Skip to main content

Interaction Between Nanoparticles and Phytopathogens

  • Chapter
  • First Online:
Agricultural and Environmental Nanotechnology

Abstract

Nanotechnology has been acknowledged recently for its diversified use in the field of science including agriculture, food industry, medicine, and cosmetics. Environment and earth are being constantly exposed to nanomaterials because they are fabricated to be utilized in agribusiness, food, pharmaceuticals, personal care items as well as in biotechnology. Nanoparticle–microbe interaction performs a pivotal role in treatment of various diseases as in case of antimicrobial agents. The potential implementations of nanomaterials are being extensively researched in the field of agriculture, not only as therapeutic options to prevent phytopathogen growth in host plants, but also for early pathogenic symptoms detections and eliciting immune responses. Bacteria, fungi, virus, and other virulent pathogens through their efficient survival strategies and overcoming phyto-defenses confer to overall deterioration of food-crop produce that may sum up to 10–40%. To overcome such challenging situations, there has been constant development and application of engineered agro-nanomaterials. These may affect plant–microbe interactions in different ways. The inhibitory potential of nanoparticles against different microbial growth mainly involves release and interaction of metal ions with cell components that occur through different pathways including reactive oxygen species production, formation of pores in cell-membranes, cell wall and DNA damage, and cell-cycle arrest. The article deals with different plant pathogens, their mechanisms of phyto-pathogenesis followed by detailed responses of nanoparticle interactions with different microbes and their role in phytopathogen suppression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdallah Y, Yang M, Zhang M et al (2019) Plant growth promotion and suppression of bacterial leaf blight in rice by Paenibacillus polymyxa Sx3. Lett Appl Microbiol 68:423–429

    Article  CAS  Google Scholar 

  • Abdulkhair WM, Alghuthaymi MA (2016a) Plant pathogens. In: Rigobelo EC (ed) Plant growth. IntechOpen, London

    Google Scholar 

  • Abdulkhair WM, Alghuthaymi MA (2016b) Plant pathogens. In: Plant growth. IntechOpen, London, p 49

    Google Scholar 

  • Abdullah AS, Moffat CS, Lopez-Ruiz FJ et al (2017) Host–multi-pathogen warfare: pathogen interactions in co-infected plants. Front Plant Sci 8:1806

    Article  Google Scholar 

  • Abramovitch RB, Kim YJ, Chen S et al (2003) Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death. EMBO J 22:60–69

    Article  CAS  Google Scholar 

  • Adak T, Kumar J, Dey D, Shakil NA, Walia S (2012) Residue and bio-efficacy evaluation of controlled release formulations of imidacloprid against pests in soybean (Glycine max). J Environ Sci Health B 47:226–231

    Article  CAS  Google Scholar 

  • Agrios GN (1997) Plant pathology, 4th edn. Academic, San Diego

    Google Scholar 

  • Aleksandrowicz-Trzcińska M, Szaniawski A, Olchowik J, Drozdowski S (2018) Effects of copper and silver nanoparticles on growth of selected species of pathogenic and wood-decay fungi in vitro. For Chron 94:109–116

    Article  Google Scholar 

  • Ali SH, Ali SA (2019) Nanotechnology is the potential cause of phytotoxicity. J Biomater Dent 3:1–6

    Article  Google Scholar 

  • Allesen-Holm M, Barken KB, Yang L et al (2006) A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59:1114–1128

    Article  CAS  Google Scholar 

  • Amari K, Vazquez F, Heinlein M (2012) Manipulation of plant host susceptibility: an emerging role for viral movement proteins? Front Plant 3:10

    Google Scholar 

  • An SQ, Allan JH, McCarthy Y et al (2014a) The PAS domain-containing histidine kinase RpfS is a second sensor for the diffusible signal factor of Xanthomonas campestris. Mol Microbiol 92:586–597

    Article  CAS  Google Scholar 

  • An SQ, Caly DL, McCarthy Y et al (2014b) Novel cyclic di-GMP effectors of the YajQ protein family control bacterial virulence. PLoS Pathog 10:e1004429

    Article  Google Scholar 

  • Aparna G, Chatterjee A, Sonti RV et al (2009) A cell wall-degrading esterase of Xanthomonas oryzae requires a unique substrate recognition module for pathogenesis on rice. Plant Cell 21:1860–1873

    Article  CAS  Google Scholar 

  • Arrebola E, Cazorla FM, Perez-Garcia A et al (2011) Chemical and metabolic aspects of antimetabolite toxins produced by Pseudomonas syringae pathovars. Toxins 3:1089–1110

    Article  CAS  Google Scholar 

  • Aslam SN, Newman MA, Erbs G et al (2008) Bacterial polysaccharides suppress induced innate immunity by calcium chelation. Curr Biol 18:1078–1083

    Article  CAS  Google Scholar 

  • Asselin JAE, Lin J, Perez-Quintero AL et al (2015) Perturbation of maize phenylpropanoid metabolism by an AvrE family type III effector from Pantoea stewartii. Plant Physiol 167:1117–1135

    Article  CAS  Google Scholar 

  • Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar SP (1997) Signaling in plant-microbe interactions. Science 276:726–733

    Article  CAS  Google Scholar 

  • Balasubramaniam M, Kim BS, Hutchens-Williams HM et al (2014) The photosystem II oxygen-evolving complex protein PsbP interacts with the coat protein of Alfalfa mosaic virus and inhibits virus replication. Mol Plant-Microbe Interact 27:1107–1118

    Article  Google Scholar 

  • Bandyopadhyay S, Peralta-Videa JR et al (2012) Comparative toxicity assessment of CeO2 and ZnO nanoparticles towards Sinorhizobium meliloti, a symbiotic alfalfa associated bacterium: Use of advanced microscopic and spectroscopic techniques. J Hazard Mater 241:379–386

    Article  Google Scholar 

  • Banik S, Luque AP (2017) In vitro effects of copper nanoparticles on plant pathogens, beneficial microbes and crop plants. Span J Agric Res 15:23

    Article  Google Scholar 

  • Barber CE, Tang JL, Feng JX et al (1997) A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Mol Microbiol 24:555–566

    Article  CAS  Google Scholar 

  • Bartsev AV, Deakin WJ, Boukli NM et al (2004) NopL, an effector protein of Rhizobium sp. NGR234, thwarts activation of plant defense reactions. Plant Physiol 134:871–879

    Article  CAS  Google Scholar 

  • Bender CL, Alarcon-Chaidez F, Gross DC (1999) Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev 63:266–292

    Article  CAS  Google Scholar 

  • Bhargava P, Kumar A, Kumar S, Azad CS (2018) Impact of fungicides and nanoparticles on Ustilaginoidea virens causing false smut disease of rice. J Pharmacogn Phytochem 7:1541–1544

    CAS  Google Scholar 

  • Bhatty M, Laverde GJA, Christie PJ (2013) The expanding bacterial type IV secretion lexicon. Res Microbiol 164:620–639

    Article  CAS  Google Scholar 

  • Bielmyer-Fraser GK, Jarvis TA, Lenihan HS, Miller RJ (2014) Cellular partitioning of nanoparticulate versus dissolved metals in marine phytoplankton. Environ Sci Technol 48:13443–13450

    Article  CAS  Google Scholar 

  • Block A, Guo M, Li G et al (2010) The Pseudomonas syringae type III effector HopG1 targets mitochondria, alters plant development and suppresses plant innate immunity. Cell Microbiol 12:318–330

    Article  CAS  Google Scholar 

  • Bogdanove AJ, Schornack S, Lahaye T (2010) TAL effectors: finding plant genes for disease and defense. Curr Opin Plant Biol 13:394–401

    Article  CAS  Google Scholar 

  • Bouarab K, Melton R, Peart J et al (2002) A saponin-detoxifying enzyme mediates suppression of plant defences. Nature 418:889–892

    Article  CAS  Google Scholar 

  • Boxi SS, Mukherjee K, Paria S (2016) Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens. Nanotechnology 27:085103

    Article  Google Scholar 

  • Bramhanwade K, Shende S, Bonde S, Gade A, Rai M (2016) Fungicidal activity of Cu nanoparticles against Fusarium causing crop diseases. Environ Chem Lett 14:229–235

