Skip to main content

Mesenchymal Stem Cells Therapeutic Applications in Central Nervous System Disorders

  • Chapter
  • First Online:
Therapeutic Applications of Mesenchymal Stem Cells in Veterinary Medicine

Abstract

Mammalian nervous system is the most complex and little understood system of the body. An ailment to any structure of the central nervous system often leads to the mal- or non-function of the particular body organ or system controlled centrally. Currently, no therapeutic modality addresses these ailments in an effective way. As such regenerative medicine employing stem cells are being evaluated. Central nervous system is not devoid of stem cells; however, the limited concentration and their specific localization together with the environmental effect make their actions little effective. As such mesenchymal stem cells (MSCs) are being evaluated due to their characteristic properties like multiplication, differentiation, homing, immunomodulation/anti-inflammatory, antioxidant and reduction of apoptosis. In humans, more extensive studies are conducted as compared to the animals. There are numerous studies demonstrating MSCs in vitro neural-like cell differentiation, although some questions remain to be answered. In vivo applications are extended to various affections involving the meningoencephalomyelitis of unknown origin (MUO), canine distemper, global hypoxia injury, myelomeningocele (MMC) Parkinson’s disease (PD), spinal cord injury (SCI), intervertebral disc disease and Wobbler syndrome in animals. In all these studies, MSCs potential therapeutic role occurs through immunomodulation/anti-inflammatory actions (inhibiting astrogliosis and microgliosis), angiogenesis and growth and proliferation of local neural cells. Such a potential is further enhanced with the gene transfection and addition of scaffolds. However, the literature available on MSCs is limited enough to provide evidence-based medicine in case of different neural affections. The current chapter focuses on MSCs properties in relation to the central nervous system and their potential therapeutic applications in different clinical ailments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe N, Cavalli V (2008) Nerve injury signaling. Curr Opin Neurobiol 18(3):276–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adzick NS, Thom EA, Spong CY et al (2011) A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med 364:993–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahlgren BD, Lui W, Herkowitz HN, Panjabi MM, Guiboux JP (2000) Effect of annular repair on the healing strength of the intervertebral disc: a sheep model. Spine 25:2165–2170

    Article  CAS  PubMed  Google Scholar 

  • Al Delfi IRT, Wood CR, Johnson LDV, Snow MD, Innes JF, Myint P, Johnson WEB (2020) An in vitro comparison of the neurotrophic and angiogenic activity of human and canine adipose-derived mesenchymal stem cells (MSCs): translating MSC-Based therapies for spinal cord injury. Biomolecules 10:1301

    Article  PubMed Central  CAS  Google Scholar 

  • Amorim RM, Clark K, Walker NJ, Kumar P, Herout K, Borjesson DL, Wang A (2020) Placenta-derived multipotent mesenchymal stromal cells: a promising potential cell based therapy for canine inflammatory brain disease. Stem Cell Res Ther 11:304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrzejewska A, Dabrowska S, Lukomska B, Janowski M (2021) Mesenchymal stem cells for neurological disorders. Adv Sci 8(7):2002944

    Article  CAS  Google Scholar 

  • Ashinsky BG, Bonnevie ED, Mandalapu SA, Pickup S, Wang C, Han L, Mauck RL, Smith HE, Gullbrand SE (2020) Intervertebral disc degeneration is associated with aberrant endplate remodeling and reduced small molecule transport. J Bone Miner Res 35(8):1572–1581

    Article  PubMed  Google Scholar 

  • Bahat-Stroomza B, Barhum Y, Levy YS, Karpov O, Bulvik S, Melamed E et al (2009) Induction of adult human bone marrow mesenchymal stromal cells into functional astrocyte-like cells: potential for restorative treatment in Parkinson’s disease. J Mol Neurosci 39:199–210

    Article  CAS  PubMed  Google Scholar 

  • Bai L, Lennon DP, Caplan AI et al (2012) Hepatocyte growth factor mediates mesenchymal stem cell–induced recovery in multiple sclerosis models. Nat Neurosci 15:862–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao XJ, Liu FY, Lu S, Han Q, Feng M, Wei JJ, Li GL, Zhao RC, Wang RZ (2013) Transplantation of Flk-1+ human bone marrow-derived mesenchymal stem cells promotes behavioral recovery and anti-inflammatory and angiogenesis effects in an intracerebral hemorrhage rat model. Int J Mol Med 31(5):1087–1096

    Article  CAS  PubMed  Google Scholar 

  • Barberini DJ, Aleman M, Aristizabal F, Spriet M, Clark KC, Walker NJ, Galuppo LD, Amorim RM, Woolard KD, Borjesson DL (2018) Safety and tracking of intrathecal allogeneic mesenchymal stem cell transplantation in healthy and diseased horses. Stem Cell Res Ther 9:96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barzilay R, Ben-Zur T, Bulvik S, Melamed E, Offen D (2009) Lentiviral delivery of LMX1a enhances dopaminergic phenotype in differentiated human bone marrow mesenchymal stem cell. Stem Cells Dev 18:591–601

    Article  CAS  PubMed  Google Scholar 

  • Basso DM, Beattie MS, Bresnahan JC (1996) Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp Neurol 139:244–256

    Article  CAS  PubMed  Google Scholar 

  • Beckstein JC, Sen S, Schaer TP, Vresilovic EJ, Elliott DM (2008) Comparison of animal discs used in disc research to human lumbar disc: axial compression mechanics and glycosaminoglycan content. Spine 33:E166–E173

    Article  PubMed  Google Scholar 

  • Bedira T, Ulaga S, Ustundagb CB, Gunduz O (2020) 3D bioprinting applications in neural tissue engineering for spinal cord injury repair. Mater Sci Eng C 110:110741

    Article  CAS  Google Scholar 

  • Beineke A, Puff C, Seehusen F, Baumgärtner W (2009) Pathogenesis and immunopathology of systemic and nervous canine distemper. Vet Immunol Immunopathol 127:1–18

    Article  CAS  PubMed  Google Scholar 

  • Besalti O, Can P, Akpinar E, Aktas Z, Elcin AE, Elcin YM (2015) Intraspinal transplantation of autologous neurogenically-induced bone marrow-derived mesenchymal stem cells in the treatment of paraplegic dogs without deep pain perception secondary to intervertebral disk disease. Turk Neurosurg 25:625–632

    PubMed  Google Scholar 

  • Bhat IA, Sivanarayanan TB, Somal A, Pandey S, Bharti MK, Panda BSK, Indu B, Verma M, Anand J, Sonwane A et al (2019) An allogenic therapeutic strategy for canine spinal cord injury using mesenchymal stem cells. J Cell Physiol 234(3):2705–2718

    Article  CAS  PubMed  Google Scholar 

  • Blecker D, Elashry MI, Heimann M, Wenisch S, Arnhold S (2017) New insights into the neural differentiation potential of canine adipose tissue-derived mesenchymal stem cells. Anat Histol Embryol 46(3):304–315

    Article  CAS  PubMed  Google Scholar 

  • Boido M, Piras A, Valsecchi V, Spigolon G, Mareschi K, Ferrero I, Vizzini A, Temi S, Mazzini L, Fagioli F (2014) Human mesenchymal stromal cell transplantation modulates neuroinflammatory milieu in a mouse model of amyotrophic lateral sclerosis. Cytotherapy 16:1059–1072

    Article  CAS  PubMed  Google Scholar 

  • Boika A, Aleinikava N, Chyzhyk V, Zafranskaya M, Nizheharodava D, Ponomarev V (2020) Mesenchymal stem cells in Parkinson’s disease: motor and nonmotor symptoms in the early posttransplant period. Surg Neurol Int 11:380

    Article  PubMed  PubMed Central  Google Scholar 

  • Bowman RM, Mohan A, Ito J et al (2009) Tethered cord release: a long-term study in 114 patients. J Neurosurg Pediatr 3:181–187

    Article  PubMed  Google Scholar 

  • Brito HFV (2015) Use of bone marrow mononuclear cells for the treatment of neurological sequelae of canine distemper, Thesis (Doctorate). Federal University of Parana, Curitiba, Parana, Brazil. p 79. https://acervodigital.ufpr.br/handle/1884/41363

  • Brown EG, Keller BA, Lankford L, Pivetti CD, Hirose S, Farmer DL, Wang A (2016) Age does matter: a pilot comparison of placenta-derived stromal cells for in utero repair of myelomeningocele using a lamb model. Fetal Diagn Ther 39(3):179–185

