Skip to main content

Ammonia and Urea Permeability of Mammalian Aquaporins

  • Chapter
Aquaporins

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 190))

The humanaquaporins,AQP3,AQP7, AQP8,AQP9, and possibly AQP10, are permeable to ammonia, and AQP7, AQP9, and possibly AQP3, are permeable to urea. In humans, these aquaporins supplement the ammonia transport of the Rhesus (Rh) proteins and the urea transporters (UTs). The mechanism by which ammonium is transported by aquaporins is not fully resolved. A comparison of transport equations, models, and experimental data shows that ammonia is transported in its neutral form, NH3. In the presence of NH3, the aquaporin stimulates H+ transport. Consequently, this transport of H+ is only significant at alkaline pH. It is debated whether the H+ ion passes via the aquaporin or by some external route; the investigation of this problem requires the aquaporin-expressing cell to be voltage-clamped. The ammonia-permeable aquaporins differ from other aquaporins by having a less restrictive aromatic/arginine region, and an exclusively water-permeable aquaporin can be transformed into an ammonia-permeable aquaporin by single point mutations in this region. The ammonia-permeable aquaporins fall into two groups: those that are permeable (AQP3, 7, 9, 10) and those that are impermeable (AQP8) to glycerol. The two groups differ in the amino acid composition of their aromatic/arginine regions. The location of the ammonia-permeable aquaporins in the body parallels that of the Rh proteins. This applies to erythrocytes and to cells associated with nitrogen homeostasis and high rates of anabolism. In the liver, AQPs 8 and 9 are found together with Rh proteins in cells exposed to portal blood coming from the intestine. In the kidney, AQP3 might participate in the excretion of NH4 + in the collecting duct. The interplay between the ammonia-permeable aquaporins and the other types of ammonia- and urea-permeable proteins is not well understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antonenko YN, Pohl P, Denisov GA (1997) Permeation of ammonia across bilayer lipid membranes studied by ammonium ion selective microelectrodes. Biophys J 72:2187–2195

    Article  PubMed  CAS  Google Scholar 

  • Badaut J, Regli L (2004) Distribution and possible roles of aquaporin 9 in the brain. Neuroscience 129:971–981

    Article  PubMed  CAS  Google Scholar 

  • Bagnasco SM (2006) The erythrocyte urea transporter UT-B. J Membr Biol 212:133–138

    Article  PubMed  CAS  Google Scholar 

  • Bakouh N, Benjelloun F, Hulin P, Brouillard F, Edelman A, Chérif-Zahar B, Planelles G (2004) NH3 is involved in the NH4 + transport induced by the functional expression of the human Rh C glycoprotein. J Biol Biochem 279:15975–15983

    CAS  Google Scholar 

  • Beitz E (2006) Aquaporin water and solute channels from malaria parasites and other pathogenic protozoa. Chem Med Chem 1:587–592

    PubMed  CAS  Google Scholar 

  • Beitz E, Pavlovic-Djuranovic S, Yasui M, Agre P, Schultz JE (2003) Molecular dissection of water and glycerol permeability of the aquaporin from Plasmodium falciparum by mutational analysis. Proc Natl Acad Sci U S A 101:1153–1158

    Article  CAS  Google Scholar 

  • Beitz E, Wu B, Holm LM, Schultz JE, Zeuthen T (2006) Point mutations in the aromatic/argine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons. Proc Natl Acad Sci U S A 103:269–274

    Article  PubMed  CAS  Google Scholar 

  • Bertl B, Kaldenhoff R (2007) Function of a separate NH3-pore in aquaporin TIP2;2 from wheat. FEBS Lett 581:5413–5417

    Article  PubMed  CAS  Google Scholar 

  • Bienert GP, Schjoerring JK, Jahn TP (2006) Membrane transport of hydrogen peroxide. Biochim Biophys Acta 1758:994–1003

    Article  PubMed  CAS  Google Scholar 

  • Bienert GP, Møller ALB, Kristiansen KA, Schulz A, Møller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183–1192