    Article  CAS  Google Scholar 

  • Bretz JR, Mock NM, Charity JC et al (2003) A translocated protein tyrosine phosphatase of Pseudomonas syringae pv. tomato DC3000 modulates plant defence response to infection. Mol Microbiol 49:389–400

    Article  CAS  Google Scholar 

  • Brown I, Mansfield J, Bonas U (1995) hrp genes in Xanthomonas campestris pv. vesicatoria determine ability to suppress papilla deposition in pepper mesophyll cells. Mol Plant-Microbe Interact 8:825–836

    Article  CAS  Google Scholar 

  • Burch AY, Shimada BK, Mullin SW et al (2012) Pseudomonas syringae coordinates production of a motility enabling surfactant with flagellar assembly. J Bacteriol 194:1287–1298

    Article  CAS  Google Scholar 

  • Buttner D, Bonas U (2010) Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiol Rev 34:107–133

    Article  Google Scholar 

  • Buttner D, Lorenz C, Weber E et al (2006) Targeting of two effector protein classes to the type III secretion system by a HpaC- and HpaB-dependent protein complex from Xanthomonas campestris pv. vesicatoria. Mol Microbiol 59:513–527

    Article  Google Scholar 

  • Chai H, Yao J, Sun J et al (2015) The effect of metal oxide nanoparticles on functional bacteria and metabolic profiles in agricultural soil. Bull Environ Contam Toxicol 94:490–495

    Article  CAS  Google Scholar 

  • Chandra S, Chakraborty N, Dasgupta A et al (2015) Chitosan nanoparticles: a positive modulator of innate immune responses in plants. Sci Rep 5:15195

    Article  CAS  Google Scholar 

  • Chandra S, Chakraborty N, Panda K, Acharya K (2017) Chitosan induced immunity in Camellia sinensis (L.) O, Kuntze against blister blight disease is mediated by nitric-oxide. Plant Physiol Biochem 115:298–307

    Article  CAS  Google Scholar 

  • Chao SHL, Choi HS (2005) Method for providing enhanced photosynthesis. S Korea Bull 11:1–34

    Google Scholar 

  • Chartuprayoon N, Rheem Y, Ng JC et al (2013) Polypyrrole nanoribbon based chemiresistive immunosensors for viral plant pathogen detection. Anal Methods 5:3497–3502

    Article  CAS  Google Scholar 

  • Chatterjee S, Almeida RP, Lindow S (2008a) Living in two worlds: the plant and insect lifestyles of Xylella fastidiosa. Annu Rev Phytopathol 46:243–271

    Article  CAS  Google Scholar 

  • Chatterjee S, Wistrom C, Lindow SE (2008b) A cell–cell signaling sensor is required for virulence and insect transmission of Xylella fastidiosa. Proc Natl Acad Sci U S A 105:2670–2675

    Article  CAS  Google Scholar 

  • Chavan S, Nadanathangam V (2019) Effects of nanoparticles on plant growth-promoting bacteria in Indian agricultural soil. Agronomy 9:140

    Article  CAS  Google Scholar 

  • Chellappan P, Vanitharani R, Fauquet CM (2005) MicroRNA-binding viral protein interferes with Arabidopsis development. Proc Natl Acad Sci U S A 102:10381–10386

    Article  CAS  Google Scholar 

  • Chen J, Watanabe Y, Sako N et al (1996) Mapping of host range restriction of the Rakkyo strain of tobacco mosaic virus in Nicotiana tabacum cv. Bright yellow. Virology 226:198–204

    Article  CAS  Google Scholar 

  • Chen J, Wang X, Han H (2013) A new function of graphene oxide emerges: inactivating phytopathogenic bacterium Xanthomonas oryzae pv. oryzae. J Nanopart Res 15:1658

    Article  Google Scholar 

  • Chen J, Peng H, Wang X et al (2014) Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale 6:1879–1889

    Article  CAS  Google Scholar 

  • Chen J, Mao S, Xu Z, Ding W (2019) Various antibacterial mechanisms of biosynthesized copper oxide nanoparticles against soilborne Ralstonia solanacearum. RSC Adv 9:3788–3799

    Article  CAS  Google Scholar 

  • Chhipa H (2017) Nanofertilizers and nanopesticides for agriculture. Environ Chem Lett 15:15–22

    Article  CAS  Google Scholar 

  • Chiang CH, Lee CY, Wang CH et al (2007) Genetic analysis of an attenuated Papaya ringspot virus strain applied for cross-protection. Eur J Plant Pathol 118:333–348

    Article  CAS  Google Scholar 

  • Chikte RG, Paknikar KM, Rajwade JM et al (2019) Nanomaterials for the control of bacterial blight disease in pomegranate: quo vadis? Appl Microbiol Biotechnol 103:4605–4621

    Article  CAS  Google Scholar 

  • Chin KH, Lee YC, Tu ZL et al (2010) The cAMP receptor-like protein CLP is a novel c-di-GMP receptor linking cell–cell signaling to virulence gene expression in Xanthomonas campestris. J Mol Biol 396:646–662

    Article  CAS  Google Scholar 

  • Choudhary RC, Kumaraswamy RV, Kumari S et al (2017) Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.). Sci Rep. https://doi.org/10.1038/s41598-017-08571-0

  • Chu M, Desvoyes B, Turina M et al (2000) Genetic dissection of tomato bushy stunt virus p19-protein-mediated host-dependent symptom induction and systemic invasion. Virology 266:79–87

    Article  CAS  Google Scholar 

  • Chuan L, He P et al (2013) Establishing a scientific basis for fertilizer recommendations for wheat in China: yield response and agronomic efficiency. Field Crop Res 140:1–8

    Article  Google Scholar 

  • Cramer HH (1967) Plant protection and crop production. Pflanzenschutz-Nachr, Leverkusen, p 20

    Google Scholar 

  • Cui F, Wu S, Sun W et al (2013) The Pseudomonas syringae type III effector AvrRpt2 promotes pathogen virulence via stimulating Arabidopsis auxin/indole acetic acid protein turnover. Plant Physiol 162:1018–1029

    Article  CAS  Google Scholar 

  • Dapkekar A, Deshpande P, Oak MD et al (2018) Zinc use efficiency is enhanced in wheat through nanofertilization. Sci Rep 8:6832

    Article  Google Scholar 

  • Dawson WO, Bubrick P (1988) Modification of the tobacco mosaic virus coat protein gene affecting replication movement and symptomatology. Phytopathology 78:783–789

    Article  CAS  Google Scholar 

  • De Filpo G, Palermo AM, Rachiele F, Nicoletta FP (2013) Preventing fungal growth in wood by titanium dioxide nanoparticles. Int Biodeterior Biodegradation 85:217–222

    Article  Google Scholar 

  • De la Rosa-García D, Susana C, Martínez-Torres P et al (2018) Antifungal activity of ZnO and MgO nanomaterials and their mixtures against Colletotrichum gloeosporioides strains from tropical Fruit. J Nanomater 2018:3498527

    Google Scholar 

  • De la Torre RR, Servin A, Hawthrone J et al (2015) Terrestrial trophic transfer of bulk and nanoparticle La2O3 does not depend on particle size. Environ Sci Technol 49:11866–11874

    Article  Google Scholar 

  • Dean R, Van Kan JA, Pretorius ZA et al (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430

    Article  Google Scholar 

  • Dejean G, Blanvillain-Baufume S, Boulanger A et al (2013) The xylan utilization system of the plant pathogen Xanthomonas campestris pv campestris controls epiphytic life and reveals common features with oligotrophic bacteria and animal gut symbionts. New Phytol 198:899–915

    Article  CAS  Google Scholar 

  • Delmotte N, Knief C, Chaffron S et al (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci U S A 106:16428–16433

    Article  CAS  Google Scholar 

  • Derbalah AS, Elkot GAE, Hamza AM (2012) Laboratory evaluation of botanical extracts microbial culture filtrates and silver nanoparticles against Botrytis cinerea. Ann Microbiol 62:1331–1337

    Article  Google Scholar 

  • Desbiez C, Gal-On A, Girard M et al (2003) Increase in Zucchini yellow mosaic virus symptom severity in tolerant zucchini cultivars is related to a point mutation in P3 protein and is associated with a loss of relative fitness on susceptible plants. Phytopathology 93:1478–1484

    Article  CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2013a) Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. Biometals 26:913–924