    Article  PubMed  Google Scholar 

  • Buckley CT, Hoyland JA, Fujii K, Pandit A, Iatridis JC, Grad S (2018) Critical aspects and challenges for intervertebral disc repair and regeneration-harnessing advances in tissue engineering. JOR Spine 1(3):e1029

    Article  PubMed  PubMed Central  Google Scholar 

  • Bussolino F, Di Renzo MF, Ziche M et al (1992) Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J Cell Biol 119:629–641

    Article  CAS  PubMed  Google Scholar 

  • Cardoso TC, Ferrari HF, Garcia AF, Novais JB, Silva-Frade C, Ferrarezi MC, Andrade AL, Gamiero R (2012) Isolation and characterization of Wharton’s jelly-derived multipotent mesenchymal stromal cells obtained from bovine umbilical cord and maintained in defined serum free three-dimensional system. BMC Biotechnol 12:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardoso MT, Pinheiro AO, Vidane AS, Casals JB, de Oliveira VC, Gonçalves NJN, Martins DS, Ambrósio CE (2017a) Characterization of teratogenic potential and gene expression in canine and feline amniotic membrane-derived stem cells. Reprod Domest Anim 52(s2):58–64

    Article  CAS  PubMed  Google Scholar 

  • Cardoso TC, Okamura LH, Baptistella JC, Gameiro R, Ferreira HL, Marinho M, Flores EF (2017b) Isolation, characterization and immunomodulatory-associated gene transcription of Wharton’s jelly-derived multipotent mesenchymal stromal cells at different trimesters of cow pregnancy. Cell Tissue Res 367(2):243–256

    Article  CAS  PubMed  Google Scholar 

  • Ceccarelli G, Pozzo E, Scorletti F, Benedetti L, Cusella G, Ronzoni FL, Sahakyan V, Zambaiti E, Mimmi MC, Calcaterra V, Deprest J, Sampaolesi M, Pelizzo G (2015) Molecular signature of amniotic fluid derived stem cells in the fetal sheep model of myelomeningocele. J Pediatr Surg 50(9):1521–1527

    Article  PubMed  Google Scholar 

  • Cequier A, Sanz C, Rodellar C, Barrachina L (2021) The usefulness of mesenchymal stem cells beyond the musculoskeletal system in horses. Animals (Basel) 11(4):931

    Article  Google Scholar 

  • Choi Y-K, Lee DH, Seo Y-K, Jung H, Park J-K, Cho H (2014) Stimulation of neural differentiation in human bone marrow mesenchymal stem cells by extremely low-frequency electromagnetic fields incorporated with MNPs. Appl Biochem Biotechnol 174(4):1233–1245

    Article  CAS  PubMed  Google Scholar 

  • Choi Y-K, Urnukhsaikhan E, Yoon H-H, Seo Y-K, Cho H, Jeong J-S, Kim S-C, Park J-K (2017) Combined effect of pulsed electromagnetic field and sound wave on in vitro and in vivo neural differentiation of human mesenchymal stem cells. Biotechnol Prog 33(1):201–211

    Article  CAS  PubMed  Google Scholar 

  • Chung W-H, Park S-A, Lee J-H, Chung D-J, Yang W-J, Kang E-H, Choi C-B, Chang H-S, Kim D-H, Hwang S-H, Han H, Kim H-Y (2013) Percutaneous transplantation of human umbilical cord-derived mesenchymal stem cells in a dog suspected to have fibrocartilaginous embolic myelopathy. J Vet Sci 14(4):495–497

    Article  PubMed  PubMed Central  Google Scholar 

  • Cole C, Bentz B (2014) Treatment of equine nervous system disorders. In: Maxwell L (ed) Equine pharmacology. Wiley, Hoboken, NJ, pp 192–217

    Google Scholar 

  • Colpo GD, Ascoli BM, Wollenhaupt-Aguiar B, Pfaffenseller B et al (2015) Mesenchymal stem cells for the treatment of neurodegenerative and psychiatric disorders. An Acad Bras Cienc 87:1435–1449

    Article  CAS  PubMed  Google Scholar 

  • Corradetti B, Meucci A, Bizzaro D, Cremonesi F, Lange Consiglio A (2013) Mesenchymal stem cells from amnion and amniotic fluid in the bovine. Reproduction 145:391–400

    Article  CAS  PubMed  Google Scholar 

  • D’intino G, Vaccari F, Sivilia S, Ecagliarini A et al (2006) A molecular study of hippocampus in dogs with convulsion during canine distemper virus encephalitis. Brain Res 1098:186–195

    Article  PubMed  CAS  Google Scholar 

  • da Costa RC (2010) Cervical spondylomyelopathy (wobbler syndrome) in dogs. Vet Clin North Am Small Anim Pract 40(5):881–913

    Article  PubMed  Google Scholar 

  • Dabrowska S, Andrzejewska A, Strzemecki D, Muraca M, Janowski M, Lukomska B (2019) Human bone marrow mesenchymal stem cell-derived extracellular vesicles attenuate neuroinflammation evoked by focal brain injury in rats. J Neuroinflammation 16(1):216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daly CD, Ghosh P, Zannettino ACW, Badal T, Shimmon R, Jenkin G, Oehme D, Jain K, Sher I, Vais A, Cohen C, Chandra RV, Goldschlager T (2018) Mesenchymal progenitor cells primed with pentosan polysulfate promote lumbar intervertebral disc regeneration in an sheep model of microdiscectomy. Spine J 18(3):491–506

    Article  PubMed  Google Scholar 

  • Danzer E, Finkel RS, Rintoul NE et al (2008) Reversal of hindbrain herniation after maternal-fetal surgery for myelomeningocele subsequently impacts on brain stem function. Neuropediatrics 39:359–362

    Article  CAS  PubMed  Google Scholar 

  • De Decker S, da Costa RC, Volk HA, Van Ham LML (2012) Current insights and controversies in the pathogenesis and diagnosis of disc-associated cervical spondylomyelopathy in dogs. Vet Rec 171(21):531–537

    Article  PubMed  Google Scholar 

  • de Munter JPJM, Shafarevich I, Liundup A, Pavlov D, Wolters EC, Gorlova A, Veniaminova E, Umriukhin A, Kalueff A, Svistunov A, Kramer BW, Lesch KP, Strekalova T (2020) Neuro-cells therapy improves motor outcomes and suppresses inflammation during experimental syndrome of amyotrophic lateral sclerosis in mice. CNS Neurosci Ther 26:504–517

    Article  PubMed  CAS  Google Scholar 

  • Deng Y, Huang G, Zou L, Nong T, Yang X, Cui J, Wei Y, Yang S, Shi D (2018) Isolation and characterization of buffalo (bubalus bubalis) amniotic mesenchymal stem cells derived from amnion from the first trimester pregnancy. J Vet Med Sci 80(4):710–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng W-S, Yang K, Liang B, Liu Y-F, Chen X-Y, Zhang S (2021) Collagen/heparin sulfate scaffold combined with mesenchymal stem cells treatment for canines with spinal cord injury: a pilot feasibility study. J Orthop Surg 29(2):1–11

    Article  Google Scholar 

  • Denny JB (2006) Molecular mechanisms, biological actions, and neuropharmacology of the growth associated protein GAP-43. Curr Neuropharmacol 4:293–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dowdell J, Erwin M, Choma T, Vaccaro A, Iatridis J, Cho SK (2017) Intervertebral disk degeneration and repair. Neurosurgery 80(3S):S46–S54

    Article  PubMed  PubMed Central  Google Scholar 

  • Dueñas F, Becerra V, Cortes Y, Vidal S, Sáenz L, Palomino J, De Los RM, Peralta OA (2014) Hepatogenic and neurogenic differentiation of bone marrow mesenchymal stem cells from abattoir-derived bovine fetuses. BMC Vet Res 10:154

    Article  PubMed  PubMed Central  Google Scholar 

  • Edamura K, Kuriyama K, Kato K, Nakano R, Teshima K, Asano K, Sato T, Tanaka S (2012) Proliferation capacity, neuronal differentiation potency and microstructures after the differentiation of canine bone marrow stromal cells into neurons. J Vet Med Sci 74:923–927

    Article  PubMed  Google Scholar 

  • Edamura K, Takahashi Y, Fujii A, Masuhiro Y, Narita T, Seki M, Asano K (2020) Recombinant canine basic fibroblast growth factor-induced differentiation of canine bone marrow mesenchymal stem cells into voltage- and glutamate-responsive neuron-like cells. Regener Ther 15:121–128