    Article  PubMed  CAS  Google Scholar 

  • Borgnia MJ, Kozono D, Calamita G, Maloney PC, Agre P (1999) Functional reconstitution and characterization of AqpZ, the E. coli water channel protein. J Mol Biol 291:1169–1179

    Article  PubMed  CAS  Google Scholar 

  • Calamita G (2000) The Escherichia coli aquaporin-Z water channel. Mol Microbiol 37:254–262

    Article  PubMed  CAS  Google Scholar 

  • Calamita G, Bishai WR, Preston GM, Guggino WB, Agre P (1995) Molecular cloning and characterization of AqpZ, a water channel from Escerichia coli. Proc Natl Acad Sci U S A 270:29063– 29066

    CAS  Google Scholar 

  • Calamita G, Mazzone A, Bizzoca A, Cavalier A, Cassano G, Thomas D, Svelto M (2001) Expression and immunolocalization of the aquaporin-8 water channel in rat gastrointestinal tract. Eur J Cell Biol 80:711–719

    Article  PubMed  CAS  Google Scholar 

  • Calamita G, Moreno M, Ferri D, Silvestri E, Roberti P, Schiavo L, Gena P, Svelto M, Goglia F (2007) Triiodothyronine modulates the expression of aquaporin-8 in rat liver mitichondria. J Endocrinol 192:111–120

    Article  PubMed  CAS  Google Scholar 

  • Carbrey JM, Gorelick-Feldman DA, Kozono D, Praetorius J, Nielsen S, Agre P (2003) Aquaglyc-eroporin AQP9: solute permeation and metabolic control of expression in liver. Proc Natl Acad Sci U S A 100:2945–2950

    Article  PubMed  CAS  Google Scholar 

  • Carreras F, Lehmann GL, Ferri D, Tioni MF, Calamita G, Marinelli RA (2007) Defective hepato-cyte aquaporin-8 expression and reduced canalicular membrane water permeability in estrogen-induced cholestasis. Am J Physiol 292:G905–G912

    CAS  Google Scholar 

  • Chen H, Wu Y, Voth GA (2006) Origins of proton transport behavior from selectivity domain mutations of the aquaporin-1 channel. Biophys J: Biophys Lett 70:L73–L75

    Google Scholar 

  • de Groot BL, Grubmüller H (2005) The dynamics and energetics of water permeation and proton exclusion in aquaporins. Curr Opin Struct Biol 15:176–183

    Article  PubMed  CAS  Google Scholar 

  • de Groot BL, Frigato T, Helms V, Grubmüller H (2003) The mechanism of proton exclusion in the aquaporin-1 water channel. J Mol Biol 333:279–293

    Article  PubMed  CAS  Google Scholar 

  • Echevarrìa M, Windhager EE, Frindt G (1996) Selectivity of the renal collecting duct water channel aquaporin-3. J Biol Chem 271:25079–25082

    Article  PubMed  Google Scholar 

  • Elkjær M-L, Nejsum LN, Gresz V, Kwon T-H, Jensen UB, Frøkiær J, Nielsen S (2001) Immunolo-calization of aquaporin-8 in rat kidney, gastrointestinal tract, testis, and airways. Am J Physiol 281:F1047–F1057

    Google Scholar 

  • Engel A, Stahlberg H (2002) Aquaglyceroporins: channel proteins with a conserved core, multiple functions, and variable surfaces. Int Rev Cytol 215:75–104

    Article  PubMed  CAS  Google Scholar 

  • Fenton RA, Knepper MA (2007) Mouse models and the urinary concentrating mechanism in the new millenium. Physiol Rev 87:1083–1112

    Article  PubMed  CAS  Google Scholar 

  • Ferri D, Mazzone A, Liquori GE, Cassano G, Svelto M, Calamita G (2003) Ontogeny, distribution, and possible functional implications of an unusual aquaporin, AQP8, in mouse liver. Hepatol-ogy 38:947–957

    CAS  Google Scholar 

  • Garcia F, Kierbel A, Larocca MC, Gradilone SA, Splinter P, LaRusso NF, Marinelli RA (2001) The water channel aquaporin-8 is mainly intracellular in rat hepatocytes, and its plasma membrane insertion is stimulated by cyclic AMP. J Biol Chem 276:12147–12152