    Article  CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Martineau N et al (2013b) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47:1082–1090

    Article  CAS  Google Scholar 

  • Dizaj SM, Lotfipour F, Barzegar-Jalali M et al (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C 44:278–284

    Article  CAS  Google Scholar 

  • Djonovic S, Urbach JM, Drenkard E et al (2013) Trehalose biosynthesis promotes Pseudomonas aeruginosa pathogenicity in plants. PLoS Pathog 9:e1003217

    Article  CAS  Google Scholar 

  • Doke N (1975) Prevention of the hypersensitive reaction of potato cells to infection with an incompatible race of Phytophthora infestans by constituents of the zoospores. Physiol Plant Pathol 7:1–7

    Article  Google Scholar 

  • Dollet M (1984) Plant diseases caused by flagellate protozoa (Phytomonas). Annu Rev Phytopathol 22:115–132

    Article  Google Scholar 

  • Du Z, Chen A, Chen W et al (2014) Nuclear-cytoplasmic partitioning of cucumber mosaic virus protein 2b determines the balance between its roles as a virulence determinant and an RNA-silencing suppressor. J Virol 88:5228–5241

    Article  Google Scholar 

  • Dunger G, Relling VM, Tondo ML et al (2007) Xanthan is not essential for pathogenicity in citrus canker but contributes to Xanthomonas epiphytic survival. Arch Microbiol 188:127–135

    Article  CAS  Google Scholar 

  • Dunoyer P, Lecellier CH, Parizotto EA et al (2004) Probing the microRNA and small Interfering RNA pathways with virus-encoded suppressors of RNA silencing. Plant Cell 16:1235–1250

    Article  CAS  Google Scholar 

  • Elbeshehy EKF, Elazzazy AM, Aggelis G (2015) Silver nanoparticles synthesis mediated by new isolates of Bacillus spp.; nanoparticle characterization and their activity against bean yellow mosaic virus and human pathogens. Front Microbiol 6:453

    Article  Google Scholar 

  • Ellingboe AH (1968) Inoculum production and infection by foliage pathogens. Annu Rev Phytopathol 6:317–330

    Article  Google Scholar 

  • Elmer WH, White JC (2016) The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environ Sci Nano 3(5):1072–1079

    Article  CAS  Google Scholar 

  • Elmer W, White JC (2018) The future of nanotechnology in plant pathology. Annu Rev Phytopathol 56:111–133

    Article  CAS  Google Scholar 

  • Espinosa A, Guo M, Tam VC et al (2003) The Pseudomonas syringae type III-secreted protein HopPtoD2 possesses protein tyrosine phosphatase activity and suppresses programmed cell death in plants. Mol Microbiol 49:377–387

    Article  CAS  Google Scholar 

  • Fang Y, Ramasamy RP (2015) Current and prospective methods for plant disease detection. Biosensors 5:537–561

    Article  CAS  Google Scholar 

  • Fayaz AM, Balaji K, Girilal M et al (2009) Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J Agric Food Chem 57:6246–6252

    Article  Google Scholar 

  • Frampton RA, Pitman AR, Fineran PC (2012) Advances in bacteriophage-mediated control of plant pathogens. Int J Microbiol 2012:326452

    Article  Google Scholar 

  • Francl LJ (2001) The disease triangle: a plant pathological paradigm revisited. Plant Health Instruct 10:517

    Google Scholar 

  • Frazer L (2001) Titanium dioxide: environmental white knight. Environ Health Perspect 109:174–177

    Article  Google Scholar 

  • Freeman BC, Chen C, Beattie GA (2010) Identification of the trehalose biosynthetic loci of Pseudomonas syringae and their contribution to fitness in the phyllosphere. Environ Microbiol 12:1486–1497

    CAS  Google Scholar 

  • Freeman BC, Chen C, Yu X et al (2013) Physiological and transcriptional responses to osmotic stress of two Pseudomonas syringae strains that differ in epiphytic fitness and osmotolerance. J Bacteriol 195:4742–4752

    Article  CAS  Google Scholar 

  • Gahlawat G, Choudhury AR (2019) A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv 9:12944–12967

    Article  CAS  Google Scholar 

  • Gaignard JL, Luisetti J (1993) Pseudomonas-syringae, an epiphytic ice nucleation active and phytopathogenic bacterium. Agronomie 13:333–370

    Article  Google Scholar 

  • Gal M, Preston GM, Massey RC et al (2003) Genes encoding a cellulosic polymer contribute toward the ecological success of Pseudomonas fluorescens SBW25 on plant surfaces. Mol Ecol 12:3109–3121

    Article  CAS  Google Scholar 

  • Galan JE, Lara-Tejero M, Marlovits TC et al (2014) Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu Rev Microbiol 68:415–438

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Rico CM, White JC (2014) Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environ Sci Technol 48:2526–2540

    Article  CAS  Google Scholar 

  • Garnham CP, Campbell RL, Walker VK et al (2011) Novel dimeric beta-helical model of an ice nucleation protein with bridged active sites. BMC Struct Biol 11:36

    Article  CAS  Google Scholar 

  • Geri C, Love AJ, Cecchini E et al (2004) Arabidopsis mutants that suppress the phenotype induced by transgene-mediated expression of cauliflower mosaic virus (CaMV) gene VI are less susceptible to CaMV infection and show reduced ethylene sensitivity. Plant Mol Biol 56:111–124

    Article  CAS  Google Scholar 

  • Gerlach RG, Hensel M (2007) Protein secretion systems and adhesins: the molecular armory of Gram-negative pathogens. Int J Med Microbiol 297(6):401–415

    Article  CAS  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803

    Article  CAS  Google Scholar 

  • Giannousi K, Avramidis I, Dendrinou-Samara C (2013) Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv 3:21743–21752

    Article  CAS  Google Scholar 

  • Gilardi P, Garcıa-Luque I, Serra MT (1998) Pepper mild mottle virus coat protein alone can elicit the Capsicum spp. L3 genemediated resistance. Mol Plant-Microbe Interact 11:1253–1257

    Article  CAS  Google Scholar 

  • Gilbert GS, Parker IM (2016) The evolutionary ecology of plant disease: a phylogenetic perspective. Annu Rev Phytopathol 54:549–578

    Article  CAS  Google Scholar 

  • Gimenez-Ibanez S, Boter M, Fernandez-Barbero G et al (2014) The bacterial effector HopX1 targets JAZ transcriptional repressors to activate jasmonate signaling and promote infection in Arabidopsis. PLoS Biol 12:e1001792

    Article  Google Scholar 

  • Glawe DA (1992) Thomas J. Burrill, pioneer in plant pathology. Annu Rev Phytopathol 30:17–25

    Article  CAS  Google Scholar 

  • Gogoi R, Singh PK, Kumar R et al (2013) Suitability of nanosulphur for biorational management of powdery mildew of okra (Abelmoschus esculentus Moench) caused by Erysiphe cichoracearum. J Plant Pathol Microbiol 4:171–175

    Article  Google Scholar 

  • Gohlke J, Deeken R (2014) Plant responses to Agrobacterium tumefaciens and crown gall development. Front Plant Sci 5:155

    Article  Google Scholar 

  • Gordon T, Perlstein B, Houbara O et al (2011) Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties. Colloids Surf A Physicochem Eng Asp 374:1–8

    Article  CAS  Google Scholar 

  • Graham JH, Johnson EG, Myers ME et al (2016) Potential of nano-formulated zinc oxide for control of citrus canker on grapefruit trees. Plant Dis 100:2442–2447

    Article  CAS  Google Scholar 

  • Guan H, Chi D, Yu J, Li H (2010) Dynamics of residues from a novel nano-imidacloprid formulation in soyabean fields. Crop Prot 29:942–946

    Article  CAS  Google Scholar 

  • Gudesblat GE, Torres PS, Vojnov AA (2009) Xanthomonas campestris overcomes Arabidopsis stomatal innate immunity through a DSF cell-to-cell signal regulated virulence factor. Plant Physiol 149:1017–1027

    Article  CAS  Google Scholar 

  • Gurian-Sherman D, Lindow SE (1993) Bacterial ice nucleation: significance and molecular basis. FASEB J 7:1338–1343