    Article  Google Scholar 

  • Engel U, Wolswijk G (1996) Oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells derived from adult rat spinal cord: in vitro characteristics and response to PDGF, bFGF and NT-3. Glia 16:16–26

    Article  CAS  PubMed  Google Scholar 

  • Escalhão CCM, Ramos IP, Hochman-Mendez C, Brunswick THK, Lopes Souza SA, Gutfilen B, dos Santos Goldenberg RC, Coelho-Sampaio T (2017) Safety of allogeneic canine adipose tissue-derived mesenchymal stem cell intraspinal transplantation in dogs with chronic spinal cord injury. Stem Cells Int 2017:3053759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farmer DL, von Koch CS, Peacock WJ et al (2003) In utero repair of myelomeningocele: experimental pathophysiology, initial clinical experience, and outcomes. Arch Surg 138:872–878

    Article  PubMed  Google Scholar 

  • Fawcett JW, Asher RA (1999) The glial scar and CNS repair. Brain Res Bull 49:377

    Article  CAS  PubMed  Google Scholar 

  • Feitosa MLT, Sarmento CAP, BocabelloII RZ, Beltrão-Braga PCB, Pignatari GC, Giglio RF, Angelica Miglino M, Orlandin JR, Ambrósio CE (2017) Transplantation of human immature dental pulp stem cell in dogs with chronic spinal cord injury. Acta Cir Bras 32(7):540–549

    Article  PubMed  Google Scholar 

  • Fluehmann G, Doherr MG, Jaggy A (2006) Canine neurological diseases in a referral hospital population between 1989 and 2000 in Switzerland. J Small Anim Pract 47:582–587

    Article  CAS  PubMed  Google Scholar 

  • Freeman BJ, Kuliwaba JS, Jones CF, Shu CC, Colloca CJ, Zarrinkalam MR, Mulaibrahimovic A, Gronthos S, Zannettino AC, Howell S (2016) Allogeneic mesenchymal precursor cells promote healing in postero-lateral annular lesions and improve indices of lumbar intervertebral disc degeneration in an sheep model. Spine 41(17):1331–1339

    Article  PubMed  Google Scholar 

  • Furno DL, Pellitteri R, Graziano ACE, Giuffrida R, Vancheri C, Gili E, Cardile V (2013) Differentiation of human adipose stem cells into neural phenotype by neuroblastoma- or olfactory ensheathing cells-conditioned medium. J Cell Physiol 228(11):2109–2118

    Article  PubMed  CAS  Google Scholar 

  • Gabr H, Elkheir WA, Fares AE, Farghali HAM, Mahmoud BE, Madbouly MA, Gamal N, Hamaad AM, Elkheir AA, Hassan RM (2020) Free mesenchymal stem cell-associated exosomes induce better neuroregeneration than mesenchymal stem cells and neural differentiated mesenchymal stem cells in canine model of spinal cord injury. J Stem Cell Res Ther 10(6):463

    Google Scholar 

  • Galganski LA, Priyadarsini K, Vanover MA, Pivetti CD, Anderson JE, Lankford L, Paxton ZJ, Chung K, Lee C, Hegazi MS, Yamashiro KJ, Wang A, Farmer DL (2020) In utero treatment of myelomeningocele with placental mesenchymal stromal cells—selection of an optimal cell line in preparation for clinical trials. J Pediatr Surg 55(9):1941–1946

    Article  PubMed  Google Scholar 

  • Gao Y, Zhu Z, Zhao Y, Hua J, Ma Y, Guan W (2014) Multi-lineage potential research of bovine amniotic fluid mesenchymal stem cells. Int J Mol Sci 15:3698–3710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Mendívil L, Mediano DR, Hernaiz A, Sanz-Rubio D, Vázquez FJ, Marín B, López-Pérez Ó, Otero A, Badiola JJ, Zaragoza P et al (2021) Effect of scrapie prion infection in ovine bone marrow-derived mesenchymal stem cells and ovine mesenchymal stem cell-derived neurons. Animals 11:1137

    Article  PubMed  PubMed Central  Google Scholar 

  • Ge W, Ren C, Duan X, Geng D, Zhang C, Liu X, Chen H, Wan M, Geng R (2015) Differentiation of mesenchymal stem cells into neural stem cells using cerebrospinal fluid. Cell Biochem Biophys 71(1):449–455

    Article  CAS  PubMed  Google Scholar 

  • Goldschlager T, Ghosh P, Zannettino A, Gronthos S, Rosenfeld JV, Itescu S, Jenkin G (2010) Cervical motion preservation using mesenchymal progenitor cells and pentosan polysulfate, a novel chondrogenic agent: preliminary study in an ovine model. Neurosurg Focus 28(6):E4

    Article  PubMed  Google Scholar 

  • Gomez-Sanchez JA et al (2017) After nerve injury, lineage tracing shows that myelin and Remak Schwann cells elongate extensively and branch to form repair Schwann cells, which shorten radically on remyelination. J Neurosci 37(37):9086–9099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonçalves DSV, Gomes MVS, Guterra VLP, Lucchi-Rodrigues AF, Mathias CHT, Maestri LFP, Argôlo-Neto NM, Monteiro BS (2018) Mesenchymal stem cell infusion for the treatment of neurological sequelae of canine distemper virus: a clinical study. Genet Mol Res 17:GMR18088

    Article  Google Scholar 

  • Gonzalez R, Hamblin MH, Lee J-P (2016) Neural stem cell transplantation and CNS diseases. CNS Neurol Disord Drug Targets 15(8):881–886

    Article  CAS  PubMed  Google Scholar 

  • Granger N, Smith PM, Jeffery ND (2010) Clinical findings and treatment of non-infectious meningoencephalomyelitis in dogs: a systematic review of 457 published cases from 1962 to 2008. Vet J 184:290–297

    Article  PubMed  Google Scholar 

  • Granger N, Blamires H, Franklin RJM, Jeffery ND (2012) Autologous olfactory mucosal cell transplants in clinical spinal cord injury: a randomized double-blinded trial in a canine translational model. Brain 135:3227–3237

    Article  PubMed  PubMed Central  Google Scholar 

  • Griffin MF et al (2014) Peripheral nerve injury: principles for repair and regeneration. Open Orthop J 8:199–203

    Article  Google Scholar 

  • Gugjoo MB, Amarpal FMR, Shah RA, Mir MS, Sharma GT (2020) Goat mesenchymal stem cell basic research and potential applications. Small Rum Res 183:106045

    Article  Google Scholar 

  • Guilbaud L, Dugas A, Weber M, Deflers C, Lallemant P, Lilin T, Adam C, Cras A, Mebarki M, Zérah M, Faivre L, Larghero J, Jouannic J-M (2022) In utero treatment of myelomeningocele with allogenic umbilical cord-derived mesenchymal stromal cells in an ovine model. Curr Res Transl Med 70:103314

    Article  PubMed  Google Scholar 

  • Han S, Xiao Z, Li X, Zhao H, Wang B, Qiu Z, Li Z, Mei X, Xu B, Fan C, Chen B, Han J, Gu Y, Yang H, Shi Q, Dai J (2017) Human placenta-derived mesenchymal stem cells loaded on linear ordered collagen scaffold improves functional recovery after completely transected spinal cord injury in canine. Sci China Life Sci 61:2

    Article  PubMed  CAS  Google Scholar 

  • Hannila SS, Filbin MT (2008) The role of cyclic AMP signaling in promoting axonal regeneration after spinal cord injury. Exp Neurol 209(2):321–332

    Article  CAS  PubMed  Google Scholar 

  • Hang D, Li F, Che W, Wu X, Wan Y, Wang J, Zheng Y (2017) One-stage positron emission tomography and magnetic resonance imaging to assess mesenchymal stem cell survival in a canine model of intervertebral disc degeneration. Stem Cells Dev 26(18):1334–1343

    Article  CAS  PubMed  Google Scholar 

  • Heffez DS, Aryanpur J, Hutchins GM et al (1990) The paralysis associated with myelomeningocele: clinical and experimental data implicating a preventable spinal cord injury. Neurosurgery 26:987–992

    Article  CAS  PubMed  Google Scholar 

  • Herrera JJ, Haywood-Watson RJ 2nd, Grill RJ (2010) Acute and chronic deficits in the urinary bladder after spinal contusion injury in the adult rat. J Neurotrauma 27(2):423–431

    Article  PubMed  PubMed Central  Google Scholar 

  • Hillmann A, Ahrberg AB, Brehm W, Heller S, Josten C, Paebst F, Burk J (2016) Comparative characterization of human and equine mesenchymal stromal cells: a basis for translational studies in the equine model. Cell Transplant 25:109–124