    Article  PubMed  CAS  Google Scholar 

  • Gonen T, Walz T (2006) The structure of aquaporins. Q Rev Biophys 39:361–396

    Article  PubMed  CAS  Google Scholar 

  • Hara-Chikuma M, Verkman AS (2006) Physiological roles of glycerol-transporting aquaporins: the aquaglycerolporins. Cell Mol Life Sci 63:1386–1392

    Article  PubMed  CAS  Google Scholar 

  • Hatakeyama S, Yoshida Y, Tani T, Koyama Y, Nihei K, Ohshiro K, Kamiie JI, Yaoita E, Suda T, Hatakeyama K, Yamamoto T (2001) Cloning of a new aquaporin (AQP10) abundantly expressed in duodenum and jejunum. Biochem Biophys Res Commun 287:814–819

    Article  PubMed  CAS  Google Scholar 

  • Häussinger (1996a) Physiological functions of the liver. In: Greger R, Windhorst U (eds.) Comprehensive human physiology, vol. 2. Springer-Verlag, Berlin, Heidelberg, pp. 1369–1391

    Google Scholar 

  • Häussinger (1996b) Zonal metabolism in the liver. In: Greger R, Windhorst U (eds.) Comprehensive human physiology, vol 2. Springer-Verlag, Berlin, Heidelberg, pp. 1393–1402

    Google Scholar 

  • Hibuse T, Maeda N, Nagasawa A, Funahashi T (2006) Aquaporins and glycerol metabolism. Biochim Biophys Acta 1758:1004–1011

    Article  PubMed  CAS  Google Scholar 

  • Hille B (1992) Ionic channels of excitable membranes, 2 edn. Sinauer Associates Inc., Sunder-land, MA

    Google Scholar 

  • Holm, Zeuthen T (2007) Ammonia transport in aquaporins: molecular mechanisms and clinical relevance. In: Häussinger D, Kircheis G, Schliess F (eds.) Hepatic encephalopathy and nitrogen metabolism. Springer, Düsseldorf, pp. 387–393

    Google Scholar 

  • Holm LM, Klaerke DA, Zeuthen T (2004) Aquaporin 6 is permeable to glycerol and urea. Pflügers Arch 448:181–186

    Article  PubMed  CAS  Google Scholar 

  • Holm LM, Jahn TP, Møller ALB, Schjoerring JK, Ferri D, Klærke DA, Zeuthen T (2005) NH3 and NH4 + permeability in aquaporin-expressing Xenopus oocytes. Pflügers Arch 450:415–428

    Article  PubMed  CAS  Google Scholar 

  • Huang C-H, Liu PZ (2001) New insights into the Rh superfamily of genes and proteins in erythroid cells and nonerythroid tissues. Blood Cells Mol Dis 27:90–101

    Article  PubMed  CAS  Google Scholar 

  • Huebert RC, Splinter PL, Garcia F, Marinelli RA, LaRusso F (2002) Expression and localization of aquaporin water channels in rat hepatocytes. J Biol Biochem 277:22710–22717

    Article  CAS  Google Scholar 

  • Ishibashi K, Kuwahara M, Gu Y, Kageyama Y, Tohsaka A, Suzuki F, Marumo F, Sasaki S (1997) Cloning and functional expression of a new water channel abundantly expressed in the testis permeable to water, glycerol, and urea. J Biol Chem 272:20782–20786

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi K, Sasaki S, Fushimi K, Uchida S, Kuwahara M, Saito H, Furukawa T, Nakajima K, Yamaguchi M, Gojobori T, Marumo F (1994) Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Proc Natl Acad Sci U S A 91:6369– 6273

    Article  Google Scholar 

  • Ishibashi K, Morinaga T, Kuwahara M, Sasaki S, Imai M (2002) Cloning and identification of a new member of water channel (AQP10) as an aquaglyceroporin. Biochim Biophys Acta 1576:335–340