    Article  CAS  Google Scholar 

  • Haikonen T, Rajamaki ML, Tian YP, Valkonen JP (2013) Mutation of a short variable region in HCpro protein of Potato virus A affects interactions with a microtubule-associated protein and induces necrotic responses in tobacco. Mol Plant-Microbe Interact 26:721–733

    Article  CAS  Google Scholar 

  • Hails RS (2000) Genetically modified plants—the debate continues. Trends Ecol Evol 15:14–18

    Article  CAS  Google Scholar 

  • Hajipour MJ, Fromm KM, Ashkarran AA et al (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30:499–511

    Article  CAS  Google Scholar 

  • Han SW, Lee SW, Ronald PC (2011) Secretion, modification, and regulation of Ax21. Curr Opin Microbiol 14:62–67

    Article  CAS  Google Scholar 

  • Hao Y, Cao X, Ma C et al (2017) Potential applications and antifungal activities of engineered nanomaterials against gray mold disease agent Botrytis cinerea on rose petals. Front Plant Sci 8:1332

    Article  Google Scholar 

  • Hassan SED, Fouda A, Radwan AA et al (2019) Endophytic actinomycetes Streptomyces spp mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. J Biol Inorg Chem 24:377–393

    Article  CAS  Google Scholar 

  • Hauck P, Thilmony R, He SY (2003) A Pseudomonas syringae type III effector suppresses cell wall-based extracellular defense in susceptible Arabidopsis plants. Proc Natl Acad Sci U S A 100:8577–8582

    Article  CAS  Google Scholar 

  • Havelda Z, Hornyik C, Valoczi A, Burgyan J (2005) Defective interfering RNA hinders the activity of a tombusvirus-encoded posttranscriptional gene silencing suppressor. J Virol 79:450–457

    Article  CAS  Google Scholar 

  • He P, Chintamanani S, Chen Z et al (2004) Activation of a COI1-dependent pathway in Arabidopsis by Pseudomonas syringae type III effectors and coronatine. Plant J 37:589–602

    Article  CAS  Google Scholar 

  • He YW, Boon C, Zhou L et al (2009) Co-regulation of Xanthomonas campestris virulence by quorum sensing and a novel two-component regulatory system RavS/RavR. Mol Microbiol 71:1464–1476

    Article  CAS  Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215

    Article  CAS  Google Scholar 

  • Heaton LA, Lee TC, Wei N et al (1991) Point mutations in the turnip crinkle virus capsid protein affect the symptoms expressed by Nicotiana benthamiana. Virology 183:143–150

    Article  CAS  Google Scholar 

  • Hisa Y, Suzuki H, Atsumi G et al (2014) P3NPIPO of Clover yellow vein virus exacerbates symptoms in pea infected with White clover mosaic virus and is implicated in viral synergism. Virology 449:200–206

    Article  CAS  Google Scholar 

  • Horsfall JG, Cowling EB (1980) Plant disease, 3rd edn. Academic, New York

    Google Scholar 

  • Hossain A, Abdallah Y, Ali MA et al (2019) Lemon-fruit-based green synthesis of zinc oxide nanoparticles and titanium dioxide nanoparticles against soft rot bacterial pathogen Dickeyadadantii. Biomol Ther 9:863

    CAS  Google Scholar 

  • Ibrahim E, Zhang M, Zhang Y et al (2020) Green-synthesization of silver nanoparticles using endophytic bacteria isolated from garlic and its antifungal activity against wheat fusarium head blight pathogen Fusarium graminearum. Nano 10:219

    CAS  Google Scholar 

  • Imada K, Sakai S, Kajihara H, Tanaka S, Ito S (2016) Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathol 65:551–560

    Article  CAS  Google Scholar 

  • Inaba J, Kim BM, Shimura H, Masuta C (2011) Virus-induced necrosis is a consequence of direct protein–protein interaction between a viral RNA-silencing suppressor and a host catalase. Plant Physiol 156:2026–2036

    Article  CAS  Google Scholar 

  • Incarbone M, Dunoyer P (2013) RNA silencing and its suppression: novel insights from in planta analyses. Trends Plant Sci 18:382–392

    Article  CAS  Google Scholar 

  • Ishibashi K, Masuda K, Naito S et al (2007) An inhibitor of viral RNA replication is encoded by a plant resistance gene. Proc Natl Acad Sci U S A 104:13833–13838

    Article  CAS  Google Scholar 

  • Jagana D, Hegde YR, Lella R (2017) Green nanoparticles: a novel approach for the management of banana anthracnose caused by Colletotrichum musae. Int J Curr Microbiol App Sci 6:1749–1756

    Article  Google Scholar 

  • Jamir Y, Guo M, Oh HS et al (2004) Identification of Pseudomonas syringae type III effectors that can suppress programmed cell death in plants and yeast. Plant J 37:554–565

    Article  CAS  Google Scholar 

  • Jay F, Wang Y, Yu A et al (2011) Misregulation of auxin response factor 8 underlies the developmental abnormalities caused by three distinct viral silencing suppressors in Arabidopsis. PLoS Pathog 7:e1002035

    Article  CAS  Google Scholar 

  • Jha G, Rajeshwari R, Sonti RV (2005) Bacterial type two secretion system secreted proteins: double-edged swords for plant pathogens. Mol Plant-Microbe Interact 18:891–898

    Article  CAS  Google Scholar 

  • Jin T, Sun D, Su JY, Zhang H, Sue HJ (2009) Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157: H7. J Food Sci 74:46–52

    Article  Google Scholar 

  • Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043

    Article  CAS  Google Scholar 

  • Johnson TL, Abendroth J, Hol WGJ et al (2006) Type II secretion: from structure to function. FEMS Microbiol Lett 255:175–186

    Article  CAS  Google Scholar 

  • Kachroo P, Yoshioka K, Shah J et al (2000) Resistance to turnip crinkle virus in arabidopsis is regulated by two host genes and is salicylic acid dependent but NPR1, ethylene, and jasmonate independent. Plant Cell 12:677–690

    Article  CAS  Google Scholar 

  • Kang Y, Liu H, Genin S et al (2002) Ralstonia solanacearum requires type 4 pili to adhere to multiple surfaces and for natural transformation and virulence. Mol Microbiol 46:427–437

    Article  CAS  Google Scholar 

  • Kang L, Li J, Zhao T et al (2003) Interplay of the Arabidopsis nonhost resistance gene NHO1 with bacterial virulence. Proc Natl Acad Sci U S A 100:3519–3524

    Article  CAS  Google Scholar 

  • Kanhed P, Birla S, Gaikwad S et al (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 115:13–17

    Article  CAS  Google Scholar 

  • Kay S, Hahn S, Marois E et al (2007) A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318:648–651

    Article  CAS  Google Scholar 

  • Khan MR, Haque Z (2013) Morphological and biochemical responses of five tobacco cultivars to simultaneous infection with Pythium aphanidermatum and Meloidogyne incognita. Phytopathol Mediterr 52:98–109

    Google Scholar 

  • Khan MR, Rizvi TF (2014) Nanotechnology: scope and application in plant disease management. Plant Pathol J 13:214–231

    Article  CAS  Google Scholar 

  • Khater M, de la Escosura-Muñiz A, Merkoçi A (2017) Biosensors for plant pathogen detection. Biosens Bioelectron 93:72–86

    Article  CAS  Google Scholar 

  • Khiyami MA, Almoammar H, Awad YM et al (2014) Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnol Biotechnol Equip 28:775–785

    Article  Google Scholar 

  • Kim J, Kim JG, Kang Y et al (2004) Quorum sensing and the LysR-type transcriptional activator ToxR regulate toxoflavin biosynthesis and transport in Burkholderia glumae. Mol Microbiol 54:921–934

    Article  CAS  Google Scholar 

  • Kim H, Kang H, Chu G, Byun G (2008) Antifungal effectiveness of nanosilver colloid against rose powdery mildew in greenhouses. Solid State Phenom 135:15–18

    Article  CAS  Google Scholar 

  • Kim JI, Park HG et al (2016) Trophic transfer of nano-TiO2 in a paddy microcosm: a comparison of single-dose versus sequential multi-dose exposures. Environ Pollut 212:316–324

    Article  CAS  Google Scholar 

  • Klein E, Link D, Schirmer A et al (2007) Sequence variation within Beet necrotic yellow vein virus p25 protein influences its oligomerization and isolate pathogenicity on Tetragonia expansa. Virus Res 126:53–61