    Article  PubMed  Google Scholar 

  • Hiyama A, Mochida J, Iwashina T, Omi H, Watanabe T, Serigano K, Tamura F, Sakai D (2008) Transplantation of mesenchymal stem cells in a canine disc degeneration model. J Orthop Res 26(5):589–600

    Article  CAS  PubMed  Google Scholar 

  • Hu P, Pu Y, Li X, Zhu Z, Zhao Y, Guan W, Ma Y (2015) Isolation, in vitro culture and identification of a new type of mesenchymal stem cell derived from fetal bovine lung tissues. Mol Med Rep 12:3331–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hulsebosch CE (2002) Recent advances in pathophysiology and treatment of spinal cord injury. Am J Physiol 26:238–255

    Google Scholar 

  • Hung SY, Liou HC, Fu WM (2010) The mechanism of heme oxygenase-1 action involved in the enhancement of neurotrophic factor expression. Neuropharmacology 58(2):321–329

    Article  CAS  PubMed  Google Scholar 

  • Hussain I, Sloan SR Jr, Wipplinger C, Navarro-Ramirez R, Zubkov M, Kim E, Kirnaz S, Bonassar LJ, Härtl R (2019) Mesenchymal stem cell-seeded high-density collagen gel for annular repair: 6-week results from in vivo sheep models. Neurosurgery 85(2):E350–E359

    Article  PubMed  Google Scholar 

  • Jaramillo-Merchán J, Jones J, Ivorra J, Pastor D, Viso-León M, Armengól JA et al (2013) Mesenchymal stromal-cell transplants induce oligodendrocyte progenitor migration and remyelination in a chronic demyelination model. Cell Death Dis 4(8):e779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Javanmard F, Azadbakht M, Pourmoradi M (2016) EXPERIMENTAL STUDY. The effect of hydrostatic pressure on staurosporine-induced neural differentiation in mouse bone marrow-derived mesenchymal stem cells. Bratisl Med J 117(5):283–289

    Article  CAS  Google Scholar 

  • Jellema RK, Ophelders DRMG, Zwanenburg A, Nikiforou M, Delhaas T, Andriessen P, Mays RW, Deans R, Germeraad WTV, Wolfs TGAM, Kramer BW (2015) Multipotent adult progenitor cells for hypoxic-ischemic injury in the preterm brain. J Neuroinflammation 12:241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang J, Lv Z, Gu Y, Li J, Xu L, Xu W et al (2010) Adult rat mesenchymal stem cells differentiate into neuronal-like phenotype and express a variety of neuro-regulatory molecules in vitro. Neurosci Res 66:46–52

    Article  CAS  PubMed  Google Scholar 

  • Jung D-I, Ha J, Kang B-T, Kim J-W, Quan F-S, Lee J-H, Woo E-J, Park H-M (2009) A comparison of autologous and allogenic bone marrow-derived mesenchymal stem cell transplantation in canine spinal cord injury. J Neurol Sci 285:67–77

    Article  PubMed  Google Scholar 

  • Kabagambe SK, Chen YJ, Farmer DL (2017a) Fetal surgery for myelomeningocele: a review of current clinical practice and translational research. Minerva Pediatr 69:59–65

    Article  PubMed  Google Scholar 

  • Kabagambe SK, Jensen GW, Chen YJ, Vanover MA, Farmer DL (2017b) Fetal surgery for myelomeningocele: a systematic review and meta-analysis of outcomes in fetoscopic versus open repair. Fetal Diagn Ther 43:161–174. https://doi.org/10.1159/000479505

    Article  PubMed  Google Scholar 

  • Kamishina H, Deng J, Oji T, Cheeseman JA, Clemmons RM (2006) Expression of neural markers on bone-marrow–derived canine mesenchymal stem cells. Am J Vet Res 67:1921–1928

    Article  CAS  PubMed  Google Scholar 

  • Kamphuis W, Mamber C, Moeton M, Kooijman L, Sluijs JA, Jansen AHP, Verveer M, de Groot LR, Smith VD, Rangarajan S, Rodriguez JJ, Orre M, Hol EM (2012) GFAP isoforms in adult mouse brain with a focus on neurogenic astrocytes and reactive astrogliosis in mouse models of Alzheimer disease. PLoS One 7:e42823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlupia N, Manley NC, Prasad K, Schäfer R, Steinberg GK (2014) Intraarterial transplantation of human umbilical cord blood mononuclear cells is more efficacious and safer compared with umbilical cord mesenchymal stromal cells in a rodent stroke model. Stem Cell Res Ther 5(2):45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaufman BA (2004) Neural tube defects. Pediatr Clin North Am 51:389–419

    Article  PubMed  Google Scholar 

  • Kermani S, Karbalaie K, Madani SH, Jahangirnejad AA, Eslaminejad MB, Nasr-Esfahani MH, Baharvand H (2008) Effect of lead on proliferation and neural differentiation of mouse bone marrow-mesenchymal stem cells. Toxicol In Vitro 22(4):995–1001

    Article  CAS  PubMed  Google Scholar 

  • Khan IU, Yoon Y, Kim A, Jo KR, Choi KU, Jung T, Kim N, Son YS, Kim WH, Kweon O-K (2018) Improved healing after the co-transplantation of HO-1 and BDNF overexpressed mesenchymal stem cells in the subacute spinal cord injury of dogs. Cell Transplant 27:1140–1153

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan IU, Yoon Y, Choi KU, Jo KR, Kim N, Lee E, Kim WH, Kweon O-K (2019) Therapeutic effects of intravenous injection of fresh and frozen thawed HO-1-overexpressed Ad-MSCs in dogs with acute spinal cord injury. Stem Cells Int 2019:8537541

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim JK, Lee HJ, Park HT (2014) Two faces of Schwann cell dedifferentiation in peripheral neurodegenerative diseases: pro-demyelinating and axon-preservative functions. Neural Regen Res 9:1952–1954

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim Y, Jo S-H, Kim WH, Kweon O-K (2015) Antioxidant and anti-inflammatory effects of intravenously injected adipose derived mesenchymal stem cells in dogs with acute spinal cord injury. Stem Cell Res Ther 6:229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim Y, Lee SH, Kim WH, Kweon O-K (2016) Transplantation of adipose derived mesenchymal stem cells for acute thoracolumbar disc disease with no deep pain perception in dogs. J Vet Sci 17(1):123–126

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim S-M, Li Q, An J-H, Chae H-K, Yang J-I, Ryu M-O, Nam A, Song W-J, Youn H-Y (2019) Enhanced angiogenic activity of dimethyloxalylglycine-treated canine adipose tissue-derived mesenchymal stem cells. J Vet Med Sci 81(11):1663–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim WK, Kim WH, Kweon O-K, Kang B-J (2022) Heat-shock proteins can potentiate the therapeutic ability of cryopreserved mesenchymal stem cells for the treatment of acute spinal cord injury in dogs. Stem Cell Rev Rep 18:1461–1477. https://doi.org/10.1007/s12015-021-10316-6

    Article  CAS  PubMed  Google Scholar 

  • Knell SC, Smolders LA, Pozzi A (2021) Ex vivo evaluation of the dynamic morphometry of the caudal cervical intervertebral disc spaces of small dogs and cats. Front Vet Sci 8:706452

    Article  PubMed  PubMed Central  Google Scholar 

  • Koniusz S, Andrzejewska A, Muraca M, Srivastava AK, Janowski M, Lukomska B et al (2016) Extracellular vesicles in physiology, pathology, and therapy of the immune and central nervous system, with focus on extracellular vesicles derived from mesenchymal stem cells as therapeutic tools. Front Cell Neurosci 10:109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kouli A, Torsney KM, Kuan W-L, Stoker TB, Greenland JC (2018) Parkinson’s disease: etiology, neuropathology, and pathogenesis. National Library of Medicine, Bethesda, MD

    Google Scholar 

  • Krabbe C, Zimmer J, Meyer M (2005) Neural trans-differentiation of mesenchymal stem cell: a review. APMIS 113:831–844

    Article  PubMed  Google Scholar 

  • Krueger E, Magrib LMS, Botelhoc AS, Bachd FS, Rebellatod CLK, Fracarod L, Fragosod FYI, Villanova JRJA, Brofmand PRS, Popović-Maneski L (2019) Effects of low-intensity electrical stimulation and adipose derived stem cells transplantation on the time-domain analysis-based electromyographic signals in dogs with SCI. Neurosci Lett 696:38–45