    PubMed  CAS  Google Scholar 

  • Jahn TP, Møller ALB, Zeuthen T, Holm LM, Klaerke DA, Mohsin B, Kühlbrandt W, Schoerring JK (2004) Aquaporin homologues in plants and mammals transport ammonia. FEBS Lett 574: 31–36

    Article  PubMed  CAS  Google Scholar 

  • Kedem O, Katchalsky A (1961) A physical interpretation of the phenomenological coefficients of membrane permeability. J Gen Physiol 45:143–179

    Article  PubMed  CAS  Google Scholar 

  • Khademi S, Stroud RM (2006) The Amt/MEP/Rh family: structure of AmtB and the mechanism of ammonia gas conduction. Physiology 21:419–429

    Article  PubMed  CAS  Google Scholar 

  • King LS, Kozono D, Agre P (2004) From structure to disease: the evolving tale of aquaporin biology. Nat Rev Mol Cell Biol 5:687–698

    Article  PubMed  CAS  Google Scholar 

  • Knepper MA, Packer R, Good DW (1989) Ammonium transport in the kidney. Physiol Rev 69:179–249

    PubMed  CAS  Google Scholar 

  • Kozono D, Ding X, Iwasaki I, Meng X, Kamagata Y, Agre P, Kitagawa Y (2003) Functional expression and characterization of an archael aquaporin. J Biol Chem 278:10649–10656

    Article  PubMed  CAS  Google Scholar 

  • Kruse E, Uehlein N, Kaldenhoff R (2008) The aquaporins. Genome Biol 7:206.1–206.6

    Google Scholar 

  • Lee JK, Kozono D, Remis J, Kitagawa Y, Agre P, Stroud RM (2005) Structural basis for conductance by the archaeal aquaporin AqpM at 1.68 Å. Proc Natl Acad Sci U S A 102:18932–18937

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Chen Y, Mo R, Hui C, Cheng J-F, Mohandas N, Huang C-H (2000) Characterization of human RhCG and mouse Rhcg as novel nonerythroid Rh glycoprotein homologues predominantly expressed in kidney and testis. J Biol Chem 275:25641–25651

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Peng J, Mo R, Hui C-C, Huang C-H (2001) Rh type B glycoprotein is a new member of the Rh superfamily and a putative ammonia transporter in mammals. J Biol Chem 276:1424–1433

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Shen J, Carbrey JM, Mukhopadhyay R, Agre P, Rosen BP (2002) Arsenite transport by mammalian aquaporins AQP7 and AQP9. Proc Natl Acad Sci U S A 99:6053–6058

    Article  PubMed  CAS  Google Scholar 

  • Liu K, Nagase H, Huang CG, Calamita G, Agre P (2006) Purification and functional characterization of aquaporin-8. Biol Cell 98:153–161

    Article  PubMed  CAS  Google Scholar 

  • Loque D, Ludewig U, Yuan L, von Wiren N (2005) Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole. Plant Physiol 137:671–680

    Article  PubMed  CAS  Google Scholar 

  • Ma T, Song Y, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (2000) Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels. Proc Natl Acad Sci U S A 97:4386–4391

    Article  PubMed  CAS  Google Scholar 

  • Mak D-OM, Dang B, Weiner ID, Foskett JK, Westhoff CM (2006) Characterization of ammonia transport by the kidney Rh glycoproteins RhBG and RhCG. Am J Physiol 290:F297–F305

    Article  CAS  Google Scholar 

  • Marini A-M, Matassi G, Raynal V, André B, Cartron J-P, Chérif-Zahar B (2000) The human rhesus-associated RhAG protein and a kidney homologue promote ammonium transport in yeast. Nat Genet 26:341–344

    Article  PubMed  CAS  Google Scholar 

  • Maurel C, Reizer J, Schroeder JI, Chrispeels MJ, Saier Jr MH (1994) Functional characterization of the Escherichia coli glycerol facilitator, GlpF, in Xenopus Oocytes. J Biol Chem 269:11869– 11872

    PubMed  CAS  Google Scholar 

  • Mayer M, Schaaf G, Mouro I, Lopez C, Colin Y, Neumann P, Cartron J-P, Ludewig U (2006) Different transport mechanisms in plant and human AMT/Rh-type ammonium transporters. J Gen Physiol 127:133–144