    Article  CAS  Google Scholar 

  • Kołodziejczak-Radzimska A, Jesionowski T (2014) Zinc oxide—from synthesis to application: a review. Mater Ther 7:2833–2881

    Article  Google Scholar 

  • Kong HS, Roberts DP, Patterson CD et al (2012) Effect of overexpressing rsmA from Pseudomonas aeruginosa on virulence of select phytotoxin-producing strains of P. syringae. Phytopathology 102:575–587

    Article  CAS  Google Scholar 

  • Korotkov KV, Sandkvist M, Hol WGJ (2012) The type II secretion system: biogenesis, molecular architecture and mechanism. Nat Rev Microbiol 10:336–351

    Article  CAS  Google Scholar 

  • Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan PT (2012) Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim Acta A Mol Biomol Spectrosc 93:95–99

    Article  CAS  Google Scholar 

  • Krutyakov YA, Kudrinskiy AA, Zherebin PM et al (2016) Tallow amphopolycarboxyglycinate stabilized silver nanoparticles: new frontiers in development of plant protection products with a broad spectrum of action against phytopathogens. Mater Res Express 3:075403

    Article  Google Scholar 

  • Kurepa J, Paunesku T, Vogt S et al (2010) Uptake and distribution of ultrasmall anatase TiO2 Alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett 10:2296–2302

    Article  CAS  Google Scholar 

  • Lamichhane JR, Osdaghi E, Behlau F et al (2018) Thirteen decades of antimicrobial copper compounds applied in agriculture. A review. Agron Sustain Dev 38:1–18

    Article  CAS  Google Scholar 

  • Lamsal K, Kim SW, Jung JH et al (2011a) Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39:26–32

    Article  CAS  Google Scholar 

  • Lamsal K, Kim SW, Jung JH et al (2011b) Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology 39:194–199

    Article  CAS  Google Scholar 

  • Langston-Unkefer PJ, Robinson AC, Knight TJ et al (1987) Inactivation of pea seed glutamine synthetase by the toxin, tabtoxinine-beta-lactam. J Biol Chem 262:1608–1613

    Article  CAS  Google Scholar 

  • Lara-Tejero M, Kato J, Wagner S et al (2011) A sorting platform determines the order of protein secretion in bacterial type III systems. Science 331:1188–1191

    Article  CAS  Google Scholar 

  • Leduc JL, Roberts GP (2009) Cyclic di-GMP allosterically inhibits the CRP-like protein (Clp) of Xanthomonas axonopodis pv. citri. J Bacteriol 191:7121–7122

    Article  CAS  Google Scholar 

  • Lee J, Teitzel GM, Munkvold K et al (2012) Type III secretion and effectors shape the survival and growth pattern of Pseudomonas syringae on leaf surfaces. Plant Physiol 158:1803–1818

    Article  CAS  Google Scholar 

  • Lee DH, Kim JB, Lim JA et al (2014) Genetic diversity of Pectobacterium carotovorum subsp. brasiliensis isolated in Korea. Plant Pathol J 30:117–124

    Article  CAS  Google Scholar 

  • Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nat Rev Microbiol 11:371–384

    Article  CAS  Google Scholar 

  • Lewandowski DJ, Dawson WO (1993) A single amino acid change in tobacco mosaic virus replicase prevents symptom production. Mol Plant-Microbe Interact 6:157–160

    Article  CAS  Google Scholar 

  • Li F, Pignatta D, Bendix C et al (2012) MicroRNA regulation of plant innate immune receptors. Proc Natl Acad Sci U S A 109:1790–1795

    Article  CAS  Google Scholar 

  • Li J, Sang H, Guo H et al (2017) Antifungal mechanisms of ZnO and Ag nanoparticles to Sclerotinia homoeocarpa. Nanotechnology 28:155101

    Article  Google Scholar 

  • Liang H, Yao N, Song JT et al (2003) Ceramides modulate programmed cell death in plants. Genes Dev 17:2636–2641

    Article  CAS  Google Scholar 

  • Liang Y, Yang D, Cui J (2017) A graphene oxide/silver nanoparticle composite as a novel agricultural antibacterial agent against Xanthomonas oryzae pv. oryzae for crop disease management. New J Chem 41:13692–13699

    Article  CAS  Google Scholar 

  • Liao YY, Strayer-Scherer AL, White J et al (2019) Nano-magnesium oxide: a novel bactericide against coppertolerant Xanthomonas perforans causing tomato bacterial spot. Phytopathology 109:52–62

    Article  CAS  Google Scholar 

  • Lim MTS, Kunkel BN (2004) Mutations in the Pseudomonas syringae avrRpt2 gene that dissociate its virulence and avirulence activities lead to decreased efficiency of AvrRpt2-induced disappearance of RIN4. Mol Plant-Microbe Interact 17:313–332

    Article  CAS  Google Scholar 

  • Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  • Little RH, Grenga L, Saalbach G et al (2016) Adaptive remodeling of the bacterial proteome by specific ribosomal modification regulates Pseudomonas infection and niche colonisation. PLoS Genet 12:e1005837

    Article  Google Scholar 

  • Lohou D, Lonjon F, Genin S et al (2013) Type III chaperones & Co in bacterial plant pathogens: a set of specialized bodyguards mediating effector delivery. Front Plant Sci 4:435

    Article  Google Scholar 

  • Lucas WJ (2006) Plant viral movement proteins: agents for cell-to cell trafficking of viral genomes. Virology 344:169–184

    Article  CAS  Google Scholar 

  • Macho AP (2016) Subversion of plant cellular functions by bacterial type-III effectors: beyond suppression of immunity. New Phytol 210:51–57

    Article  Google Scholar 

  • Macho AP, Zipfel C (2014) Plant PRRs and the activation of innate immune signaling. Mol Cell 54:263–272

    Article  CAS  Google Scholar 

  • Macho AP, Zipfel C (2015) Targeting of plant pattern recognition receptor triggered immunity by bacterial type-III secretion system effectors. Curr Opin Microbiol 23:14–22

    Article  CAS  Google Scholar 

  • Makarovsky D, Fadeev L, Salam BB et al (2018) Silver nanoparticles complexed with bovine submaxillary mucin possess strong antibacterial activity and protect against seedling infection. Appl Environ Microbiol 84(4):e02212

    Article  Google Scholar 

  • Mala R, Arunachalam P, Sivsankari M (2012) Synergistic bactericidal activity of silver nanoparticles and ciprofloxacin against phytopathogens. J Cell Tissue Res 12:3249–3254

    CAS  Google Scholar 

  • Marco ML, Legac J, Lindow SE (2005) Pseudomonas syringae genes induced during colonization of leaf surfaces. Environ Microbiol 7:1379–1391

    Article  CAS  Google Scholar 

  • Martins PM, Merfa MV, Takita MA et al (2018) Persistence in phytopathogenic bacteria: do we know enough? Front Microbiol 9:1099

    Article  Google Scholar 

  • Mathioudakis MM, Veiga RS, Canto T et al (2013) Pepino mosaic virus triple gene block protein 1 (TGBp1) interacts with and increases tomato catalase 1 activity to enhance virus accumulation. Mol Plant Pathol 14:589–601

    Article  CAS  Google Scholar 

  • McCarthy Y, Dow JM, Ryan RP (2011) The Ax21 protein is a cell–cell signal that regulates virulence in the nosocomial pathogen Stenotrophomonas maltophilia. J Bacteriol 193:6375–6378

    Article  CAS  Google Scholar 

  • Melotto M, Kunkel BN (2013) Virulence strategies of plant pathogenic bacteria. In: Rosenberg E (ed) The prokaryotes – prokaryotic physiology and biochemistry. Springer, Heidelberg, pp 61–75

    Google Scholar 

  • Melotto M, Underwood W, Koczan J et al (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980

    Article  CAS  Google Scholar 

  • Mise K, Allison RF, Janda M, Ahlquist P (1993) Bromovirus movement protein genes play a crucial role in host specificity. J Virol 67:2815–2823

    Article  CAS  Google Scholar 

  • Mishra S, Singh BR, Singh A et al (2014) Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One 9(5):e97881