    Article  CAS  PubMed  Google Scholar 

  • Lange-Consiglio A, Corradetti B, BizzaroD MM, Ressel L, Tassan S, Parolini O, Cremones F (2012) Characterization and potential applications of progenitor-like cells isolated from horse amniotic membrane. Tissue Eng Reg Med 8(6):622–663

    Article  CAS  Google Scholar 

  • Lee J-H, Chang H-S, Kang E-H, Chung D-J, Choi C-B, Lee J-H, Hwang S-H, Han H, Kim H-Y (2009) Percutaneous transplantation of human umbilical cord blood–derived multipotent stem cells in a canine model of spinal cord injury Laboratory investigation. J Neurosurg Spine 11:749–757

    Article  PubMed  Google Scholar 

  • Lee H, McKeon RJ, Bellamkonda RV (2010) Sustained delivery of thermostabilized chABC enhances axonal sprouting and functional recovery after spinal cord injury. Proc Natl Acad Sci U S A 107:3340–3345

    Article  CAS  PubMed  Google Scholar 

  • Lee WS, Suzuki Y, Graves SS, Iwata M, Venkataraman GM, Mielcarek M, Peterson LJ, Ikehara S, Torok-Storb B, Storb R (2011) Canine bone-marrow–derived mesenchymal stromal cells suppress alloreactive lymphocyte proliferation in vitro but fail to enhance engraftment in canine bone marrow transplantation. Biol Blood Marrow Transplant 17:465–475

    Article  PubMed  Google Scholar 

  • Lee SH, Kim Y, Rhew D, Kuk M, Kim M, Kim WH, Kweon O-K (2015) Effect of the combination of mesenchymal stromal cells and chondroitinase ABC on chronic spinal cord injury. Cytotherapy 17:1374–1383

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Kim Y, Rhew D, Kim A, Jo KR, Yoon Y, Choi KU, Jung T, Kim WH, Kweon OK (2016) Impact of local injection of brain-derived neurotrophic factor-expressing mesenchymal stromal cells (MSCs) combined with intravenous MSC delivery in a canine model of chronic spinal cord injury. Cytotherapy S1465-3249(16):30540

    Google Scholar 

  • Lee SH, Kim Y, Rhew D, Kim A, Jo KR, Yoon Y, Choi KU, Jung T, Kim WH, Kweon O-K (2017) Effect of canine mesenchymal stromal cells overexpressing heme oxygenase-1 in spinal cord injury. J Vet Sci 18(3):377–386

    Article  PubMed  PubMed Central  Google Scholar 

  • Lempp C, Spitzbarth I, Puff C, Cana A, Kegler K, Techangamsuwan S, Baumgärtner W, Seehusen F (2014) New aspects of the pathogenesis of canine distemper leukoencephalitis. Viruses 6(7):2571–2601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine JM, Stincone F, Lee Y-S (1993) Development and differentiation of glial precursor cells in the rat cerebellum. Glia 7:307–321

    Article  CAS  PubMed  Google Scholar 

  • Li X, Tan J, Xiao Z, Zhao Y, Han S, Liu D, Yin W, Li J, Li J, WanggouS CB, Ren C, Jiang X, Dai J (2017) Transplantation of hUC-MSCs seeded collagen scaffolds reduces scar formation and promotes functional recovery in canines with chronic spinal cord injury. Sci Rep 7:43559

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao W, Zhong J, Yu J, Xie J, Liu Y, Du L, Yang S, Liu P, Xu J, Wang J, Han Z, Han ZC (2009) Therapeutic benefit of human umbilical cord derived mesenchymal stromal cells in intracerebral hemorrhage rat: implications of anti-inflammation and angiogenesis. Cell Physiol Biochem 24(3–4):307–316

    Article  CAS  PubMed  Google Scholar 

  • Lim JH, Byeon YE, Ryu HH, Jeong YH, Lee YW, Kim WH, Kang K-S, Kweon O-K (2007) Transplantation of canine umbilical cord blood-derived mesenchymal stem cells in experimentally induced spinal cord injured dogs. J Vet Sci 8:275–282

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Huang D, Zhang M, Chen Z, Jin J, Huang S, Zhang Z, Wang Z, Chen L, Chen L, Xu Y (2011) Cocaine- and amphetamine-regulated transcript promotes the differentiation of mouse bone marrow-derived mesenchymal stem cells into neural cells. BMC Neurosci 12:67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu K, Guo L, Zhou Z, Pan M, Yan C (2019) Mesenchymal stem cells transfer mitochondria into cerebral microvasculature and promote recovery from ischemic stroke. Microvasc Res 123:74–80

    Article  CAS  PubMed  Google Scholar 

  • Lomax-Bream LE, Barnes M, Copeland K et al (2007) The impact of spina bifida on development across the first 3 years. Dev Neuropsychol 31:1–20

    Article  PubMed  Google Scholar 

  • Long X, Olszewski M, Huang W, Kletzel M (2005) Neural cell differentiation in vitro from adult human bone marrow mesenchymal stem cells. Stem Cells Dev 14:65–69

    Article  CAS  PubMed  Google Scholar 

  • Lu P, Blesch A, Tuszynski MH (2004) Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation, or artifact? J Neurosci Res 77:174–191

    Article  CAS  PubMed  Google Scholar 

  • Lu B, Nagappan G, Lu Y (2014) BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb Exp Pharmacol 220:223–250

    Article  CAS  PubMed  Google Scholar 

  • Lyahyai J, Mediano DR, Ranera B, Sanz A, Remacha AR, Bolea R, Zaragoza P, Rodellar C, Martín-Burriel I (2012) Isolation and characterization of ovine mesenchymal stem cells derived from peripheral blood. BMC Vet Res 8:169

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma T, Gong K, Ao Q, Yan Y, Song B, Huang H, Zhang X, Gong Y (2013) Intracerebral transplantation of adipose-derived mesenchymal stem cells alternatively activates microglia and ameliorates neuropathological deficits in Alzheimer’s disease mice. Cell Transplant 22(Suppl 1):S113–S126. https://doi.org/10.3727/096368913X672181

    Article  PubMed  Google Scholar 

  • Maia L, da Cruz Landim-Alvarenga F, Taffarel MO, de Moraes CN, Machado GF, Melo GD, Amorim RM (2015) Feasibility and safety of intrathecal transplantation of autologous bone marrow mesenchymal stem cells in horses. BMC Vet Res 11:63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maina F, Klein R (1999) Hepatocyte growth factor, a versatile signal for developing neurons. Nat Neurosci 2:213–217

    Article  CAS  PubMed  Google Scholar 

  • Martinez AM, Goulart CD, Ramalho BD et al (2014) Neurotrauma and mesenchymal stem cells treatment: From experimental studies to clinical trials. World J Stem Cells 6:179–194

    Article  PubMed  PubMed Central  Google Scholar 

  • Mata R, Yao Y, Cao W, Ding J, Zhou T, Zhai Z, Gao C (2021) The dynamic inflammatory tissue microenvironment: signality and disease therapy by biomaterials. Research 2021:418951

    Article  CAS  Google Scholar 

  • Mediano DR, Sanz-Rubio D, Bolea R, Marίn B, Vázquez FJ, Remacha AR, Pez-Pérez O, Fernández-Borges N, Castilla J, Zaragoza P, Badiola JJ, Rodellar C, Martίn-Burriel I (2015) Characterization of mesenchymal stem cells in sheep naturally infected with scrapie. J Gen Virol 96:3715–3726

    Article  CAS  PubMed  Google Scholar 

  • Mendes-Pinheiro B, Marote A, Marques CR, Teixeira FG, Ribeiro JC, Salgado AJ (2020) Applications of the stem cell secretome in regenerative medicine. In: El-Hashash AHK (ed) Mesenchymal stem cells in human health and diseases. Elsevier, Amsterdam, pp 79–114

    Chapter  Google Scholar 

  • Mihevc SP, Grgich VK, Kopitar AN, Mohoric N, Majdic G (2020) Neural differentiation of canine mesenchymal stem cells/multipotent mesenchymal stromal cells. BMC Vet Res 16:282

    Article  CAS  Google Scholar 

  • Moloney T, Rooney G, Barry F, Howard L, Dowd E (2010) Potential of rat bone marrow-derived mesenchymal stem cells as vehicles for delivery of neurotrophins to the Parkinsonian rat brain. Brain Res 1359:33–43

    Article  CAS  PubMed  Google Scholar 

  • Monteiro BA (2017) Effects of Therapy with Mesenchymal Stem Cells on Disorders of the Nervous System of dogs, Thesis (Doctorate). Faculty of Veterinary Medicine and Zootechnics, Paulista State University, Botucatu Campus, Sao Paulo, Brazil. 68p. https://repositorio.unesp.br/handle/11449/151543

