Skip to main content

Molecular Imaging of Neuroinflammation in Alzheimer’s Disease and Mild Cognitive Impairment

  • Chapter
  • First Online:
Neuroinflammation, Gut-Brain Axis and Immunity in Neuropsychiatric Disorders

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1411))

Abstract

Alzheimer’s disease (AD) is the most prevalent neurocognitive disorder. Due to the ineffectiveness of treatments targeting the amyloid cascade, molecular biomarkers for neuroinflammation are attracting attention with increasing knowledge about the role of neuroinflammation in the pathogenesis of AD. This chapter will explore the results of studies using molecular imaging for diagnosing AD and mild cognitive impairment (MCI). Because it is critical to interpreting the data to understand which substances are targeted in molecular imaging, this chapter will discuss the two most significant targets, microglia and astrocytes, as well as the best-known radioligands for each. Then, neuroimaging results with PET neuroinflammation imaging will be reviewed for AD and MCI. Although a growing body of evidence has suggested that these molecular imaging biomarkers for neuroinflammation may have a role in the diagnosis of AD and MCI, the findings are inconsistent or cross-sectional, which indicates that it is difficult to apply the contents in practice due to the need for additional study. In particular, because the results of multiple interventions targeting neuroinflammation were inconclusive, molecular imaging markers for neuroinflammation can be used in combination with conventional markers to select appropriate patients for early intervention for neuroinflammation rather than as a single marker.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mayeux R, Stern Y. Epidemiology of Alzheimer disease. Cold Spring Harb Perspect Med. 2012;2(8):a006239. https://pubmed.ncbi.nlm.nih.gov/22908189

    Article  PubMed  PubMed Central  Google Scholar 

  2. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement. 2007;3(3):186–91. http://www.sciencedirect.com/science/article/pii/S155252600700475X.

    Article  PubMed  Google Scholar 

  3. Ziegler-Graham K, Brookmeyer R, Johnson E, Arrighi HM. Worldwide variation in the doubling time of Alzheimer’s disease incidence rates. Alzheimers Dement. 2008;4(5):316–23. https://doi.org/10.1016/j.jalz.2008.05.2479.

    Article  PubMed  Google Scholar 

  4. Mebane-Sims I. Alzheimer’s Association, 2018 Alzheimer’s disease facts and figures. Alzheimers Dement. 2018;14(3):367–429.

    Article  Google Scholar 

  5. Kawas C, Gray S, Brookmeyer R, Fozard J, Zonderman A. Age-specific incidence rates of Alzheimer’s disease: the Baltimore longitudinal study of aging. Neurology. 2000;54(11):2072–7.

    Article  CAS  PubMed  Google Scholar 

  6. Borenstein AR. Survival and mortality in Alzheimer’s disease. In: Borenstein AR, editor. Alzheimer’s disease: life course perspectives on risk reduction. Amsterdam: Elsevier; 2016. p. 89–94.

    Google Scholar 

  7. Jia J, Wei C, Chen S, Li F, Tang Y, Qin W, et al. The cost of Alzheimer’s disease in China and re-estimation of costs worldwide. Alzheimer’s Dement. 2018;14:483–91.

    Article  Google Scholar 

  8. Atri A. The Alzheimer’s disease clinical spectrum: diagnosis and management. Med Clin North Am. 2019;103(2):263–93. https://doi.org/10.1016/j.mcna.2018.10.009.

    Article  PubMed  Google Scholar 

  9. Association AP. Diagnostic and statistical manual of mental disorders (DSM-5®). Washington, DC: American Psychiatric Pub; 2013.

    Book  Google Scholar 

  10. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–59.

    Article  CAS  PubMed  Google Scholar 

  11. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheim progress and problems on the road to. Science. 2002;297(5580):353–6.

    Article  CAS  PubMed  Google Scholar 

  12. Herrup K. The case for rejecting the amyloid cascade hypothesis. Nat Neurosci. 2015;18(6):794–9.

    Article  CAS  PubMed  Google Scholar 

  13. Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimer’s Dement Transl Res Clin Interv. 2018;4:575–90. http://www.sciencedirect.com/science/article/pii/S2352873718300490.

    Article  Google Scholar 

  14. Schain M, Kreisl WC. Neuroinflammation in neurodegenerative disorders—a review. Curr Neurol Neurosci Rep. 2017;17(3):25. https://doi.org/10.1007/s11910-017-0733-2.

    Article  CAS  PubMed  Google Scholar 

  15. Kreisl WC, Kim M-J, Coughlin JM, Henter ID, Owen DR, Innis RB. PET imaging of neuroinflammation in neurological disorders. Lancet Neurol. 2020;19(11):940–50. https://linkinghub.elsevier.com/retrieve/pii/S147444222030346X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lagarde J, Sarazin M, Bottlaender M. In vivo PET imaging of neuroinflammation in Alzheimer’s disease. J Neural Transm. 2018;125(5):847–67. http://link.springer.com/10.1007/s00702-017-1731-x.

    Article  CAS  PubMed  Google Scholar 

  17. Schwartz M, Deczkowska A. Neurological disease as a failure of brain–immune crosstalk: the multiple faces of neuroinflammation. Trends Immunol. 2016;37(10):668–79. https://doi.org/10.1016/j.it.2016.08.001.

    Article  CAS  PubMed  Google Scholar 

  18. Prokop S, Miller KR, Heppner FL. Microglia actions in Alzheimer’s disease. Acta Neuropathol. 2013;126(4):461–77.

    Article  CAS  PubMed  Google Scholar 

  19. Schwab C, McGeer PL. Inflammatory aspects of Alzheimer disease and other neurodegenerative disorders. J Alzheimers Dis. 2008;13:359–69.

    Article  CAS  PubMed  Google Scholar 

  20. Gomez-Nicola D, Boche D. Post-mortem analysis of neuroinflammatory changes in human Alzheimer’s disease. Alzheimers Res Ther. 2015;7(1):42. https://doi.org/10.1186/s13195-015-0126-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Johnston H, Boutin H, Allan SM. Assessing the contribution of inflammation in models of Alzheimer’s disease. Biochem Soc Trans. 2011;39(4):886–90. https://doi.org/10.1042/BST0390886.

