Skip to main content

Online Databases of Genome Editing in Cardiovascular and Metabolic Diseases

  • Chapter
  • First Online:
Genome Editing in Cardiovascular and Metabolic Diseases

Abstract

Metabolic and cardiovascular diseases are world-concerning pathologies that affect an important percentage of the population. Nowadays, advances in the genetic background of these diseases allow new approaches to models and therapies, as well as different gene edition trials. Furthermore, technological improvements in gene editing go along with the development of new online and biocomputational tools that provide us alternative ways to explore pathologies. In this chapter, historical gene editing methods are discussed but focusing on CRISPR-Cas system in detail and also online resources available to perform these types of experiments. Here, the different strategies for gene editing and their online tools are gathered, putting the light on its application in the study and treatment of cardiovascular and metabolic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pierpont ME, Brueckner M, Chung WK, Garg V, Lacro RV, McGuire AL, Mital S, Priest JR, Pu WT, Roberts A, Ware SM, Gelb BD, Russell MW, American Heart Association Council on Cardiovascular Disease in the Young; Council on Cardiovascular and Stroke Nursing; and Council on Genomic and Precision Medicine (2018) Genetic basis for congenital heart disease: revisited: A scientific statement from the American Heart Association. Circulation 138(21):e653–e711

    Article  PubMed  PubMed Central  Google Scholar 

  2. Marian AJ, Asatryan B, Wehrens XHT (2020) Genetic basis and molecular biology of cardiac arrhythmias in cardiomyopathies. Cardiovasc Res 116(9):1600–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tobita T, Nomura S, Fujita T, Morita H, Asano Y, Onoue K, Ito M, Imai Y, Suzuki A, Ko T, Satoh M, Fujita K, Naito AT, Furutani Y, Toko H, Harada M, Amiya E, Hatano M, Takimoto E, Shiga T, Nakanishi T, Sakata Y, Ono M, Saito Y, Takashima S, Hagiwara N, Aburatani H, Komuro I (2018) Genetic basis of cardiomyopathy and the genotypes involved in prognosis and left ventricular reverse remodeling. Sci Rep 8(1):1998

    Article  PubMed  PubMed Central  Google Scholar 

  4. Krittanawong C, Sun T, Herzog E (2017) Big data and genome editing technology: a new paradigm of cardiovascular genomics. Curr Cardiol Rev 13(4):301–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Takeda N, Komuro I (2019) Genetic basis of hereditary thoracic aortic aneurysms and dissections. J Cardiol 74(2):136–143

    Article  PubMed  Google Scholar 

  6. Maule G, Arosio D, Cereseto A (2020) Gene therapy for cystic fibrosis: progress and challenges of genome editing. Int J Mol Sci 21(11):3903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kreindler JL (2010) Cystic fibrosis: exploiting its genetic basis in the hunt for new therapies. J Clin Pharm Ther 125(2):219–229

    CAS  Google Scholar 

  8. Wan T, Ping Y (2020) Delivery of genome-editing biomacromolecules for treatment of lung genetic disorders. Adv Drug Deliv Rev 168:196–216

    Article  PubMed  Google Scholar 

  9. Pividori M, Schoettler N, Nicolae DL, Ober C, Im HK (2019) Shared and distinct genetic risk factors for childhood-onset and adult-onset asthma: genome-wide and transcriptome-wide studies. Lancet Respir Med 7(6):509–522

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kim D, Lee YS, Kim DH, Bae SC (2020) Lung cancer staging and associated genetic and epigenetic events. Mol Cells 43(1):1–9

    PubMed  PubMed Central  Google Scholar 

  11. Xu X, Ng B, Sim B, Radulescu CI, Yusof NABM, Goh WI, Lin S, Lim JSY, Cha Y, Kusko R (2020) pS421 huntingtin modulates mitochondrial phenotypes and confers neuroprotection in an HD hiPSC model. Cell Death Dis 11(9):1–12