    Article  PubMed  CAS  Google Scholar 

  • Mayer M, Schaaf G, Mouro I, Lopez C, Colin Y, Neumann P, Cartron J-P, Ludewig U (2006) Different transport mechanisms in plant and human AMT/Rh-type ammonium transporters. J Gen Physiol 127:133–144

    Article  PubMed  CAS  Google Scholar 

  • Murata K, Mitsouka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605

    Article  PubMed  CAS  Google Scholar 

  • Nakhoul NL, DeJong H, Abdulnour-Nakhoul SM, Boulpaep EL, Hering-Smith K, Hamm LL (2005) Characteristics of renal Rhbg as an NH4 + transporter. Am J Physiol 288:F170–F181

    CAS  Google Scholar 

  • Nakhoul NL, Schmidt E, Abdulnour-Nakhoul S-M, Hamm LL (2006) Electrogenic ammonium transport by renal Rhbg. Transfus Clin Biol 13:147–153

    Article  PubMed  CAS  Google Scholar 

  • Nielsen S, Frøkier J, Marples D, Kwon T-H, Agre P, Knepper MA (2002) Aquaporins in the kidney: from molecules to medicine. Physiol Rev 82:205–244

    PubMed  CAS  Google Scholar 

  • Norenberg MD, Rao KVR, Jayakumar AR (2005) Mechanisms of ammonia-induced astrocyte swelling. Metab Brain Dis 20:303–318

    Article  PubMed  CAS  Google Scholar 

  • Ogami A, Miyazaki H, Niisato N, Sugimoto T, Marunaka Y (2006) UT-B1 urea transporter plays a noble role as active water transporter in C6 glial cells. Biochem Biophys Res Commun 351:619–624

    Article  PubMed  CAS  Google Scholar 

  • Portincasa P, Moschetta A, Mazzone A, Palasciano G, Svelto M, Calamita G (2003) Water handling and aquaporins in bile formation: recent advances and research trends. J Hepatol 39:864–874

    Article  PubMed  CAS  Google Scholar 

  • Promeneur D, Lui Y, Maciel J, Agre P, King LS, Kumar N (2007) Aquaglyceroporin PbAQP during intraerythrocytic development of the malaria parasite Plasmodium berghei. Proc Natl Acad Sci U S A 104:2211–2216

    Article  PubMed  CAS  Google Scholar 

  • Quintin F, Eladari D, Cheval L, Lopez C, Goossens D, Colin Y, Cartron J-P, Paillard M, Chambrey R (2003) RhBG and RhCG, the putative ammonia transporters, are expressed in the same cells in the distal nephron. J Am Soc Nephrol 14:545–554

    Article  CAS  Google Scholar 

  • Ripoche P, Bertrand O, Gane P, Birkenmeier C, Colin Y, Cartron J-P (2004) Human rhesus-associated glycoprotein mediates facilitated transport of NH3 into red blood cells. Proc Natl Acad Sci U S A 101:17222–17227

    Article  PubMed  CAS  Google Scholar 

  • Rojek A, Praetorius J, Frøkjaer J, Nielsen S, Fenton RA (2008a) A current view of the mammalian aquaglyceroporins. Annu Rev Physiol 70:12.1–12.27

    Article  CAS  Google Scholar 

  • Rojek A, Skowronski MT, Füchtbauer E-M, Füchtbauer AC, Fenton RA, Agre P, Frøkier J, Nielsen S (2008b) Defective glycerol metabolism in aquaporin 9 (AQP9) knockout mice. Proc Natl Acad Sci U S A 104:3609–3614

    Article  CAS  Google Scholar 

  • Saparov MS, Liu K, Agre P, Pohl P (2007) Fast and selective ammonia transport by aquaporin-8. J Biol Chem 282:5296–5301

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignments aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tsukaguchi H, Weremowicz S, Morton CC, Hediger MA (1999) Functional and molecular characterization of the human neutral solute channel aquaporin-9. Am J Physiol 277:F685–F696