    Article  CAS  PubMed  Google Scholar 

  22. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14(4):388–405. http://www.sciencedirect.com/science/article/pii/S1474442215700165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ries M, Sastre M. Mechanisms of Aβ clearance and degradation by glial cells. Front Aging Neurosci. 2016;8:1–9.

    Article  Google Scholar 

  24. Mandrekar S, Jiang Q, Lee CYD, Koenigsknecht-Talboo J, Holtzman DM, Landreth GE. Microglia mediate the clearance of soluble aβ through fluid phase macropinocytosis. J Neurosci. 2009;29(13):4252–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Phelps ME. Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci. 2000;97(16):9226–33. http://www.pnas.org/content/97/16/9226.abstract.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Owen DRJ, Matthews PM. Chapter 2 - Imaging brain microglial activation using positron emission tomography and translocator protein-specific radioligands. In: Guest PC, Bahn S, editors. Biomarkers of neurological and psychiatric disease. London: Academic Press; 2011. p. 19–39. https://www.sciencedirect.com/science/article/pii/B978012387718500002X.

    Chapter  Google Scholar 

  27. Colonna M, Butovsky O. Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol. 2017;35:441–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Paolicelli RC, Gross CT. Microglia in development: linking brain wiring to brain environment. Neuron Glia Biol. 2011;7(1):77–83.

    Article  PubMed  Google Scholar 

  29. Venneti S, Wiley CA, Kofler J. Imaging microglial activation during neuroinflammation and Alzheimer’s disease. J NeuroImmune Pharmacol. 2009;4(2):227–43.

    Article  PubMed  Google Scholar 

  30. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell. 2017;169(7):1276–1290.e17.

    Article  CAS  PubMed  Google Scholar 

  31. Boche D, Gerhard A, Rodriguez-Vieitez E, Faculty on behalf of the M. Prospects and challenges of imaging neuroinflammation beyond TSPO in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2019;46(13):2831–47. https://doi.org/10.1007/s00259-019-04462-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Felsky D, Roostaei T, Nho K, Risacher SL, Bradshaw EM, Petyuk V, et al. Neuropathological correlates and genetic architecture of microglial activation in elderly human brain. Nat Commun. 2019;10(1):409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119(1):7–35.

    Article  PubMed  Google Scholar 

  34. Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA. Glial and neuronal control of brain blood flow. Nature. 2010;468(7321):232–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pekny M, Pekna M, Messing A, Steinhäuser C, Lee J-M, Parpura V, et al. Astrocytes: a central element in neurological diseases. Acta Neuropathol. 2016;131(3):323–45.

    Article  CAS  PubMed  Google Scholar 

  36. Eroglu C, Barres BA. Regulation of synaptic connectivity by glia. Nature. 2010;468(7321):223–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jessen NA, Munk ASF, Lundgaard I, Nedergaard M. The glymphatic system: a beginner’s guide. Neurochem Res. 2015;40(12):2583–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans E, et al. Clearance systems in the brain-implications for Alzheimer disease. Nat Rev Neurol. 2015;11(8):457–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sofroniew MV. Multiple roles for astrocytes as effectors of cytokines and inflammatory mediators. Neuroscientist. 2014;20(2):160–72.

    Article  CAS  PubMed  Google Scholar 

  40. Thal DR. The role of astrocytes in amyloid β-protein toxicity and clearance. Exp Neurol. 2012;236(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  41. Wyss-Coray T, Loike JD, Brionne TC, Lu E, Anankov R, Yan F, et al. Adult mouse astrocytes degrade amyloid-β in vitro and in situ. Nat Med. 2003;9(4):453–7. https://doi.org/10.1038/nm838.

    Article  CAS  PubMed  Google Scholar 

  42. Allaman I, Gavillet M, Bélanger M, Laroche T, Viertl D, Lashuel HA, et al. Amyloid-beta aggregates cause alterations of astrocytic metabolic phenotype: impact on neuronal viability. J Neurosci. 2010;30(9):3326–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Song W, Zhou LJ, Zheng SX, Zhu XZ. Amyloid-beta 25-35 peptide induces expression of monoamine oxidase B in cultured rat astrocytes. Acta Pharmacol Sin. 2000;21(6):557–63.

    CAS  PubMed  Google Scholar 

  44. Jo S, Yarishkin O, Hwang YJ, Chun YE, Park M, Woo DH, et al. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease. Nat Med. 2014;20(8):886–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Funato H, Yoshimura M, Yamazaki T, Saido TC, Ito Y, Yokofujita J, et al. Astrocytes containing amyloid beta-protein (Abeta)-positive granules are associated with Abeta40-positive diffuse plaques in the aged human brain. Am J Pathol. 1998;152(4):983–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Thal DR, Schultz C, Dehghani F, Yamaguchi H, Braak H, Braak E. Amyloid beta-protein (Abeta)-containing astrocytes are located preferentially near N-terminal-truncated Abeta deposits in the human entorhinal cortex. Acta Neuropathol. 2000;100(6):608–17.

    Article  CAS  PubMed  Google Scholar 

  47. Wyss-Coray T, Loike JD, Brionne TC, Lu E, Anankov R, Yan F, et al. Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med. 2003;9(4):453–7.

    Article  CAS  PubMed  Google Scholar 

  48. Schöll M, Carter SF, Westman E, Rodriguez-Vieitez E, Almkvist O, Thordardottir S, et al. Early astrocytosis in autosomal dominant Alzheimer’s disease measured in vivo by multi-tracer positron emission tomography. Sci Rep. 2015;5:16404.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Perry VH, Nicoll JAR, Holmes C. Microglia in neurodegenerative disease. Nat Rev Neurol. 2010;6(4):193–201. https://doi.org/10.1038/nrneurol.2010.17.

    Article  PubMed  Google Scholar 

  50. Braestrup C, Squires RF. Specific benzodiazepine receptors in rat brain characterized by high-affinity (3H)diazepam binding. Proc Natl Acad Sci. 1977;74(9):3805–9. http://www.pnas.org/content/74/9/3805.abstract.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McEnery MW, Snowman AM, Trifiletti RR, Snyder SH. Isolation of the mitochondrial benzodiazepine receptor: association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proc Natl Acad Sci U S A. 1992;89(8):3170–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Casellas P, Galiegue S, Basile AS. Peripheral benzodiazepine receptors and mitochondrial function. Neurochem Int. 2002;40(6):475–86.