    Article  Google Scholar 

  12. Ghosh R, Tabrizi SJ (2018) Clinical features of Huntington’s disease. Adv Exp Med Biol 1049:1–28

    Article  CAS  PubMed  Google Scholar 

  13. Ghosh R, Tabrizi SJ (2018) Huntington disease. Handb Clin Neurol 147:255–278

    Article  PubMed  Google Scholar 

  14. Mencacci NE, Carecchio M (2016) Recent advances in genetics of chorea. Curr Opin Neurol 29(4):486–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vermersch E, Jouve C, Hulot JS (2020) CRISPR/Cas9 gene-editing strategies in cardiovascular cells. Cardiovasc Res 116(5):894–907

    Article  CAS  PubMed  Google Scholar 

  16. Chow MT, Chang RYK, Chan H-K (2020) Inhalation delivery technology for genome-editing of respiratory diseases. Adv Drug Deliv Rev 168:217–228

    Article  PubMed  PubMed Central  Google Scholar 

  17. Xu X, Wan T, Xin H, Li D, Pan H, Wu J, Ping Y (2019) Delivery of CRISPR/Cas9 for therapeutic genome editing. J Gene Med 21(7):e3107

    Article  PubMed  Google Scholar 

  18. Carroll D (2017) Genome editing: past, present, and future. Yale J Biol Med 90(4):653–659

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kaur K, Tandon H, Gupta AK, Kumar M (2015) CrisprGE: a central hub of CRISPR/Cas-based genome editing. Database (Oxford) 2015:bav055

    Article  PubMed  Google Scholar 

  20. Sledzinski P, Nowaczyk M, Olejniczak M (2020) Computational tools and resources supporting CRISPR-Cas experiments. Cells 9(5):1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Makarova KS, Wolf YI, Koonin EV (2013) Comparative genomics of defense systems in archaea and bacteria. Nucleic Acids Res 41(8):4360–4377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang F, Wen Y, Guo X (2014) CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet 23(R1):R40–R46

    Article  CAS  PubMed  Google Scholar 

  23. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu X, Kriz AJ, Sharp PA (2014) Target specificity of the CRISPR-Cas9 system. Quant Biol 2(2):59–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Reddy P, Vilella F, Izpisua Belmonte JC, Simon C (2020) Use of customizable nucleases for gene editing and other novel applications. Genes (Basel) 11(9):976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Anzalone AV, Koblan LW, Liu DR (2020) Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 38(7):824–844

    Article  CAS  PubMed  Google Scholar 

  27. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Miles LA, Garippa RJ, Poirier JT (2016) Design, execution, and analysis of pooled in vitro CRISPR/Cas9 screens. FEBS J 283(17):3170–3180

    Article  CAS  PubMed  Google Scholar 

  29. Moon SB, Kim DY, Ko JH, Kim YS (2019) Recent advances in the CRISPR genome editing tool set. Exp Mol Med 51(11):1–11

    Article  CAS  PubMed  Google Scholar 

  30. Harrison PT, Hart S (2018) A beginner’s guide to gene editing. Exp Physiol 103(4):439–448

    Article  CAS  PubMed  Google Scholar 

  31. Alkhnbashi OS, Meier T, Mitrofanov A, Backofen R, Voss B (2020) CRISPR-Cas bioinformatics. Methods 172:3–11

    Article  CAS  PubMed  Google Scholar 

  32. Liu Z, Dong H, Cui Y, Cong L, Zhang D (2020) Application of different types of CRISPR/Cas-based systems in bacteria. Microb Cell Fact 19(1):172

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nishida K, Kondo A (2021) CRISPR-derived genome editing technologies for metabolic engineering. Metab Eng 63:141–147

    Article  CAS  PubMed  Google Scholar 

  34. Liu T, Pan S, Li Y, Peng N, She Q (2018) Type III CRISPR-Cas system: introduction and its application for genetic manipulations. Curr Issues Mol Biol 26:1–14