  • Morshead CM, Reynolds BA, Craig CG, McBurney MW, Staines WA, Morassutti D, Weiss S, Van der Kooy D (1994) Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13:1071–1082

    Article  CAS  PubMed  Google Scholar 

  • Mou X, Wang S, Liu X, Guo W, Li J, Qiu J, Yu X, Wang ZL, Liu X, Geng Z, Liu H (2017) Static pressure-induced neural differentiation of mesenchymal stem cells. Nanoscale 9(28):10031–10037

    Article  CAS  PubMed  Google Scholar 

  • Mrkovački J, Dražilov SS, Spasovski V, Fazlagić A, Pavlović S, Nikčević G (2021) Case report: successful therapy of spontaneously occurring canine degenerative lumbosacral stenosis using autologous adipose tissue-derived mesenchymal stem cells. Front Vet Sci 8:732073

    Article  PubMed  PubMed Central  Google Scholar 

  • Munoz JL, Greco SG, Patel SA, Sherman LS, Bhatt S, Bhatt RS, Shrensel JA, Guan Y-Z, Xie G, Ye J-H, Rameshwar P, Siegel A (2012) Feline bone marrow-derived mesenchymal stromal cells (MSCs) show similar phenotype and functions with regards to neuronal differentiation as human MSCs. Differentiation 84(2):214–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myckatyn TM, Mackinnon SE, McDonald JW (2004) Stem cell transplantation and other novel techniques for promoting recovery from spinal cord injury. Transpl Immunol 12:343–358

    Article  CAS  PubMed  Google Scholar 

  • Naito E, Kudo D, Sekine S-I, Watanabe K, Kobatake Y, Tamaoki N, Inden M, Iida K, Ito Y, Hozumi I, Shibata T, Maeda S, Kamishina H (2015) Characterization of canine dental pulp cells and their neuroregenerative potential. In Vitro Cell Dev Biol Animal 51:1012–1022

    Article  CAS  Google Scholar 

  • Nakamura Y, Miyaki S, Ishitobi H, Matsuyama S, Nakasa T, Kamei N, Akimoto T, Higashi Y, Ochi M (2015) Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration. FEBS Lett 589(11):1257–1265

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M, Nishida H, Yoshizaki K, Akiyoshi H, Hatoya S, Sugiura K, Inaba T (2020) Canine mesenchymal stromal cell-conditioned medium promotes survival and neurite outgrowth of neural stem cells. J Vet Med Sci 82(5):668–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano R, Edamura K, Sugiya H, Narita T, Okabayashi K, Moritomo T, Teshima K, Asano K, Nakayama T (2013) Evaluation of mRNA expression levels and electrophysiological function of neuron-like cells derived from canine bone marrow stromal cells. Am J Vet Res 74:1311–1320

    Article  CAS  PubMed  Google Scholar 

  • Nakano R, Edamura K, Nakayama T, Teshima K, Asano K, Narita T, Okabayashi K, Sugiya H (2015) Differentiation of canine bone marrow stromal cells into voltage- and glutamate responsive neuron-like cells by basic fibroblast growth factor. J Vet Med Sci 77(1):27–35

    Article  CAS  PubMed  Google Scholar 

  • Nessler J, Bénardais K, Gudi V, Hoffmann A, Salinas Tejedor L, Janßen S, Prajeeth CK, Baumgärtner W, Kavelaars A, Heijnen CJ, van Velthoven C, Hansmann F, Skripuletz T, Stangel M (2013) Effects of murine and human bone marrow-derived mesenchymal stem cells on cuprizone induced demyelination. PLoS One 8:e69795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nessler J, Wohlsein P, Junginger J, Hansmann F, Erath J, Söbbeler F, Dziallas P, Tipold A (2020) Meningoencephalomyelitis of unknown origin in cats: a case series describing clinical and pathological findings. Front Vet Sci 7:291. https://doi.org/10.3389/fvets.2020.00291

  • Neuhuber B, Gallo G, Howard L, Kostur L, MacKay A, Fischer I (2004) Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of the actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. J Neurosci Res 7:192–204

    Article  CAS  Google Scholar 

  • Nishida H, Nakayama M, Tanaka H, Kitamura M, Hatoya S, Sugiura K, Suzuki Y, Ide C, Inaba T (2011) Evaluation of transplantation of autologous bone marrow stromal cells into the cerebrospinal fluid for treatment of chronic spinal cord injury in dogs. Am J Vet Res 72:1118–1123

    Article  PubMed  Google Scholar 

  • Oda Y, Tani K, Kanei T, Haraguchi T, Itamoto K, Nakazawa H, Taura Y (2013) Characterization of neuronlike cells derived from canine bone marrow stromal cells. Vet Res Commun 37:133–138

    Article  PubMed  Google Scholar 

  • Oehme D, Ghosh P, Shimmon S, Wu J, McDonald C, Troupis JM, Goldschlager T, Rosenfeld JV, Jenkin G (2014) Mesenchymal progenitor cells combined with pentosan polysulfate mediating disc regeneration at the time of microdiscectomy: a preliminary study in an ovine model. J Neurosurg Spine 20(6):657–669

    Article  PubMed  Google Scholar 

  • Oehme D, Ghosh P, Goldschlager T, Itescu S, Shimon S, Wu J, McDonald C, Troupis JM, Rosenfeld JV, Jenkin G (2016) Reconstitution of degenerated ovine lumbar discs by STRO-3-positive allogeneic mesenchymal precursor cells combined with pentosan polysulfate. J Neurosurg Spine 24(5):715–726

    Article  PubMed  Google Scholar 

  • Oh HJ, Park JE, Kim MJ, Hong SG, Ra JC, Jo JY, Kang SK, Jang G, Lee BC (2011) Recloned dogs derived from adipose stem cells of a transgenic cloned beagle. Theriogenology 75:1221–1231

    Article  PubMed  Google Scholar 

  • Okano H (2006) Adult neural stem cells and central nervous system repair. Ernst Schering Res Found Workshop 60:215–228

    Article  CAS  Google Scholar 

  • Olby N (1999) Current concepts in the management of acute spinal cord injury. J Vet Intern Med 13(5):399–407

    Article  CAS  PubMed  Google Scholar 

  • Olby N (2010) The pathogenesis and treatment of acute spinal cord injuries in dogs. Vet Clin North Am Small AnimPract 40:791–807

    Article  Google Scholar 

  • Ophelders DRMG, Wolfs TGAM, Jellema RK, Zwanenburg A, Andriessen P, Delhaas T, Ludwig A-K, Radtke S, Peters V, Janssen L, Giebel B, Kramer BW (2016) Mesenchymal stromal cell-derived extracellular vesicles protect the fetal brain after hypoxia-ischemia. Stem Cells Transl Med 5:754–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orlandin JR, da Silva GI, de FátimaSallum LS, Cagnim AF, Casals JB, Carregaro AB, Freitas SH, Machado LC, Reis Castiglioni MC, Garcia Alves AL, de Vasconcelos Machado VM, Ambrósio CE (2021) Treatment of chronic spinal cord injury in dogs using amniotic membrane-derived stem cells: preliminary results. Stem Cells Clon 14:39–49

    Google Scholar 

  • Osaka K, Tanimura T, Hirayama A et al (1978) Myelomeningocele before birth. J Neurosurg 49:711–724

    Article  CAS  PubMed  Google Scholar 

  • Palmer TD, Takahashi J, Gage FH (1997) The adult rat hippocampus contains primordial neural stem cells. Mol Cell Neurosci 8:389–404

    Article  CAS  PubMed  Google Scholar 

  • Pan B, Fu CD, Ge YL, Li ZY, Zhang ZJ, Liu HM et al (2014) Unilateral pedicle screw fixation and transforaminal lumbar interbody fusion through paraspinal muscle approach for recurrent lumbar disc herniation combined with lumbar instability. Zhongguo Gu Shang 27:712–716

    PubMed  Google Scholar 

  • Park S-S, Byeon Y-E, Ryu H-H, Kang B-J, Kim YS, Kim W-H, Kang K-S, Han H-J, Kweon O-K (2011) Comparison of canine umbilical cord blood-derived mesenchymal stem cell transplantation times: involvement of astrogliosis, inflammation, intracellular actin cytoskeleton pathways, and neurotrophin-3. Cell Transplant 20:1867–1880