    Article  CAS  PubMed  Google Scholar 

  53. Venneti S, Lopresti BJ, Wiley CA. The peripheral benzodiazepine receptor (Translocator protein 18kDa) in microglia: from pathology to imaging. Prog Neurobiol. 2006;80(6):308–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu G-J, Middleton RJ, Hatty CR, Kam WW-Y, Chan R, Pham T, et al. The 18 kDa translocator protein, microglia and neuroinflammation. Brain Pathol. 2014;24(6):631–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapère J-J, Lindemann P, et al. Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci. 2006;27(8):402–9. http://www.sciencedirect.com/science/article/pii/S0165614706001532.

    Article  CAS  PubMed  Google Scholar 

  56. Chen M-K, Guilarte TR. Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair. Pharmacol Ther. 2008;118(1):1–17. https://www.sciencedirect.com/science/article/pii/S0163725808000168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Costa B, Da Pozzo E, Martini C. 18-kDa translocator protein association complexes in the brain: from structure to function. Biochem Pharmacol. 2020;177:114015. https://www.sciencedirect.com/science/article/pii/S0006295220302434.

    Article  CAS  PubMed  Google Scholar 

  58. Nutma E, Ceyzériat K, Amor S, Tsartsalis S, Millet P, Owen DR, et al. Cellular sources of TSPO expression in healthy and diseased brain. Eur J Nucl Med Mol Imaging. 2021;49:146. https://doi.org/10.1007/s00259-020-05166-2.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Gulyás B, Makkai B, Kása P, Gulya K, Bakota L, Várszegi S, et al. A comparative autoradiography study in post mortem whole hemisphere human brain slices taken from Alzheimer patients and age-matched controls using two radiolabelled DAA1106 analogues with high affinity to the peripheral benzodiazepine receptor (PBR) syst. Neurochem Int. 2009;54(1):28–36. https://www.sciencedirect.com/science/article/pii/S0197018608001629.

    Article  PubMed  Google Scholar 

  60. Weissman BA, Bolger GT, Isaac L, Paul SM, Skolnick P. Characterization of the binding of [3H]Ro 5-4864, a convulsant benzodiazepine, to guinea pig brain. J Neurochem. 1984;42(4):969–75.

    Article  CAS  PubMed  Google Scholar 

  61. Gavish M, Bachman I, Shoukrun R, Katz Y, Veenman L, Weisinger G, et al. Enigma of the peripheral benzodiazepine receptor. Pharmacol Rev. 1999;51(4):629–50.

    CAS  PubMed  Google Scholar 

  62. Stephenson DT, Schober DA, Smalstig EB, Mincy RE, Gehlert DR, Clemens JA. Peripheral benzodiazepine receptors are colocalized with activated microglia following transient global forebrain ischemia in the rat. J Neurosci. 1995;15(7 Pt 2):5263–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Banati RB. Visualising microglial activation in vivo. Glia. 2002;40(2):206–17.

    Article  PubMed  Google Scholar 

  64. Kuhlmann AC, Guilarte TR. Cellular and subcellular localization of peripheral benzodiazepine receptors after trimethyltin neurotoxicity. J Neurochem. 2000;74(4):1694–704.

    Article  CAS  PubMed  Google Scholar 

  65. Venneti S, Wang G, Nguyen J, Wiley CA. The positron emission tomography ligand DAA1106 binds with high affinity to activated microglia in human neurological disorders. J Neuropathol Exp Neurol. 2008;67(10):1001–10.

    Article  PubMed  Google Scholar 

  66. Cosenza-Nashat M, Zhao M-L, Suh H-S, Morgan J, Natividad R, Morgello S, et al. Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain. Neuropathol Appl Neurobiol. 2009;35(3):306–28. https://doi.org/10.1111/j.1365-2990.2008.01006.x.

    Article  CAS  PubMed  Google Scholar 

  67. Lavisse S, Guillermier M, Hérard A-S, Petit F, Delahaye M, Van Camp N, et al. Reactive astrocytes overexpress TSPO and are detected by TSPO positron emission tomography imaging. J Neurosci. 2012;32(32):10809–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vivash L, O’Brien TJ. Imaging microglial activation with TSPO PET: lighting up neurologic diseases? J Nucl Med. 2016;57(2):165–8.

    Article  CAS  PubMed  Google Scholar 

  69. Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE, et al. In-vivo measurement of activated microglia in dementia. Lancet. 2001;358(9280):461–7. http://www.sciencedirect.com/science/article/pii/S0140673601056252.

    Article  CAS  PubMed  Google Scholar 

  70. Pavese N, Gerhard A, Tai YF, Ho AK, Turkheimer F, Barker RA, et al. Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology. 2006;66(11):1638–43.

    Article  CAS  PubMed  Google Scholar 

  71. Politis M, Giannetti P, Su P, Turkheimer F, Keihaninejad S, Wu K, et al. Increased PK11195 PET binding in the cortex of patients with MS correlates with disability. Neurology. 2012;79(6):523–30.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Gerhard A, Neumaier B, Elitok E, Glatting G, Ries V, Tomczak R, et al. In vivo imaging of activated microglia using [11 C] PK11195 and positron emission tomography in patients after ischemic stroke. Neuroreport. 2000;11(13):2957–60.

    Article  CAS  PubMed  Google Scholar 

  73. Ching ASC, Kuhnast B, Damont A, Roeda D, Tavitian B, Dollé F. Current paradigm of the 18-kDa translocator protein (TSPO) as a molecular target for PET imaging in neuroinflammation and neurodegenerative diseases. Insights Imaging. 2012;3(1):111–9.

    Article  PubMed  Google Scholar 

  74. Lockhart A, Davis B, Matthews JC, Rahmoune H, Hong G, Gee A, et al. The peripheral benzodiazepine receptor ligand PK11195 binds with high affinity to the acute phase reactant alpha1-acid glycoprotein: implications for the use of the ligand as a CNS inflammatory marker. Nucl Med Biol. 2003;30(2):199–206.