    Article  CAS  PubMed  Google Scholar 

  35. Koonin EV, Makarova KS, Zhang F (2017) Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37:67–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li B, Zeng C, Dong Y (2018) Design and assessment of engineered CRISPR-Cpf1 and its use for genome editing. Nat Protoc 13(5):899–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Burmistrz M, Krakowski K, Krawczyk-Balska A (2020) RNA-targeting CRISPR-Cas systems and their applications. Int J Mol Sci 21(3):1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Manghwar H, Li B, Ding X, Hussain A, Lindsey K, Zhang X, Jin S (2020) CRISPR/Cas systems in genome editing: methodologies and tools for sgRNA design, off-target evaluation, and strategies to mitigate off-target effects. Adv Sci (Weinh) 7(6):1902312

    Article  CAS  PubMed  Google Scholar 

  39. Zhang JH, Adikaram P, Pandey M, Genis A, Simonds WF (2016) Optimization of genome editing through CRISPR-Cas9 engineering. Bioengineered 7(3):166–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ma Y, Zhang L, Huang X (2014) Genome modification by CRISPR/Cas9. FEBS J 281(23):5186–5193

    Article  CAS  PubMed  Google Scholar 

  41. Fung K (2019) Detection of sickle cell disease-associated single nucleotide polymorphism using a graphene field effect transistor. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges. CMC Senior Theses. 2262. https://scholarship.claremont.edu/cmc_theses/2262

  42. Schaefer KA, Wu WH, Colgan DF, Tsang SH, Bassuk AG, Mahajan VB (2017) Unexpected mutations after CRISPR-Cas9 editing in vivo. Nat Methods 14(6):547–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang J, Zhang X, Cheng L, Luo Y (2020) An overview and metanalysis of machine and deep learning-based CRISPR gRNA design tools. RNA Biol 17(1):13–22

    Article  CAS  PubMed  Google Scholar 

  45. Wienert B, Wyman SK, Richardson CD, Yeh CD, Akcakaya P, Porritt MJ, Morlock M, Vu JT, Kazane KR, Watry HL, Judge LM, Conklin BR, Maresca M, Corn JE (2019) Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq. Science 364(6437):286–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Naito Y, Hino K, Bono H, Ui-Tei K (2015) CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31(7):1120–1123

    Article  CAS  PubMed  Google Scholar 

  47. Lee J, Jung MH, Jeong E, Lee JK (2019) Using Sniper-Cas9 to minimize off-target effects of CRISPR-Cas9 without the loss of on-target activity via directed evolution. J Vis Exp 144:doi:10.3791/59202

    Google Scholar 

  48. Yang L, Yang JL, Byrne S, Pan J, Church GM (2014) CRISPR/Cas9-directed genome editing of cultured cells. Curr Protoc Mol Biol 107:31.1.1–31.117

    Article  PubMed  Google Scholar 

  49. Guilinger JP, Thompson DB, Liu DR (2014) Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol 32(6):577–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hanna RE, Doench JG (2020) Design and analysis of CRISPR-Cas experiments. Nat Biotechnol 38(7):813–823

    Article  CAS  PubMed  Google Scholar 

  51. Kleinstiver BP, Sousa AA, Walton RT, Tak YE, Hsu JY, Clement K, Welch MM, Horng JE, Malagon-Lopez J, Scarfo I, Maus MV, Pinello L, Aryee MJ, Joung JK (2019) Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat Biotechnol 37(3):276–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xu X, Duan D, Chen SJ (2017) CRISPR-Cas9 cleavage efficiency correlates strongly with target-sgRNA folding stability: from physical mechanism to off-target assessment. Sci Rep 7(1):143

    Article  PubMed  PubMed Central  Google Scholar 

  53. Filippova J, Matveeva A, Zhuravlev E, Stepanov G (2019) Guide RNA modification as a way to improve CRISPR/Cas9-based genome-editing systems. Biochimie 167:49–60