    PubMed  CAS  Google Scholar 

  • Verkman AS (2005) More than just water channels: unexpected cellular roles of aquaporins. J Cell Sci 118:3225–3232

    Article  PubMed  CAS  Google Scholar 

  • Waisbren SJ, Geibel JP, Modlin IM, Boron WF (1994) Unusual permeability properties of gastric gland cells. Nature 368:332–335

    Article  PubMed  CAS  Google Scholar 

  • Weiner D, Verlander JW (2003) Renal and hepatic expression of the ammonium transporter proteins, Rh B glycoprotein and Rh C glycoprotein. Acta Physiol Scand 179:331–338

    Article  PubMed  CAS  Google Scholar 

  • Westhoff CM, Ferreri-Jacobia M, Mak DD, Foskett JK (2002) Identification of the erythrocyte Rh blood group glycoprotein as a mammalian ammonium transporter. J Biol Chem 277:12499– 12502

    Article  PubMed  CAS  Google Scholar 

  • Winkler FK (2006) Amt/MEP/Rh proteins conduct ammonia. Pflügers Arch 451:701–707

    Article  PubMed  CAS  Google Scholar 

  • Wu B, Beitz E (2007) Aquaporins with selectivity for unconventional permeants. Cell Mol Life Sci 64:2413–2421

    Article  PubMed  CAS  Google Scholar 

  • Yang B,Verkman AS (1998) Urea transporter UT3 functions as an efficient water channel. J Biol Chem 273:9369–9372

    Article  PubMed  CAS  Google Scholar 

  • Yang B, Song Y, Zhao D, Verkman AS (2005) Phenotype analysis of aquaporin-8 null mice. Am J Physiol 288:C1161–C1170

    Article  CAS  Google Scholar 

  • Yang B, Zhao D, Solenov E, Verkman AS (2006a) Evidence from knockout mice against physiologically significant aquaporin 8-facilitated ammonia transport. Am J Physiol 291:C417–C423

    Article  CAS  Google Scholar 

  • Yang B, Zhao D, Verkman AS (2006b) Evidence against functionally significant aquaporin expression in mitochondria. J Biol Chem 281:16202–16206

    Article  CAS  Google Scholar 

  • Yasui M, Hazama AEA, Kwon T-H, Nielsen S, Guggino WB, Agre P (1999) Rapid gating and anion permeability of an intracellular aquaporin. Nature 402:184–187

    Article  PubMed  CAS  Google Scholar 

  • You G, Smith CG, Kanai Y, Lee W-S, Steitzer M, Hediger MA (1993) Cloning and characterization of the vasopressin-regulated urea transporter. Nature 365:844–847

    Article  PubMed  CAS  Google Scholar 

  • Zardoya R (2005) Phylogeny and evolution of the major intrinsic protein family. Biol Cell 97: 397–414

    Article  PubMed  CAS  Google Scholar 

  • Zeuthen T, Klaerke DA (1999) Transport of water and glycerol in aquaporin 3 is gated by H+. J Biol Chem 274:21631–21636

    Article  PubMed  CAS  Google Scholar 

  • Zeuthen T, Belhage B, Zeuthen E (2006a) Water transport by Na+-coupled cotransporters of glucose (SGLT1) and of iodide (NIS). The dependence of substrate size studied at high resolution. J Physiol 570.3:485–499

    Google Scholar 

  • Zeuthen T, Wu B, Pavlovic-Djuranovic S, Holm LM, Uzcategui NL, Duszenko M, Kun JFJ, Schultz JE, Beitz E (2006b) Ammonia permeability of the aquaglyceroporins from Plasmodium falciparum, Toxoplasma gondii and Trypanosoma brucei. Mol Microbiol 61:1598–1608

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Zeuthen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Litman, T., Søgaard, R., Zeuthen, T. (2009). Ammonia and Urea Permeability of Mammalian Aquaporins. In: Beitz, E. (eds) Aquaporins. Handbook of Experimental Pharmacology, vol 190. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79885-9_17

Download citation

Publish with us

Policies and ethics