    Article  Google Scholar 

  • Mochizuki T, Yamazaki R, Wada T et al (2014) Coat protein mutations in an attenuated cucumber mosaic virus encoding mutant 2b protein that lacks RNA silencing suppressor activity induces chlorosis with photosynthesis gene repression and chloroplast abnormalities in infected tobacco plants. Virology 456–457:292–299

    Article  Google Scholar 

  • Moffett P (2009) Mechanisms of recognition in dominant R gene mediated resistance. Adv Virus Res 75:1–33

    Article  CAS  Google Scholar 

  • Mohmood I, Lopes CB, Lopes I et al (2013) Nanoscale materials and their use in water contaminants removal–a review. Environ Sci Pollut Res 20:1239–1260

    Article  CAS  Google Scholar 

  • Mondal KK, Mani C (2012) Investigation of the antibacterial properties of nanocopper against Xanthomonas axonopodis pv. punicae, the incitant of pomegranate bacterial blight. Ann Microbiol 62:889–893

    Article  CAS  Google Scholar 

  • Mondal KK, Bhar LM, Mani C (2010) Combined efficacy of Pseudomonas fluorescens strain MBPF-01 and nanocopper against bacterial leaf blight in rice. Indian Phytopathol 63:266–268

    Google Scholar 

  • Morales-Díaz AB, Ortega-Ortíz H (2017) Application of nanoelements in plant nutrition and its impact in ecosystems. Adv Nat Sci Nanosci Nanotechnol 8:013001

    Article  Google Scholar 

  • Moscoso JA, Mikkelsen H, Heeb S et al (2011) The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via cdi-GMP signalling. Environ Microbiol 13:3128–3138

    Article  CAS  Google Scholar 

  • Moscoso JA, Jaeger T, Valentini M et al (2014) The diguanylate cyclase SadC is a central player in Gac/Rsm-mediated biofilm formation in Pseudomonas aeruginosa. J Bacteriol 196:4081–4088

    Article  Google Scholar 

  • Moussa SH, Tayel AA, Alsohim AS, Abdallah RR (2013) Botryticidal activity of nanosized silver-chitosan composite and its application for the control of gray mold in strawberry. J Food Sci 78:1589–1594

    Article  Google Scholar 

  • Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl 2014:63–71

    Article  Google Scholar 

  • Nadendla SR, Rani TS, Vaikuntapu PR et al (2018) HarpinPss encapsulation in chitosan nanoparticles for improved bioavailability and disease resistance in tomato. Carbohydr Polym 199:11–19

    Article  CAS  Google Scholar 

  • Nair R, Varghese SH, Nair BG et al (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Nandini B, Hariprasad P, Prakash HS, Shetty HS, Geetha N (2017) Trichogenic-selenium nanoparticles enhance disease suppressive ability of Trichoderma against downy mildew disease caused by Sclerospora graminicola in pearl millet. Sci Rep 7:2612

    Article  Google Scholar 

  • Navale GR, Thripuranthaka M, Late DJ, Shinde SS (2015) Antimicrobial activity of ZnO nanoparticles against pathogenic bacteria and fungi. JSM Nanotechnol Nanomed 3:1033–1041

    Google Scholar 

  • Nguyen LC, Taguchi F, Tran QM et al (2012) Type IV pilin is glycosylated in Pseudomonas syringae pv. tabaci 6605 and is required for surface motility and virulence. Mol Plant Pathol 13:764–774

    Article  CAS  Google Scholar 

  • Nguyen HC, Nguyen TT, Dao TH et al (2016) Preparation of Ag/SiO2 nanocomposite and assessment of its antifungal effect on soybean plant (a Vietnamese species DT-26). Adv Nat Sci Nanosci Nanotechnol 7(4):045014

    Article  Google Scholar 

  • Ni P, Cheng KC (2013) Non-encapsidation activities of the capsid proteins of positive-strand RNA viruses. Virology 446:123–132

    Article  CAS  Google Scholar 

  • Nisar P, Ali N, Rahman L, Ali M, Shinwari ZK (2019) Antimicrobial activities of biologically synthesized metal nanoparticles: an insight into the mechanism of action. J Biol Inorg Chem 24:929–941

    Article  CAS  Google Scholar 

  • Norman DJ, Chen J (2011) Effect of foliar application of titanium dioxide on bacterial blight of geranium and Xanthomonas leaf spot of poinsettia. HortScience 46:426–428

    Article  CAS  Google Scholar 

  • Ocsoy I, Paret ML, Ocsoy MA et al (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7:8972–8980

    Article  CAS  Google Scholar 

  • Okano Y, Senshu H, Hashimoto M et al (2014) In planta recognition of a double-stranded RNA synthesis protein complex by a potexviral RNA silencing suppressor. Plant Cell 26:2168–2183

    Article  CAS  Google Scholar 

  • Owolade OF, Ogunleti DO, Adenekan MO (2008) Titanium dioxide affects disease development and yield of edible cowpea. EJEAF Chem 7:2942–2947

    CAS  Google Scholar 

  • Pacheco R, Garcıa-Marcos A, Manzano A et al (2012) Comparative analysis of transcriptomic and hormonal responses to compatible and incompatible plant–virus interactions that lead to cell death. Mol Plant-Microbe Interact 25:709–723

    Article  CAS  Google Scholar 

  • Padmanabhan MS, Kramer SR, Wang X et al (2008) Tobacco mosaic virus replicase-auxin/indole acetic acid protein interactions: reprogramming the auxin response pathway to enhance virus infection. J Virol 82:2477–2485

    Article  CAS  Google Scholar 

  • Paknikar KM, Nagpal V, Pethkar AV, Rajwade JM (2005) Degradation of lindane from aqueous solutions using iron sulfide nanoparticles stabilized by biopolymers. Sci Technol Adv Mater 6:370–374

    Article  CAS  Google Scholar 

  • Pakrashi S, Jain N, Dalai L et al (2014) In vivo genotoxicity assessment of titanium dioxide nanoparticles by Allium cepa root tip assay at high exposure concentrations. PLoS ONE 9:e87789

    Article  Google Scholar 

  • Pallas V, Garcıa JA (2011) How do plant viruses induce disease? Interactions and interference with host components. J Gen Virol 92:2691–2705

    Article  CAS  Google Scholar 

  • Pallas V, Genoves A, Sanchez-Pina MA, Navarro JA (2011) Systemic movement of viruses via the plant phloem. In: Caranta C, Aranda MA, Tepfer M, Lopez-Moya JJ (eds) Recent advances in plant virology. Academic, New York

    Google Scholar 

  • Palza H (2015) Antimicrobial polymers with metal nanoparticles. Int J Mol Sci 16:2099–2116

    Article  CAS  Google Scholar 

  • Paret ML, Palmateer AJ, Knox GW (2013a) Evaluation of a lightactivated nanoparticle formulation of titanium dioxide with zinc for management of bacterial leaf spot on rosa ‘Noare’. HortScience 48:189–192

    Article  CAS  Google Scholar 

  • Paret ML, Vallad GE, Averett DR et al (2013b) Photocatalysis: effect of light-activated nanoscale formulations of TiO2 on Xanthomonas perforans and control of bacterial spot of tomato. Phytopathology 103:228–236

    Article  CAS  Google Scholar 

  • Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22:295–302

    Article  Google Scholar 

  • Peiro A, Canizares MC, Rubio L et al (2014) The movement protein (NSm) of Tomato spotted wilt virus is the avirulence determinant in the tomato Sw-5 gene-based resistance. Mol Plant Pathol 15:802–813

    Article  CAS  Google Scholar 

  • Pel MJ, van Dijken AJ, Bardoel BW et al (2014) Pseudomonas syringae evades host immunity by degrading flagellin monomers with alkaline protease AprA. Mol Plant-Microbe Interact 27:603–610

    Article  CAS  Google Scholar 

  • Peng WT, Lee YW, Nester EW (1998) The phenolic recognition profiles of the Agrobacterium tumefaciens VirA protein are broadened by a high level of the sugar binding protein ChvE. J Bacteriol 180:5632–5638

    Article  CAS  Google Scholar 

  • Pepperman AB, Kuan CW, Mc Combs C (1991) Alginate controlled release formulations of metribuzin. J Control Release 17:105–112

    Article  CAS  Google Scholar 

  • Perfileva AI, Tsivileva OM, Koftin OV et al (2018) Selenium-containing nanobiocomposites of fungal origin reduce the viability and biofilm formation of the bacterial phytopathogen Clavibacter michiganensis subsp, sepedonicus. Nanotechnol Russ 13:268–276