    Article  CAS  PubMed  Google Scholar 

  54. Moon SB, Kim DY, Ko JH, Kim JS, Kim YS (2019) Improving CRISPR genome editing by engineering guide RNAs. Trends Biotechnol 37(8):870–881

    Article  CAS  PubMed  Google Scholar 

  55. Mir A, Alterman JF, Hassler MR, Debacker AJ, Hudgens E, Echeverria D, Brodsky MH, Khvorova A, Watts JK, Sontheimer EJ (2018) Heavily and fully modified RNAs guide efficient SpyCas9-mediated genome editing. Nat Commun 9(1):2641

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zhang JP, Li XL, Neises A, Chen W, Hu LP, Ji GZ, Yu JY, Xu J, Yuan WP, Cheng T, Zhang XB (2016) Different effects of sgRNA length on CRISPR-mediated gene knockout efficiency. Sci Rep 6:28566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ryu SM, Koo T, Kim K, Lim K, Baek G, Kim ST, Kim HS, Kim DE, Lee H, Chung E, Kim JS (2018) Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat Biotechnol 36(6):536–539

    Article  CAS  PubMed  Google Scholar 

  58. Lee K, Mackley VA, Rao A, Chong AT, Dewitt MA, Corn JE, Murthy N (2017) Synthetically modified guide RNA and donor DNA are a versatile platform for CRISPR-Cas9 engineering. Elife 6:e25312

    Article  PubMed  PubMed Central  Google Scholar 

  59. Cui Y, Xu J, Cheng M, Liao X, Peng S (2018) Review of CRISPR/Cas9 sgRNA design tools. Interdiscip Sci 10(2):455–465

    Article  CAS  PubMed  Google Scholar 

  60. Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, Sullender M, Ebert BL, Xavier RJ, Root DE (2014) Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 32(12):1262–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Xu H, Xiao T, Chen CH, Li W, Meyer CA, Wu Q, Wu D, Cong L, Zhang F, Liu JS, Brown M, Liu XS (2015) Sequence determinants of improved CRISPR sgRNA design. Genome Res 25(8):1147–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith I, Tothova Z, Wilen C, Orchard R, Virgin HW, Listgarten J, Root DE (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34(2):184–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pallares Masmitja M, Knodlseder N, Guell M (2019) CRISPR-gRNA Design. Methods Mol Biol 1961:3–11

    Article  PubMed  Google Scholar 

  64. Seki A, Rutz S (2018) Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells. J Exp Med 215(3):985–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Laughery MF, Hunter T, Brown A, Hoopes J, Ostbye T, Shumaker T, Wyrick JJ (2015) New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae. Yeast 32(12):711–720

    Article  CAS  PubMed  Google Scholar 

  66. DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41(7):4336–4343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Farooq R, Hussain K, Tariq M, Farooq A, Mustafa M (2020) CRISPR/Cas9: targeted genome editing for the treatment of hereditary hearing loss. J Appl Genet 61(1):51–65

    Article  CAS  PubMed  Google Scholar 

  68. Zhang J, Chen L, Zhang J, Wang Y (2019) Drug inducible CRISPR/Cas Systems. Comput Struct Biotechnol J 17:1171–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vad-Nielsen J, Lin L, Bolund L, Nielsen AL, Luo Y (2016) Golden gate assembly of CRISPR gRNA expression array for simultaneously targeting multiple genes. Cell Mol Life Sci 73(22):4315–4325

    Article  CAS  PubMed  Google Scholar 

  70. Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Chen Y, Guo J, Chen L, Zhao X, Dong Z, Liu YG (2015) A Robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8(8):1274–1284

    Article  CAS  PubMed  Google Scholar 

  71. Li Y, Li S, Wang J, Liu G (2019) CRISPR/Cas systems towards next-generation biosensing. Trends Biotechnol 37(7):730–743