    Article  CAS  PubMed  Google Scholar 

  75. Fujita M, Imaizumi M, Zoghbi SS, Fujimura Y, Farris AG, Suhara T, et al. Kinetic analysis in healthy humans of a novel positron emission tomography radioligand to image the peripheral benzodiazepine receptor, a potential biomarker for inflammation. NeuroImage. 2008;40(1):43–52. https://www.sciencedirect.com/science/article/pii/S1053811907010488.

    Article  PubMed  Google Scholar 

  76. Kreisl WC, Fujita M, Fujimura Y, Kimura N, Jenko KJ, Kannan P, et al. Comparison of [11C]-(R)-PK 11195 and [11C]PBR28, two radioligands for translocator protein (18 kDa) in human and monkey: implications for positron emission tomographic imaging of this inflammation biomarker. NeuroImage. 2010;49(4):2924–32. https://www.sciencedirect.com/science/article/pii/S1053811909012427.

    Article  CAS  PubMed  Google Scholar 

  77. Chauveau F, Van Camp N, Dollé F, Kuhnast B, Hinnen F, Damont A, et al. Comparative evaluation of the translocator protein radioligands 11C-DPA-713, 18F-DPA-714, and 11C-PK11195 in a rat model of acute neuroinflammation. J Nucl Med. 2009;50(3):468–76. http://jnm.snmjournals.org/cgi/content/short/50/3/468. Accessed 15 Mar 2020.

    Article  CAS  PubMed  Google Scholar 

  78. Yokokura M, Terada T, Bunai T, Nakaizumi K, Takebayashi K, Iwata Y, et al. Depiction of microglial activation in aging and dementia: positron emission tomography with [(11)C]DPA713 versus [(11)C](R)PK11195. J Cereb Blood Flow Metab. 2017;37(3):877–89.

    Article  CAS  PubMed  Google Scholar 

  79. Yasuno F, Ota M, Kosaka J, Ito H, Higuchi M, Doronbekov TK, et al. Increased binding of peripheral benzodiazepine receptor in Alzheimer’s disease measured by positron emission tomography with [11C]DAA1106. Biol Psychiatry. 2008;64(10):835–41. http://www.sciencedirect.com/science/article/pii/S000632230800499X.

    Article  CAS  PubMed  Google Scholar 

  80. Chauveau F, Boutin H, Van Camp N, Dollé F, Tavitian B. Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers. Eur J Nucl Med Mol Imaging. 2008;35(12):2304–19. https://doi.org/10.1007/s00259-008-0908-9.

    Article  PubMed  Google Scholar 

  81. Fujimura Y, Ikoma Y, Yasuno F, Suhara T, Ota M, Matsumoto R, et al. Quantitative analyses of 18F-FEDAA1106 binding to peripheral benzodiazepine receptors in living human brain. J Nucl Med. 2006;47(1):43–50.

    CAS  PubMed  Google Scholar 

  82. Varrone A, Mattsson P, Forsberg A, Takano A, Nag S, Gulyás B, et al. In vivo imaging of the 18-kDa translocator protein (TSPO) with [18F]FEDAA1106 and PET does not show increased binding in Alzheimer’s disease patients. Eur J Nucl Med Mol Imaging. 2013;40(6):921–31. https://doi.org/10.1007/s00259-013-2359-1.

    Article  CAS  PubMed  Google Scholar 

  83. Varrone A, Oikonen V, Forsberg A, Joutsa J, Takano A, Solin O, et al. Positron emission tomography imaging of the 18-kDa translocator protein (TSPO) with [18F]FEMPA in Alzheimer’s disease patients and control subjects. Eur J Nucl Med Mol Imaging. 2015;42(3):438–46. https://doi.org/10.1007/s00259-014-2955-8.

    Article  PubMed  Google Scholar 

  84. Rusjan PM, Wilson AA, Bloomfield PM, Vitcu I, Meyer JH, Houle S, et al. Quantitation of translocator protein binding in human brain with the novel radioligand [18F]-FEPPA and positron emission tomography. J Cereb Blood Flow Metab. 2011;31(8):1807–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gulyás B, Tóth M, Schain M, Airaksinen A, Vas Á, Kostulas K, et al. Evolution of microglial activation in ischaemic core and peri-infarct regions after stroke: a PET study with the TSPO molecular imaging biomarker [11C]vinpocetine. J Neurol Sci. 2012;320(1):110–7. https://doi.org/10.1016/j.jns.2012.06.026.

    Article  CAS  PubMed  Google Scholar 

  86. Gulyás B, Vas A, Tóth M, Takano A, Varrone A, Cselényi Z, et al. Age and disease related changes in the translocator protein (TSPO) system in the human brain: positron emission tomography measurements with [11C]vinpocetine. NeuroImage. 2011;56(3):1111–21.

    Article  PubMed  Google Scholar 

  87. Owen DR, Yeo AJ, Gunn RN, Song K, Wadsworth G, Lewis A, et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab. 2012;32(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  88. Guo Q, Colasanti A, Owen DR, Onega M, Kamalakaran A, Bennacef I, et al. Quantification of the specific translocator protein signal of 18F-PBR111 in healthy humans: a genetic polymorphism effect on in vivo binding. J Nucl Med. 2013;54(11):1915–23.

    Article  CAS  PubMed  Google Scholar 

  89. Kreisl WC, Jenko KJ, Hines CS, Lyoo CH, Corona W, Morse CL, et al. A genetic polymorphism for translocator protein 18 kDa affects both in vitro and in vivo radioligand binding in human brain to this putative biomarker of neuroinflammation. J Cereb Blood Flow Metab. 2013;33(1):53–8.

    Article  CAS  PubMed  Google Scholar 

  90. Owen DR, Howell OW, Tang S-P, Wells LA, Bennacef I, Bergstrom M, et al. Two binding sites for [3H]PBR28 in human brain: implications for TSPO PET imaging of neuroinflammation. J Cereb Blood Flow Metab. 2010;30(9):1608–18.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Knezevic D, Mizrahi R. Molecular imaging of neuroinflammation in Alzheimer’s disease and mild cognitive impairment. Prog Neuro-Psychopharmacol Biol Psychiatry. 2018;80:123–31. https://doi.org/10.1016/j.pnpbp.2017.05.007.