    Article  CAS  Google Scholar 

  • Pfeilmeier S, Saur IM, Rathjen JP et al (2016) High levels of cyclic-di-GMP in plant-associated Pseudomonas correlate with evasion of plant immunity. Mol Plant Pathol 17:521–531

    Article  CAS  Google Scholar 

  • Piffanelli P, Zhou F, Casais C et al (2002) The barley MLO modulator of defense and cell death is responsive to biotic and abiotic stress stimuli. Plant Physiol 129:1076–1085

    Article  CAS  Google Scholar 

  • Pingali PL (2012) Green revolution: impacts, limits, and the path ahead. Proc Natl Acad Sci 109:12302–12308

    Article  CAS  Google Scholar 

  • Qian G, Zhou Y, Zhao Y et al (2013) Proteomic analysis reveals novel extracellular virulence-associated proteins and functions regulated by the diffusible signal factor (DSF) in Xanthomonas oryzae pv. oryzicola. J Proteome Res 12:3327–3341

    Article  CAS  Google Scholar 

  • Quinones B, Pujol CJ, Lindow SE (2004) Regulation of AHL production and its contribution to epiphytic fitness in Pseudomonas syringae. Mol Plant-Microbe Interact 17:521–531

    Article  CAS  Google Scholar 

  • Quinones B, Dulla G, Lindow SE (2005) Quorum sensing regulates exopolysaccharide production, motility, and virulence in Pseudomonas syringae. Mol Plant-Microbe Interact 18:682–693

    Article  CAS  Google Scholar 

  • Rahim MD, Andika IB, Han C (2007) RNA4-encoded p31 of beet necrotic yellow vein virus is involved in efficient vector transmission, symptom severity and silencing suppression in roots. J Gen Virol 88:1611–1619

    Article  CAS  Google Scholar 

  • Rahoutei J, Garcıa-Luque I, Baron M (2000) Inhibition of photosynthesis by viral infection: effect on PSII structure and function. Physiol Plant 110:286–292

    Article  CAS  Google Scholar 

  • Rao ALN, Grantham GL (1996) Molecular studies on bromovirus capsid protein. 2. Functional analysis of the amino-terminal arginine-rich motif and its role in encapsidation, movement, and pathology. Virology 226:294–305

    Article  CAS  Google Scholar 

  • Rao KJ, Paria S (2013) Use of sulfur nanoparticles as a green pesticide on Fusarium solani and Venturia inaequalis phytopathogens. RSC Adv 3:10471–10478

    Article  CAS  Google Scholar 

  • Records AR, Gross DC (2010) Sensor kinases RetS and LadS regulate Pseudomonas syringae type VI secretion and virulence factors. J Bacteriol 192:3584–3596

    Article  CAS  Google Scholar 

  • Ren T, Qu F, Morris TJ (2000) HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle virus. Plant Cell 12:1917–1926

    Article  CAS  Google Scholar 

  • Ren T, Qu F, Morris TJ (2005) The nuclear localization of the Arabidopsis transcription factor TIP is blocked by its interaction with the coat protein of Turnip crinkle virus. Virology 331:316–324

    Article  CAS  Google Scholar 

  • Renzi M, Copini P, Taddei AR et al (2012) Bacterial canker on kiwifruit in Italy: anatomical changes in the wood and in the primary infection sites. Phytopathology 102:827–840

    Article  Google Scholar 

  • Ritpitakphong U, Falquet L, Vimoltust A et al (2016) The microbiome of the leaf surface of Arabidopsis protects against a fungal pathogen. New Phytol 210:1033–1043

    Article  CAS  Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JD (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate–salicylate antagonism. Annu Rev Phytopathol 49:317–343

    Article  CAS  Google Scholar 

  • Rodrigues S, Dionísio M, Lopez CR, Grenha A (2012) Biocompatibility of chitosan carriers with application in drug delivery. J Funct Biomater 3:615–641

    Article  CAS  Google Scholar 

  • Romling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77:1–52

    Article  Google Scholar 

  • Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716

    Article  CAS  Google Scholar 

  • Sanzari I, Leone A, Ambrosone A (2019) Nanotechnology in plant science: to make a long story short. Biotechnology 7:120

    Google Scholar 

  • Sarlak N, Taherifar A, Salehi F (2014) Synthesis of nanopesticides by encapsulating pesticide nanoparticles using functionalized carbon nanotubes and application of new nanocomposite for plant disease treatment. J Agric Food Chem 62:4833–4838

    Article  CAS  Google Scholar 

  • Sathiyabama M, Manikandan A (2016) Chitosan nanoparticle induced defense responses in fingermillet plants against blast disease caused by Pyricularia grisea (Cke.) Sacc. Carbohydr Polym 154:241–246

    Article  CAS  Google Scholar 

  • Sathiyabama M, Parthasarathy R (2016) Biological preparation of chitosan nanoparticles and its in vitro antifungal efficacy against some phytopathogenic fungi. Carbohydr Polym 151:321–325

    Article  CAS  Google Scholar 

  • Sauer AV, Rocha KR, Pedro ED et al (2014) Ice nucleation activity in Pantoea ananatis obtained from maize white spot lesions. Semin-Cienc Agrar 35:1659–1666

    Article  Google Scholar 

  • Savary S, Ficke A, Aubertot JN, Hollier C (2012) Crop losses due to diseases and their implications for global food production losses and food security. Food Secur 4:519–537

    Article  Google Scholar 

  • Scholthof KB, Adkins S, Czosnek H et al (2011) Top 10 plant viruses in molecular plant pathology. Mol Plant Pathol 12:938–954

    Article  CAS  Google Scholar 

  • Schuster M, Lostroh CP, Ogi T et al (2003) Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185:2066–2079

    Article  CAS  Google Scholar 

  • Shanmugam C, Gunasekaran D, Duraisamy N et al (2015) Bioactive bile salt-capped silver nanoparticles activity against destructive plant pathogenic fungi through in vitro system. RSC Adv 5:71174–71182

    Article  Google Scholar 

  • Shimizu M, Tainaka H et al (2009) Maternal exposure to nanoparticulate titanium dioxide during the prenatal period alters gene expression related to brain development in the mouse. Part Fibre Toxicol 6:20

    Article  Google Scholar 

  • Shintaku MH, Zhang L, Palukaitis P (1992) A single amino acid substitution in the coat protein of cucumber mosaic virus induces chlorosis in tobacco. Plant Cell 4:751–757

    CAS  Google Scholar 

  • Shivaprasad PV, Chen HM, Patel K et al (2012) A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell 24:859–874

    Article  CAS  Google Scholar 

  • Silva AT, Nguyen A, Ye C et al (2010) Conjugated polymer nanoparticles for effective siRNA delivery to tobacco BY2 protoplasts. BMC Plant Biol 10:1–14

    Article  Google Scholar 

  • Simonin M, Richaume A (2015) Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review. Environ Sci Pollut Res 22:13710–13723

    Article  CAS  Google Scholar 

  • Singh S, Singh M, Agrawal VV, Kumar A (2010) An attempt to develop surface plasmon resonance based immunosensor for Karnal bunt (Tilletia indica) diagnosis based on the experience of nano-gold based lateral flow immuno-dipstick test. Thin Solid Films 519:1156–1159

    Article  CAS  Google Scholar 

  • Slater H, Alvarez-Morales A, Barber CE et al (2000) A two-component system involving an HD-GYP domain protein links cell-cell signalling to pathogenicity gene expression in Xanthomonas campestris. Mol Microbiol 38:986–1003

    Article  CAS  Google Scholar 

  • Soenen S, Rivera-Gil P, Montenegro JM et al (2011) Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 6:446–465

    Article  CAS  Google Scholar 

  • Spetz C, Valkonen JPT (2004) Potyviral 6K2 protein long-distance movement and symptom-induction functions are independent and host-specific. Mol Plant-Microbe Interact 17:502–510

    Article  CAS  Google Scholar 

  • Strayer A, Ocsoy I, Tan W (2016) Low concentrations of a silver-based nanocomposite to manage bacterial spot of tomato in the greenhouse. Plant Dis 100:1460–1465