    Article  PubMed  Google Scholar 

  72. Wolter F, Puchta H (2018) Application of CRISPR/Cas to understand Cis- and trans-regulatory elements in plants. Methods Mol Biol 1830:23–40

    Article  CAS  PubMed  Google Scholar 

  73. Sanjana NE, Shalem O, Zhang F (2014) Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 11(8):783–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bhatia A, Sra J, Akhtar M (2016) Preexcitation syndromes. Curr Prob Cardiol 41(3):99–137

    Article  Google Scholar 

  75. Xie C, Zhang YP, Song L, Luo J, Qi W, Hu J, Lu D, Yang Z, Zhang J, Xiao J, Zhou B, Du JL, Jing N, Liu Y, Wang Y, Li BL, Song BL, Yan Y (2016) Genome editing with CRISPR/Cas9 in postnatal mice corrects PRKAG2 cardiac syndrome. Cell Res 26(10):1099–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Stehle R, Iorga B (2010) Kinetics of cardiac sarcomeric processes and rate-limiting steps in contraction and relaxation. J Mol Cell Cardiol 48(5):843–850

    Article  CAS  PubMed  Google Scholar 

  77. Mosqueira D, Mannhardt I, Bhagwan JR, Lis-Slimak K, Katili P, Scott E, Hassan M, Prondzynski M, Harmer SC, Tinker A, Smith JGW, Carrier L, Williams PM, Gaffney D, Eschenhagen T, Hansen A, Denning C (2018) CRISPR/Cas9 editing in human pluripotent stem cell-cardiomyocytes highlights arrhythmias, hypocontractility, and energy depletion as potential therapeutic targets for hypertrophic cardiomyopathy. Eur Heart J 39(43):3879–3892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dick E, Matsa E, Young LE, Darling D, Denning C (2011) Faster generation of hiPSCs by coupling high-titer lentivirus and column-based positive selection. Nat Protoc 6(6):701–714

    Article  CAS  PubMed  Google Scholar 

  79. Karakikes I, Stillitano F, Nonnenmacher M, Tzimas C, Sanoudou D, Termglinchan V, Kong CW, Rushing S, Hansen J, Ceholski D, Kolokathis F, Kremastinos D, Katoulis A, Ren L, Cohen N, Gho J, Tsiapras D, Vink A, Wu JC, Asselbergs FW, Li RA, Hulot JS, Kranias EG, Hajjar RJ (2015) Correction of human phospholamban R14del mutation associated with cardiomyopathy using targeted nucleases and combination therapy. Nat Commun 6:6955

    Article  CAS  PubMed  Google Scholar 

  80. Chen Y, Lu W, Gao N, Long Y, Shao Y, Liu M, Chen H, Ye S, Ma X, Liu M, Li D (2017) Generation of obese rat model by transcription activator-like effector nucleases targeting the leptin receptor gene. Sci China Life Sci 60(2):152–157

    Article  CAS  PubMed  Google Scholar 

  81. Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B (2011) Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol 29(8):699–700

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Julio Plaza-Diaz is part of the “UGR Plan Propio de Investigación 2016” and the “Excellence actions: Unit of Excellence on Exercise and Health (UCEES), University of Granada.” Julio Plaza-Diaz is supported by a grant awarded to postdoctoral researchers at foreign universities and research centers from the “Fundación Ramón Areces,” Madrid, Spain.

Competing Financial Interests

The authors declare no competing financial interests.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Plaza-Diaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carrillo-Rodriguez, P. et al. (2023). Online Databases of Genome Editing in Cardiovascular and Metabolic Diseases. In: Xiao, J. (eds) Genome Editing in Cardiovascular and Metabolic Diseases. Advances in Experimental Medicine and Biology, vol 1396. Springer, Singapore. https://doi.org/10.1007/978-981-19-5642-3_2

Download citation

Publish with us

Policies and ethics