    Article  CAS  Google Scholar 

  92. Fan Z, Harold D, Pasqualetti G, Williams J, Brooks DJ, Edison P. Can Studies of neuroinflammation in a TSPO genetic subgroup (HAB or MAB) be applied to the entire AD cohort? J Nucl Med. 2015;56(5):707–13.

    Article  CAS  PubMed  Google Scholar 

  93. Hamelin L, Lagarde J, Dorothée G, Leroy C, Labit M, Comley RA, et al. Early and protective microglial activation in Alzheimer’s disease: a prospective study using 18 F-DPA-714 PET imaging. Brain. 2016;139(4):1252–64. https://doi.org/10.1093/brain/aww017.

    Article  PubMed  Google Scholar 

  94. Srinivasan K, Friedman BA, Larson JL, Lauffer BE, Goldstein LD, Appling LL, et al. Untangling the brain’s neuroinflammatory and neurodegenerative transcriptional responses. Nat Commun. 2016;7:11295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Amenta PS, Jallo JI, Tuma RF, Hooper DC, Elliott MB. Cannabinoid receptor type-2 stimulation, blockade, and deletion alter the vascular inflammatory responses to traumatic brain injury. J Neuroinflammation. 2014;11(1):191. https://doi.org/10.1186/s12974-014-0191-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ahmad R, Postnov A, Bormans G, Versijpt J, Vandenbulcke M, Van Laere K. Decreased in vivo availability of the cannabinoid type 2 receptor in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2016;43(12):2219–27.

    Article  CAS  PubMed  Google Scholar 

  97. Slavik R, Müller Herde A, Haider A, Krämer SD, Weber M, Schibli R, et al. Discovery of a fluorinated 4-oxo-quinoline derivative as a potential positron emission tomography radiotracer for imaging cannabinoid receptor type 2. J Neurochem. 2016;138(6):874–86.

    Article  CAS  PubMed  Google Scholar 

  98. Shukuri M, Takashima-Hirano M, Tokuda K, Takashima T, Matsumura K, Inoue O, et al. In vivo expression of cyclooxygenase-1 in activated microglia and macrophages during neuroinflammation visualized by PET with 11C- ketoprofen methyl ester. J Nucl Med. 2011;52(7):1094–101.

    Article  PubMed  Google Scholar 

  99. Bannwarth B, Netter P, Pourel J, Royer RJ, Gaucher A. Clinical pharmacokinetics of nonsteroidal anti-inflammatory drugs in the cerebrospinal fluid. Biomed Pharmacother. 1989;43(2):121–6. https://www.sciencedirect.com/science/article/pii/0753332289901406.

    Article  CAS  PubMed  Google Scholar 

  100. Ohnishi A, Senda M, Yamane T, Sasaki M, Mikami T, Nishio T, et al. Human whole-body biodistribution and dosimetry of a new PET tracer, [(11)C]ketoprofen methyl ester, for imagings of neuroinflammation. Nucl Med Biol. 2014;41(7):594–9.

    Article  CAS  PubMed  Google Scholar 

  101. Ohnishi A, Senda M, Yamane T, Mikami T, Nishida H, Nishio T, et al. Exploratory human PET study of the effectiveness of (11)C-ketoprofen methyl ester, a potential biomarker of neuroinflammatory processes in Alzheimer’s disease. Nucl Med Biol. 2016;43(7):438–44.

    Article  CAS  PubMed  Google Scholar 

  102. Albrecht DS, Granziera C, Hooker JM, Loggia ML. In vivo imaging of human neuroinflammation. ACS Chem Neurosci. 2016;7(4):470–83.

    Article  CAS  PubMed  Google Scholar 

  103. Wang HY, Lee DH, D’Andrea MR, Peterson PA, Shank RP, Reitz AB. beta-Amyloid(1-42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer’s disease pathology. J Biol Chem. 2000;275(8):5626–32.

    Article  CAS  PubMed  Google Scholar 

  104. Kalkman HO, Feuerbach D. Modulatory effects of α7 nAChRs on the immune system and its relevance for CNS disorders. Cell Mol Life Sci. 2016;73(13):2511–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hillmer AT, Li S, Zheng M-Q, Scheunemann M, Lin S-F, Nabulsi N, et al. PET imaging of α(7) nicotinic acetylcholine receptors: a comparative study of [(18)F]ASEM and [(18)F]DBT-10 in nonhuman primates, and further evaluation of [(18)F]ASEM in humans. Eur J Nucl Med Mol Imaging. 2017;44(6):1042–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gourine AV, Kasparov S. Astrocytes as brain interoceptors. Exp Physiol. 2011;96(4):411–6.

    Article  CAS  PubMed  Google Scholar 

  107. De Strooper B, Karran E. The cellular phase of Alzheimer’s disease. Cell. 2016;164(4):603–15.

    Article  PubMed  Google Scholar 

  108. Hirvonen J, Kailajärvi M, Haltia T, Koskimies S, Någren K, Virsu P, et al. Assessment of MAO-B occupancy in the brain with PET and [11C]-L-deprenyl-D2: a dose-finding study with a novel MAO-B inhibitor, EVT 301. Clin Pharmacol Ther. 2009;85(5):506–12.

    Article  CAS  PubMed  Google Scholar 

  109. Sturm S, Forsberg A, Nave S, Stenkrona P, Seneca N, Varrone A, et al. Positron emission tomography measurement of brain MAO-B inhibition in patients with Alzheimer’s disease and elderly controls after oral administration of sembragiline. Eur J Nucl Med Mol Imaging. 2017;44(3):382–91.

    Article  CAS  PubMed  Google Scholar 

  110. Gulyás B, Pavlova E, Kása P, Gulya K, Bakota L, Várszegi S, et al. Activated MAO-B in the brain of Alzheimer patients, demonstrated by [11C]-L-deprenyl using whole hemisphere autoradiography. Neurochem Int. 2011;58(1):60–8.