    Article  PubMed  Google Scholar 

  • Park SS, Lee YJ, Lee SH, Lee D, Choi K, Kim WH, Kweon OK, Han HJ (2012) Functional recovery after spinal cord injury in dogs treated with a combination of matrigel and neural-induced adipose-derived mesenchymal stem cells. Cytotherapy 14:584–597

    Article  CAS  PubMed  Google Scholar 

  • Penha EM, Aguiar PHP, Barrouin-Melo SM, de Lima RS, da Silveira ACC, Otelo ARS, Pinheiro CMB, Ribeiro-dos-Santos R, Soares MBP (2012) Clinical neurofunctional rehabilitation of a cat with spinal cord injury after hemilaminectomy and autologous stem cell transplantation. Int J Stem Cells 5(2):146–150

    Article  PubMed  PubMed Central  Google Scholar 

  • Penha EM, Meira CS, Guimarães ET, Mendonça MVP, Gravely FA, Pinheiro CMB, Pinheiro TMB, Barrouin-Melo SM, Ribeiro-dos-Santos R, Soares MBP (2014) Use of autologous mesenchymal stem cells derived from bone marrow for the treatment of naturally injured spinal cord in dogs. Stem Cells Int 2014:437521

    Article  PubMed  PubMed Central  Google Scholar 

  • Pezzanite L, Easley J (2019) Update on surgical treatment of wobblers. Vet Clin North Am Equine Pract 35(2):299–309

    Article  PubMed  Google Scholar 

  • Pinheiro AO, Cardoso MT, Vidane AS, Casals JB, Passarelli D, Alencar ALF, Sousa RLM, Fantinato-Neto P, Oliveira VC, Lara VM et al (2016) Controversial results of therapy with mesenchymal stem cells in the acute phase of canine distemper disease. Genet Mol Res 15(2). https://doi.org/10.4238/gmr.15028310.

  • Pinheiro LL, de Lima AR, Martins DM, de Oliveira EHC, Souza MPC, de Carvalho Miranda CMF, Beltrão-Braga PCB, Russo FB, Conceição Pignatari G, da Silva FE, Branco E (2019) Mesenchymal stem cells in dogs with demyelinating leukoencephalitis as an experimental model of multiple sclerosis. Heliyon 5(6):e01857

    Article  PubMed  PubMed Central  Google Scholar 

  • Ployart S, Doran I, Bomassi E, Bille C, Libermann S (2013) Myelomeningocele and a dermoid sinus-like lesion in a French bulldog. Can Vet J 54:1133–1136

    PubMed  PubMed Central  Google Scholar 

  • Qi D, Ouyang C, Wang Y, Zhang S, Ma X, Song Y, Yu H, Tang J, Fu W, Sheng L (2014) Ho-1 attenuates hippocampal neurons injury via the activation of BDNF–TRKB–PI3K/AKT signaling pathway in stroke. Brain Res 1577:69–76

    Article  CAS  PubMed  Google Scholar 

  • Quah C, Syme G, Swamy GN, Nanjayan S, Fowler A, Calthorpe D (2014) Obesity and recurrent intervertebral disc prolapse after lumbar microdiscectomy. Ann R Coll Surg Engl 96:140–143. https://doi.org/10.1308/003588414X13814021676873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radtke C, Schmitz B, Spies M, Kocsis JD, Vogt PM (2009) Peripheral glial cell differentiation from neurospheres derived from adipose mesenchymal stem cells. Int J Dev Neurosci 27(8):817–823

    Article  CAS  PubMed  Google Scholar 

  • Rismanchi N, Floyd CL, Berman RF, Lyeth BG (2003) Cell death and long-term maintenance of neuron-like state after differentiation of rat bone marrow stromal cells: a comparison of protocols. Brain Res 991:46–55

    Article  CAS  PubMed  Google Scholar 

  • Rivers FJ, Couillard-Despres S, Pedre X, Ploetz S, Caioni M, Lois C et al (2006) Mesenchymal stem cells instruct oligodendrogenic fate decision on adult neural stem cells. Stem Cells 24:2209–2219

    Article  CAS  Google Scholar 

  • Roach JW, Short BF, Saltzman HM (2011) Adult consequences of spina bifida: a cohort study. Clin Orthop Relat Res 469:1246–1252

    Article  PubMed  Google Scholar 

  • Roszek K, Makowska N, Czarnecka J, Porowinska D, Dabrowski M, Danielewska J, Nowak W (2016) Canine adipose-derived stem cells: purinergic characterization and neurogenic potential for therapeutic applications. J Cell Biochem 9999:1–8

    Google Scholar 

  • Rotshenker S (2011) Wallerian degeneration: the innate-immune response to traumatic nerve injury. J Neuroinflammation 8:109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu H-H, Lim J-H, Byeon Y-E, Park J-R, Seo M-S, Lee Y-W, Kim WH, Kang K-S, Kweon O-K (2009) Functional recovery and neural differentiation after transplantation of allogenic adipose-derived stem cells in a canine model of acute spinal cord injury. J Vet Sci 10(4):273–284

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryu H-H, Kang B-J, Park S-S, Kim Y, Sung G-J, Woo H-M, Kim WH, Kweon O-K (2012) Comparison of Mesenchymal stem cells derived from fat, bone marrow, Wharton’s jelly, and umbilical cord blood for treating spinal cord injuries in dogs. J Vet Med Sci 74(12):1617–1630

    Article  CAS  PubMed  Google Scholar 

  • Safford KM, Hicok KC, Safford SD, Halvorsen Y-DC, Wilkison WO, Gimble JM, Rice HE (2002) Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun 294:371–379

    Article  CAS  PubMed  Google Scholar 

  • Salehi MS, Pandamooz S, Safari A, Jurek B, Tamadon A, Namavar MR, Dianatpour M, Dargahi L, Azarpira N, Fattahi S, Shid Moosavi SM, Keshavarz S, Khodabandeh Z, Zare S, Nazari S, Heidari M, Izadi S, Poursadeghfard M, Borhani-Haghighi A (2020) Epidermal neural crest stem cell transplantation as a promising therapeutic strategy for ischemic stroke. CNS Neurosci Ther 26(7):670–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salem NA (2019) Mesenchymal stem cell based therapy for Parkinsonʼs disease. Int J Stem Cell Res Ther 6:062

    CAS  Google Scholar 

  • Sarmento CAP, Rodrigues MN, Bocabello RZ, Mess AM, Miglino MA (2014) Pilot study: bone marrow stem cells as a treatment for dogs with chronic spinal cord injury. Regener Med Res 2:9

    Article  Google Scholar 

  • Seo MS, Jeong YH, Park JR, Park SB, Rho KH, Kim HS, Yu KR, Lee SH, Jung JW, Lee YS, Kang KS (2009) Isolation and characterization of canine umbilical cord blood-derived mesenchymal stem cells. J Vet Sci 10:181–187

    Article  PubMed  PubMed Central  Google Scholar 

  • Seo MS, Park SB, Kang KS (2012) Isolation and characterization of canine Wharton’s jelly-derived Mesenchymal stem cells. Cell Transplant 21:1493–1502

    Article  PubMed  Google Scholar 

  • Serigano K, Sakai D, Hiyama A, Tamura F, Tanaka M, Mochida J (2010) Effect of cell number on mesenchymal stem cell transplantation in a canine disc degeneration model. J Orthop Res 28:1267–1275

    Article  PubMed  Google Scholar 

  • Shanko Y, Navitskaya V, Zamaro A, Zafranskaya M, Krivenko S, Koulchitsky S et al (2018) Somatotopic principle of perineural implantation of stem cells in patients with brain injuries. J Neurol Stroke 8:259–261

    Google Scholar 

  • Sharma N, SWK DLH, Ghosh M, Sodhi SS, Singh AK, Kim NE et al (2017) A PiggyBac mediated approach for lactoferricin gene transfer in bovine mammary epithelial stem cells for management of bovine mastitis. Oncotarget 8(61):104272

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharun K, Kumar R, Chandra V, Saxena AC, Pawde AM, Kinjavdekar P, Dhama K, Amarpal I, Sharma GT (2021) Percutaneous transplantation of allogenic bone marrow-derived mesenchymal stem cells for the management of paraplegia secondary to Hansen type I intervertebral disc herniation in a Beagle dog. Iran J Vet Res 22:161–166. https://doi.org/10.22099/IJVR.2021.38613.5620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheikh AM, Yano S, Mitaki S, Haque MA, Yamaguchi S, Nagai A (2019) A mesenchymal stem cell line (B10) increases angiogenesis in a rat MCAO model. Exp Neurol 311:182–193

