrofrancesco L, Grandaliano G, Svelto M, Valenti G, Gesualdo L, Di Paolo S (2011) Altered urinary excretion of aquaporin 2 in IgA nephropathy. Eur J Endocrinol 165:657–664

    Article  CAS  PubMed  Google Scholar 

  168. Rodionova EA, Kuznetsova AA, Shakhmatova EI, Prutskova N, Nielsen S, Holtback U, Natochin Y, Zelenina M (2006) Urinary aquaporin-2 in children with acute pyelonephritis. Pediatr Nephrol 21:361–367

    Article  PubMed  Google Scholar 

  169. Landegren N, Pourmousa Lindberg M, Skov J, Hallgren A, Eriksson D, Lisberg Toft-Bertelsen T, MacAulay N, Hagforsen E, Raisanen-Sokolowski A, Saha H, Nilsson T, Nordmark G, Ohlsson S, Gustafsson J, Husebye ES, Larsson E, Anderson MS, Perheentupa J, Rorsman F, Fenton RA, Kampe O (2016) Autoantibodies targeting a collecting duct-specific water channel in tubulointerstitial nephritis. J Am Soc Nephrol 27:3220–3228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Gao C, Zhang W (2019) Urinary AQP5 is independently associated with eGFR decline in patients with type 2 diabetes and nephropathy. Diabetes Res Clin Pract 155:107805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Rossi L, Nicoletti MC, Carmosino M, Mastrofrancesco L, Di Franco A, Indrio F, Lella R, Laviola L, Giorgino F, Svelto M, Gesualdo L, Procino G (2017) Urinary excretion of kidney aquaporins as possible diagnostic biomarker of diabetic nephropathy. J Diabetes Res 2017:4360357

    Article  PubMed  PubMed Central  Google Scholar 

  172. Han B, Wu X, Huang PP, Zhu FX, Liu S (2019) Aquaporin 11 rs2276415 variant and progression of chronic kidney disease. Nephrol Dial Transplant 34:970–973

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China grants 81974083, 81620108029, 81330074 and the Beijing Natural Science Foundation grant 7212151.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoxue Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qiu, Z., Jiang, T., Li, Y., Wang, W., Yang, B. (2023). Aquaporins in Urinary System. In: Yang, B. (eds) Aquaporins. Advances in Experimental Medicine and Biology, vol 1398. Springer, Singapore. https://doi.org/10.1007/978-981-19-7415-1_11

Download citation

Publish with us

Policies and ethics