    Article  PubMed  Google Scholar 

  111. Tong J, Rathitharan G, Meyer JH, Furukawa Y, Ang L-C, Boileau I, et al. Brain monoamine oxidase B and A in human parkinsonian dopamine deficiency disorders. Brain. 2017;140(9):2460–74.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Rodriguez-Vieitez E, Carter SF, Chiotis K, Saint-Aubert L, Leuzy A, Schöll M, et al. Comparison of early-phase 11C-deuterium-l-deprenyl and 11C-pittsburgh compound B PET for assessing brain perfusion in Alzheimer disease. J Nucl Med. 2016;57(7):1071–7.

    Article  CAS  PubMed  Google Scholar 

  113. Santillo AF, Gambini JP, Lannfelt L, Långström B, Ulla-Marja L, Kilander L, et al. In vivo imaging of astrocytosis in Alzheimer’s disease: an 11C-L-deuteriodeprenyl and PIB PET study. Eur J Nucl Med Mol Imaging. 2011;38(12):2202–8.

    Article  PubMed  Google Scholar 

  114. Carter SF, Schöll M, Almkvist O, Wall A, Engler H, Långström B, et al. Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C-deuterium-L-deprenyl: a multitracer PET paradigm combining 11C-pittsburgh compound B and 18F-FDG. J Nucl Med. 2012;53(1):37–46. http://jnm.snmjournals.org/content/53/1/37.abstract.

    Article  CAS  PubMed  Google Scholar 

  115. Rodriguez-Vieitez E, Saint-Aubert L, Carter SF, Almkvist O, Farid K, Schöll M, et al. Diverging longitudinal changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer’s disease. Brain. 2016;139(3):922–36.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Zimmer ER, Parent MJ, Souza DG, Leuzy A, Lecrux C, Kim H-I, et al. [(18)F]FDG PET signal is driven by astroglial glutamate transport. Nat Neurosci. 2017;20(3):393–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Magistretti PJ, Pellerin L. The contribution of astrocytes to the 18F-2-deoxyglucose signal in PET activation studies. Mol Psychiatry. 1996;1(6):445–52.

    CAS  PubMed  Google Scholar 

  118. Pellerin L, Pellegri G, Bittar PG, Charnay Y, Bouras C, Martin JL, et al. Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Dev Neurosci. 1998;20(4–5):291–9.

    Article  CAS  PubMed  Google Scholar 

  119. Carter SF, Chiotis K, Nordberg A, Rodriguez-Vieitez E. Longitudinal association between astrocyte function and glucose metabolism in autosomal dominant Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2019;46(2):348–56.

    Article  CAS  PubMed  Google Scholar 

  120. Acosta C, Anderson HD, Anderson CM. Astrocyte dysfunction in Alzheimer disease. J Neurosci Res. 2017;95(12):2430–47.

    Article  CAS  PubMed  Google Scholar 

  121. Hefendehl JK, LeDue J, Ko RWY, Mahler J, Murphy TH, MacVicar BA. Mapping synaptic glutamate transporter dysfunction in vivo to regions surrounding Aβ plaques by iGluSnFR two-photon imaging. Nat Commun. 2016;7:13441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Olabarria M, Noristani HN, Verkhratsky A, Rodríguez JJ. Age-dependent decrease in glutamine synthetase expression in the hippocampal astroglia of the triple transgenic Alzheimer’s disease mouse model: mechanism for deficient glutamatergic transmission? Mol Neurodegener. 2011;6:55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Pascual JM, Van Heertum RL, Wang D, Engelstad K, De Vivo DC. Imaging the metabolic footprint of Glut1 deficiency on the brain. Ann Neurol. 2002;52(4):458–64.

    Article  CAS  PubMed  Google Scholar 

  124. Vlassenko AG, Gordon BA, Goyal MS, Su Y, Blazey TM, Durbin TJ, et al. Aerobic glycolysis and tau deposition in preclinical Alzheimer’s disease. Neurobiol Aging. 2018;67:95–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Mishina M, Ishiwata K, Naganawa M, Kimura Y, Kitamura S, Suzuki M, et al. Adenosine A(2A) receptors measured with [C]TMSX PET in the striata of Parkinson’s disease patients. PLoS One. 2011;6(2):e17338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Rissanen E, Virta JR, Paavilainen T, Tuisku J, Helin S, Luoto P, et al. Adenosine A2A receptors in secondary progressive multiple sclerosis: a [(11)C]TMSX brain PET study. J Cereb Blood Flow Metab. 2013;33(9):1394–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Versijpt JJ, Dumont F, Van Laere KJ, Decoo D, Santens P, Audenaert K, et al. Assessment of neuroinflammation and microglial activation in Alzheimer’s disease with radiolabelled PK11195 and single photon emission computed tomography. A pilot study. Eur Neurol. 2003;50(1):39–47.

    Article  CAS  PubMed  Google Scholar 

  128. Edison P, Archer HA, Gerhard A, Hinz R, Pavese N, Turkheimer FE, et al. Microglia, amyloid, and cognition in Alzheimer’s disease: an [11C](R)PK11195-PET and [11C]PIB-PET study. Neurobiol Dis. 2008;32(3):412–9. http://www.sciencedirect.com/science/article/pii/S0969996108001885.

    Article  CAS  PubMed  Google Scholar 

  129. Okello A, Edison P, Archer HA, Turkheimer FE, Kennedy J, Bullock R, et al. Microglial activation and amyloid deposition in mild cognitive impairment: a PET study. Neurology. 2009;72(1):56–62. https://pubmed.ncbi.nlm.nih.gov/19122031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Groom GN, Junck L, Foster NL, Frey KA, Kuhl DE. PET of peripheral benzodiazepine binding sites in the microgliosis of Alzheimer’s disease. J Nucl Med. 1995;36(12):2207–10.

    CAS  PubMed  Google Scholar 

  131. Wiley CA, Lopresti BJ, Venneti S, Price J, Klunk WE, DeKosky ST, et al. Carbon 11-labeled pittsburgh compound B and carbon 11-labeled (R)-PK11195 positron emission tomographic imaging in Alzheimer disease. Arch Neurol. 2009;66(1):60–7.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Yokokura M, Mori N, Yagi S, Yoshikawa E, Kikuchi M, Yoshihara Y, et al. In vivo changes in microglial activation and amyloid deposits in brain regions with hypometabolism in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2011;38(2):343–51. https://doi.org/10.1007/s00259-010-1612-0.