    Article  CAS  Google Scholar 

  • Strayer-Scherer AL, Liao YY, Young M et al (2018) Advanced copper composites against copper-tolerant Xanthomonas perforans and tomato bacterial spot. Phytopathology 108:196–205

    Article  CAS  Google Scholar 

  • Streubel J, Pesce C, Hutin M et al (2013) Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae. New Phytol 200:808–819

    Article  CAS  Google Scholar 

  • Sugawara K, Shiraishi T, Yoshida T et al (2013) A replicase of Potato virus X acts as the resistance breaking determinant for JAX1-mediated resistance. Mol Plant-Microbe Interact 26:1106–1112

    Article  CAS  Google Scholar 

  • Sun Q, Greve LC, Labavitch JM (2011) Polysaccharide compositions of intervessel pit membranes contribute to Pierce’s disease resistance of grapevines. Plant Physiol 155:1976–1987

    Article  CAS  Google Scholar 

  • Tamir-Ariel D, Rosenberg T, Navon N et al (2012) A secreted lipolytic enzyme from Xanthomonas campestris pv. vesicatoria is expressed in planta and contributes to its virulence. Mol Plant Pathol 13:556–567

    Article  CAS  Google Scholar 

  • Tans-Kersten J, Huang H, Allen C (2001) Ralstonia solanacearum needs motility for invasive virulence on tomato. J Bacteriol 183:3597–3605

    Article  CAS  Google Scholar 

  • Tilman D, Balzer C, Hill J et al (2011) Global food demand and the sustainable intensification of agriculture. PNAS 108:20260–20264

    Article  CAS  Google Scholar 

  • Toth IK, Bell KS, Holeva MC et al (2003) Soft rot erwiniae: from genes to genomes. Mol Plant Pathol 4:17–30

    Article  CAS  Google Scholar 

  • Trampari E, Stevenson CE, Little RH et al (2015) Bacterial rotary export ATPases are allosterically regulated by the nucleotide second messenger cyclic-di-GMP. J Biol Chem 290:24470–24483

    Article  CAS  Google Scholar 

  • Udalova ZV, Folmanis GE, Khasanov FK, Zinovieva SV (2018) Selenium nanoparticles—an inducer of tomato resistance to the root-knot nematode Meloidogyne incognita (Kofoid et White 1919) Chitwood 1949. Dokl Biochem Biophys 482:264–267

    Article  CAS  Google Scholar 

  • Vadlapudi V, Naidu KC (2011) Fungal pathogenicity of plants. Molecular approach. Eur J Exp Biol 1:38–42

    Google Scholar 

  • Vankar PS, Shukla D (2012) Biosynthesis of silver nanoparticles using lemon leaves extract and its application for antimicrobial finish on fabric. Appl Nanosci 2:163–168

    Article  CAS  Google Scholar 

  • Wang ZL (2004) Nanostructures of zinc oxide. Mater Today 7:26–33

    Article  CAS  Google Scholar 

  • Wang LH, He Y, Gao Y et al (2004) A bacterial cell–cell communication signal with cross-kingdom structural analogues. Mol Microbiol 51:903–912

    Article  CAS  Google Scholar 

  • Wang Z, Wei F, Liu SY et al (2010) Electrocatalytic oxidation of phytohormone salicylic acid at copper nanoparticles-modified gold electrode and its detection in oilseed rape infected with fungal pathogen Sclerotinia sclerotiorum. Talanta 80:1277–1281

    Article  CAS  Google Scholar 

  • Wang MB, Masuta C, Smith NA, Shimura H (2012) RNA silencing and plant viral diseases. Mol Plant-Microbe Interact 25:1275–1285

    Article  CAS  Google Scholar 

  • Wu Z, Kan FW, She YM et al (2012) Biofilm, ice recrystallization inhibition and freeze–thaw protection in an epiphyte community. Prikl Biokhim Mikrobiol 48:403–410

    CAS  Google Scholar 

  • Xia ZK, Ma QH, Li SY et al (2016) The antifungal effect of silver nanoparticles on Trichosporon asahii. J Microbiol Immunol Infect 49:182–188

    Article  CAS  Google Scholar 

  • Xin XF, He SY (2013) Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants. Annu Rev Phytopathol 51:473–498

    Article  CAS  Google Scholar 

  • Xu L, Liu Y, Bai R, Chen C (2010) Applications and toxicological issues surrounding nanotechnology in the food industry. Pure Appl Chem 82:349–372

    Article  CAS  Google Scholar 

  • Xu C, Peng C, Sun L et al (2015) Distinctive effects of TiO2 and CuO nanoparticles on soil microbes and their community structures in flooded paddy soil. Soil Biol Biochem 86:24–33

    Article  CAS  Google Scholar 

  • Yadeta K, Thomma B (2013) The xylem as battleground for plant hosts and vascular wilt pathogens. Front Plant Sci 4:97

    Article  Google Scholar 

  • Yang J, Hsiang T, Bhadauria V et al (2017) Plant fungal pathogenesis. Biomed Res Int 2017:9724283. https://doi.org/10.1155/2017/9724283

    Article  Google Scholar 

  • Yao KS, Li SJ, Tzeng KC et al (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Adv Mater Res 79:513–516

    Article  Google Scholar 

  • Yaryura PM, Conforte VP, Malamud F et al (2015) XbmR, a new transcription factor involved in the regulation of chemotaxis, biofilm formation and virulence in Xanthomonas citri subsp. citri. Environ Microbiol 17:4164–4176

    Article  CAS  Google Scholar 

  • Ye CM, Chen S, Payton M et al (2013) TGBp3 triggers the unfolded protein response and SKP1-dependent programmed cell death. Mol Plant Pathol 14:241–255

    Article  CAS  Google Scholar 

  • Yoon JY, Ahn HI, Kim M et al (2006) Pepper mild mottle virus pathogenicity determinants and cross protection effect of attenuated mutants in pepper. Virus Res 118:23–30

    Article  CAS  Google Scholar 

  • Yoshioka H, Shiraishi T, Yamada K et al (1990) Suppression of pisatin production and ATPase activity in pea plasma membranes by orthovanadate, verapamil and a suppressor from Mycosphaerella pinodes. Plant Cell Physiol 31:1139–1146

    CAS  Google Scholar 

  • You T, Liu D, Chen J et al (2018) Effects of metal oxide nanoparticles on soil enzyme activities and bacterial communities in two different soil types. J Soils Sediments 18:211–221

    Article  CAS  Google Scholar 

  • Yu J, Penaloza-Vazquez A, Chakrabarty AM et al (1999) Involvement of the exopolysaccharide alginate in the virulence and epiphytic fitness of Pseudomonas syringae pv. syringae. Mol Microbiol 33:712–720

    Article  CAS  Google Scholar 

  • Yu X, Lund SP, Scott RA et al (2013) Transcriptional responses of Pseudomonas syringae to growth in epiphytic versus apoplastic leaf sites. Proc Natl Acad Sci U S A 110:E425–E434

    Article  CAS  Google Scholar 

  • Zeng W, He SY (2010) A prominent role of the flagellin receptor FLAGELLINSENSING2 in mediating stomatal response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis. Plant Physiol 153:1188–1198

    Article  CAS  Google Scholar 

  • Zhang X, Yuan Y-R, Pei Y et al (2006) Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev 20:3255–3268

    Article  CAS  Google Scholar 

  • Zhang CZ, Liu YY, Sun XC et al (2008) Characterization of a specific interaction between IP-L, a tobacco protein localized in the thylakoid membranes, and tomato mosaic virus coat protein. Biochem Biophys Res Commun 374:253–257

    Article  CAS  Google Scholar 

  • Zhu SF, Gao F, Cao XS et al (2005) The rice dwarf virus P2 protein interacts with ent-kaurene oxidases in vivo, leading to reduced biosynthesis of gibberellins and rice dwarf symptoms. Plant Physiol 139:1935–1945

    Article  CAS  Google Scholar 

Download references

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pattanayak, S.P., Bose, P., Sunita, P. (2023). Interaction Between Nanoparticles and Phytopathogens. In: Fernandez-Luqueno, F., Patra, J.K. (eds) Agricultural and Environmental Nanotechnology. Interdisciplinary Biotechnological Advances. Springer, Singapore. https://doi.org/10.1007/978-981-19-5454-2_7

Download citation

Publish with us

Policies and ethics