    Article  CAS  PubMed  Google Scholar 

  133. Schuitemaker A, Kropholler MA, Boellaard R, van der Flier WM, Kloet RW, van der Doef TF, et al. Microglial activation in Alzheimer’s disease: an (R)-[11C]PK11195 positron emission tomography study. Neurobiol Aging. 2013;34(1):128–36. http://www.sciencedirect.com/science/article/pii/S0197458012002722.

    Article  CAS  PubMed  Google Scholar 

  134. Fan Z, Brooks DJ, Okello A, Edison P. An early and late peak in microglial activation in Alzheimer’s disease trajectory. Brain. 2017;140(3):792–803.

    PubMed  PubMed Central  Google Scholar 

  135. Kreisl WC, Lyoo CH, McGwier M, Snow J, Jenko KJ, Kimura N, et al. In vivo radioligand binding to translocator protein correlates with severity of Alzheimer’s disease. Brain. 2013;136(7):2228–38. https://doi.org/10.1093/brain/awt145.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Lyoo CH, Ikawa M, Liow J-S, Zoghbi SS, Morse CL, Pike VW, et al. Cerebellum can serve as a pseudo-reference region in Alzheimer disease to detect neuroinflammation measured with PET radioligand binding to translocator protein. J Nucl Med. 2015;56(5):701–6. http://www.ncbi.nlm.nih.gov/pubmed/25766898. Accessed 15 Mar 2020.

    Article  CAS  PubMed  Google Scholar 

  137. Kreisl WC, Lyoo CH, Liow J-S, Wei M, Snow J, Page E, et al. (11)C-PBR28 binding to translocator protein increases with progression of Alzheimer’s disease. Neurobiol Aging. 2016;44:53–61. https://pubmed.ncbi.nlm.nih.gov/27318133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Suridjan I, Pollock BG, Verhoeff NPLG, Voineskos AN, Chow T, Rusjan PM, et al. In-vivo imaging of grey and white matter neuroinflammation in Alzheimer’s disease: a positron emission tomography study with a novel radioligand, [18F]-FEPPA. Mol Psychiatry. 2015;20(12):1579–87. https://doi.org/10.1038/mp.2015.1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kreisl WC, Lyoo CH, Liow J-S, Snow J, Page E, Jenko KJ, et al. Distinct patterns of increased translocator protein in posterior cortical atrophy and amnestic Alzheimer’s disease. Neurobiol Aging. 2017;51:132–40. https://www.sciencedirect.com/science/article/pii/S0197458016303128.

    Article  CAS  PubMed  Google Scholar 

  140. Cerami C, Crespi C, Della Rosa PA, Dodich A, Marcone A, Magnani G, et al. Brain changes within the visuo-spatial attentional network in posterior cortical atrophy. J Alzheimers Dis. 2015;43:385–95.

    Article  PubMed  Google Scholar 

  141. McGeer PL, Itagaki S, Tago H, McGeer EG. Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci Lett. 1987;79(1–2):195–200.

    Article  CAS  PubMed  Google Scholar 

  142. Tooyama I, Kimura H, Akiyama H, McGeer PL. Reactive microglia express class I and class II major histocompatibility complex antigens in Alzheimer’s disease. Brain Res. 1990;523(2):273–80.

    Article  CAS  PubMed  Google Scholar 

  143. McGeer PL, McGeer EG. The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy. Acta Neuropathol. 2013;126(4):479–97. https://doi.org/10.1007/s00401-013-1177-7.

    Article  CAS  PubMed  Google Scholar 

  144. Petersen RC, Stevens JC, Ganguli M, Tangalos EG, Cummings JL, DeKosky ST. Practice parameter: early detection of dementia: mild cognitive impairment. Neurology. 2001;56(9):1133–42. http://n.neurology.org/content/56/9/1133.abstract.

    Article  CAS  PubMed  Google Scholar 

  145. Small GW, Kepe V, Ercoli LM, Siddarth P, Bookheimer SY, Miller KJ, et al. PET of brain amyloid and tau in mild cognitive impairment. N Engl J Med. 2006;355(25):2652–63. https://doi.org/10.1056/NEJMoa054625.

    Article  CAS  PubMed  Google Scholar 

  146. Petersen RC. Clinical practice mild cognitive impairment. N Engl J Med. 2011;364:2227–61.

    Article  CAS  PubMed  Google Scholar 

  147. Gauthier S, Reisberg B, Zaudig M, Petersen RC, Ritchie K, Broich K, et al. Mild cognitive impairment. Lancet. 2006;367(9518):1262–70. https://www.sciencedirect.com/science/article/pii/S0140673606685425.

    Article  PubMed  Google Scholar 

  148. Reinlieb M, Ercoli LM, Siddarth P, St Cyr N, Lavretsky H. The patterns of cognitive and functional impairment in amnestic and non-amnestic mild cognitive impairment in geriatric depression. Am J Geriatr Psychiatry. 2014;22(12):1487–95. https://www.sciencedirect.com/science/article/pii/S1064748113003989.

    Article  PubMed  Google Scholar 

  149. Yasuno F, Kosaka J, Ota M, Higuchi M, Ito H, Fujimura Y, et al. Increased binding of peripheral benzodiazepine receptor in mild cognitive impairment–dementia converters measured by positron emission tomography with [11C]DAA1106. Psychiatry Res Neuroimaging. 2012;203(1):67–74. http://www.sciencedirect.com/science/article/pii/S0925492711003064.

    Article  CAS  Google Scholar 

  150. Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. 2021;17(3):157–72. http://www.nature.com/articles/s41582-020-00435-y.

    Article  PubMed  Google Scholar 

  151. Rogers J, Kirby LC, Hempelman SR, Berry DL, McGeer PL, Kaszniak AW, et al. Clinical trial of indomethacin in Alzheimer’s disease. Neurology. 1993;43(8):1609. http://n.neurology.org/content/43/8/1609.abstract.

    Article  CAS  PubMed  Google Scholar 

  152. de Jong D, Jansen R, Hoefnagels W, Jellesma-Eggenkamp M, Verbeek M, Borm G, et al. No effect of one-year treatment with indomethacin on Alzheimer’s disease progression: a randomized controlled trial. PLoS One. 2008;3(1):e1475. https://pubmed.ncbi.nlm.nih.gov/18213383.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Thal LJ, Ferris SH, Kirby L, Block GA, Lines CR, Yuen E, et al. A Randomized, double-blind, study of rofecoxib in patients with mild cognitive impairment. Neuropsychopharmacology. 2005;30(6):1204–15. https://doi.org/10.1038/sj.npp.1300690.

    Article  CAS  PubMed  Google Scholar 

  154. Aisen PS, Schafer KA, Grundman M, Pfeiffer E, Sano M, Davis KL, et al. Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA. 2003;289(21):2819–26. https://doi.org/10.1001/jama.289.21.2819.

    Article  CAS  PubMed  Google Scholar 

  155. Scharf S, Mander A, Ugoni A, Vajda F, Christophidis N. A double-blind, placebo-controlled trial of diclofenac/misoprostol in Alzheimer’s disease. Neurology. 1999;53(1):197. http://n.neurology.org/content/53/1/197.abstract.

    Article  CAS  PubMed  Google Scholar 

  156. Aisen PS, Davis KL, Berg JD, Schafer K, Campbell K, Thomas RG, et al. A randomized controlled trial of prednisone in Alzheimer’s disease. Neurology. 2000;54(3):588. http://n.neurology.org/content/54/3/588.abstract.

    Article  CAS  PubMed  Google Scholar 

  157. AD2000 Collaborative Group. Aspirin in Alzheimer’s disease (AD2000): a randomised open-label trial. Lancet Neurol. 2008;7(1):41–9. http://www.sciencedirect.com/science/article/pii/S1474442207702934.

    Article  Google Scholar 

  158. ADAPT Research Group. Alzheimer’s disease anti-inflammatory prevention trial: design, methods, and baseline results. Alzheimers Dement. 2009;5(2):93–104. http://www.sciencedirect.com/science/article/pii/S1552526008029841.

    Article  PubMed Central  Google Scholar 

  159. Breitner JC, Baker LD, Montine TJ, Meinert CL, Lyketsos CG, Ashe KH, et al. Extended results of the Alzheimer’s disease anti-inflammatory prevention trial. Alzheimers Dement. 2011;7(4):402–11. https://doi.org/10.1016/j.jalz.2010.12.014.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Leoutsakos J-MS, Han D, Mielke MM, Forrester SN, Tschanz JT, Corcoran CD, et al. Effects of general medical health on Alzheimer’s progression: the Cache County Dementia Progression Study. Int Psychogeriatr. 2012;24(10):1561–70. https://pubmed.ncbi.nlm.nih.gov/22687143.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Hanzel CE, Pichet-Binette A, Pimentel LSB, Iulita MF, Allard S, Ducatenzeiler A, et al. Neuronal driven pre-plaque inflammation in a transgenic rat model of Alzheimer’s disease. Neurobiol Aging. 2014;35(10):2249–62.

    Article  CAS  PubMed  Google Scholar 

  162. Philippens IH, Ormel PR, Baarends G, Johansson M, Remarque EJ, Doverskog M. Acceleration of amyloidosis by inflammation in the amyloid-beta marmoset monkey model of Alzheimer’s disease. J Alzheimers Dis. 2017;55(1):101–13.

    Article  CAS  PubMed  Google Scholar 

  163. Fotuhi M, Zandi PP, Hayden KM, Khachaturian AS, Szekely CA, Wengreen H, et al. Better cognitive performance in elderly taking antioxidant vitamins E and C supplements in combination with nonsteroidal anti-inflammatory drugs: the Cache County Study. Alzheimers Dement. 2008;4(3):223–7. https://doi.org/10.1016/j.jalz.2008.01.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Szekely CA, Breitner JCS, Fitzpatrick AL, Rea TD, Psaty BM, Kuller LH, et al. NSAID use and dementia risk in the Cardiovascular Health Study: role of APOE and NSAID type. Neurology. 2008;70(1):17–24. https://pubmed.ncbi.nlm.nih.gov/18003940.

    Article  CAS  PubMed  Google Scholar 

  165. Sweet RA, Seltman H, Emanuel JE, Lopez OL, Becker JT, Bis JC, et al. Effect of Alzheimer’s disease risk genes on trajectories of cognitive function in the cardiovascular health study. Am J Psychiatry. 2012;169(9):954–62. https://doi.org/10.1176/appi.ajp.2012.11121815.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Pasqualetti P, Bonomini C, Dal Forno G, Paulon L, Sinforiani E, Marra C, et al. A randomized controlled study on effects of ibuprofen on cognitive progression of Alzheimer’s disease. Aging Clin Exp Res. 2009;21(2):102–10. https://doi.org/10.1007/BF03325217.

    Article  CAS  PubMed  Google Scholar 

  167. Bradburn S, Murgatroyd C, Ray N. Neuroinflammation in mild cognitive impairment and Alzheimer’s disease: a meta-analysis. Ageing Res Rev. 2019;50:1–8.

    Article  CAS  PubMed  Google Scholar 

  168. Yaqub M, Van Berckel BN, Schuitemaker A, Hinz R, Turkheimer FE, Tomasi G, et al. Optimization of supervised cluster analysis for extracting reference tissue input curves in (R)-[11C] PK11195 brain PET studies. J Cereb Blood Flow Metab. 2012;32(8):1600–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Spangenberg EE, Green KN. Inflammation in Alzheimer’s disease: lessons learned from microglia-depletion models. Brain Behav Immun. 2017;61:1–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Ku Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, J., Kim, YK. (2023). Molecular Imaging of Neuroinflammation in Alzheimer’s Disease and Mild Cognitive Impairment. In: Kim, YK. (eds) Neuroinflammation, Gut-Brain Axis and Immunity in Neuropsychiatric Disorders. Advances in Experimental Medicine and Biology, vol 1411. Springer, Singapore. https://doi.org/10.1007/978-981-19-7376-5_14

Download citation

Publish with us

Policies and ethics