    Article  CAS  PubMed  Google Scholar 

  • Shetty P, Ravindran G, Sarang S, Thakur A, Rao H et al (2009) Clinical grade mesenchymal stem cells transdifferentiated under xenofree conditions alleviates motor deficiencies in a rat model of Parkinson’s disease. Cell Biol Int 33:830–838

    Article  CAS  PubMed  Google Scholar 

  • Shihabuddin LS, Ray J, Gage FH (1997) FGF-2 is sufficient to isolate progenitors found in the adult mammalian spinal cord. Exp Neurol 148:577–586

    Article  CAS  PubMed  Google Scholar 

  • Shu CC, Dart A, Bell R, Dart C, Clarke E, Smith MM, Little CB, Melrose J (2018) Efficacy of administered mesenchymal stem cells in the initiation and co-ordination of repair processes by resident disc cells in an ovine (Ovis aries) large destabilizing lesion model of experimental disc degeneration. JOR Spine 1(4):e1037

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh M, Kakkar A, Sharma R, Kharbanda OP, Monga N, Kumar M, Chowdhary S, Airan B, Mohanty S (2017) Synergistic effect of BDNF and FGF2 in efficient generation of functional dopaminergic neurons from human mesenchymal stem cells. Sci Rep 7:10378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Somal A, Bhat IA, Baiju I, Pandey S, Panda BSK, Thakur N, Sarkar M, Chandra V, Saikumar G, Sharma GT (2016) A comparative study of growth kinetics, in vitro differentiation potential and molecular characterization of fetal adnexa derived caprine mesenchymal stem cells. PLoS One 11(6):e0156821

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song S, Sanchez-Ramos J (2003) Brain as the sea of marrow. Exp Neurol 184:54–60

    Article  CAS  PubMed  Google Scholar 

  • Souvenir R, Fathali N, Ostrowski RP et al (2011) Tissue inhibitor of matrix metalloproteinase-1 mediates erythropoietin-induced neuroprotection in hypoxia ischemia. Neurobiol Dis 44:28–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steffen F, Bertolo A, Affentranger R, Ferguson SJ, Stoyanov J (2018) Treatment of naturally degenerated canine lumbosacral intervertebral discs with autologous mesenchymal stromal cells and collagen microcarriers: a prospective clinical study. Cell Transplant 28:201–211. https://doi.org/10.1177/0963689718815459

    Article  PubMed  PubMed Central  Google Scholar 

  • Sulaiman W, Gordon T (2013) Neurobiology of peripheral nerve injury, regeneration, and functional recovery: from bench top research to bedside application. Ochsner J 13(1):100–108

    PubMed  PubMed Central  Google Scholar 

  • Sullivan R et al (2016) Peripheral nerve injury: stem cell therapy and peripheral nerve transfer. Int J Mol Sci 17(12):2101

    Article  PubMed Central  CAS  Google Scholar 

  • Sun T, Yu C, Gao Y, Zhao C, Hua J, Cai L, Guan W, Ma Y (2014) Establishment and biological characterization of a dermal mesenchymal stem cells line from bovine. Biosci Rep 34(2):139–146

    Article  CAS  Google Scholar 

  • Tejima E, Guo S, Murata Y et al (2009) Neuroprotective effects of overexpressing tissue inhibitor of metalloproteinase TIMP-1. J Neurotrauma 26:1935–1941

    Article  PubMed  PubMed Central  Google Scholar 

  • Temple S, Alvarez-Buylla A (1999) Stem cells in the adult mammalian central nervous system. Curr Opin Neurobiol 9:135–141

    Article  CAS  PubMed  Google Scholar 

  • Terada N, Hamazaki T, Ok M, Hoki M, Mastalerz DM, Nakano Y et al (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416:542–545

    Article  CAS  PubMed  Google Scholar 

  • Testoni S, Dall’apria A, Gallo D, Gentile A (2010) Spina bifida in calves: description of seven cases. Large Anim Rev 16(2):63–66

    Google Scholar 

  • Tharasanit T, Phutikanit N, Wangdee C, Soontornvipart K, Tantrajak S, Kaewamatawong T, Suwimonteerabutr J, Supaphol P, Techakumphu M (2011) Differentiation potentials of canine bone marrow mesenchymal stem cells. Thailand J Vet Med 41(1):79–86

    Google Scholar 

  • Titushkin I, Sun S, Shin J, Cho M (2010) Physicochemical control of adult stem cell differentiation: shedding light on potential molecular mechanisms. J Biomed Biotechnol 2010:743476. https://doi.org/10.1155/2010/743476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tondreau T, Lagneaux L, Dejeneffe M, Massy M, Mortier C, Delforge A, Bron D (2004) Bone marrow-derived mesenchymal stem cells already express specific neural proteins before any differentiation. Differentiation 72(7):319–326

    Article  CAS  PubMed  Google Scholar 

  • Ulrich R, Puff C, Wewetzer K (2014) Transcriptional changes in canine distemper virus-induced demyelinating leukoencephalitis favor a biphasic mode of demyelination. PLoS One 9:e95917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Uranio MF, Valentini L, Lange-Consiglio A, Caira M, Guaricci AC, L’abbate A, Catacchio CR, Ventura M, Cremonesi F, Dell’aquila ME (2011) Isolation, proliferation, cytogenetic, and molecular characterization and in vitro differentiation potency of canine stem cells from foetal adnexa: a comparative study of amniotic fluid, amnion, and umbilical cord matrix. Mol Reprod Dev 78:361–373

    Article  CAS  Google Scholar 

  • Uranio MF, Dell’aquila ME, Caira M, Guaricci AC, Ventura M, Catacchio C, Martino NA, Valentini L (2014) Characterization and in vitro differentiation potency of early-passage canine amnion- and umbilical cord-derived mesenchymal stem cells as related to gestational age. Mol Reprod Dev 81:539–551

    Article  CAS  Google Scholar 

  • Urrutia DN, Caviedes P, Mardones R, Minguell JJ, Vega-Letter AM, Jofre CM (2019) Comparative study of the neural differentiation capacity of mesenchymal stromal cells from different tissue sources: an approach for their use in neural regeneration therapies. PLoS One 14(3):e0213032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vassilopoulos G, Wang PR, Russell DW (2003) Transplanted bone marrow regenerates liver by cell fusion. Nature 422:901–904

    Article  CAS  PubMed  Google Scholar 

  • Venkataramana N, Kumar S, Balaraju S, Radhakrishnan R, Bansal A et al (2010) Open labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease. Transl Res 155:62–70

    Article  CAS  PubMed  Google Scholar 

  • Vikartovska Z, Kuricova M, Farbakova J, Liptak T, Mudronova D, Humenik F, Madari A, Maloveska M, Sykova E, Cizkova D (2020) Stem cell conditioned medium treatment for canine spinal cord injury: pilot feasibility study. Int J Mol Sci 21:5129

    Article  CAS  PubMed Central  Google Scholar 

  • Villagrán CC, Amelse L, Neilsen N, Dunlap J, Dhar M (2014) Differentiation of equine mesenchymal stromal cells into cells of neural lineage: potential for clinical applications. Stem Cells Int 2014:891518

    Google Scholar 

  • von Koch CS, Compagnone N, Hirose S, Yoder S, Harrison MR, Farmer DL (2005) Myelomeningocele: characterization of a surgically induced sheep model and its central nervous system similarities and differences to the human disease. Am J Obstet Gynecol 193:1456–1462

    Article  Google Scholar 

  • Wang A, Brown EG, Lankford L, Keller BA, Pivetti CD, Sitkin NA, Beattie MS, Bresnahan JC, Farmer DL (2015) Placental mesenchymal stromal cells rescue ambulation in sheep myelomeningocele. Stem Cells Transl Med 4:659–669

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Wang X, Lai D, Deng J, Hou Z, Liang H, Liu D (2018) BIX-01294 promotes the differentiation of adipose mesenchymal stem cells into adipocytes and neural cells in Arbas cashmere goats. Res Vet Sci 119:9–18

    Article  CAS  PubMed  Google Scholar 

  • Webb AA, Ngan S, Fowler JD (2010) Spinal cord injury I: a synopsis of the basic science. Can Vet J 51:485–492

    PubMed  PubMed Central  Google Scholar 

  • Weimann JM, Charlton CA, Brazelton TR, Hackman RC, Blau HM (2003) Contribution of transplanted bone marrow cells to Purkinje neurons in adult brains. Proc Natl Acad Sci U S A 100:2088–2093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weishaupt N, Blesch A, Fouad K (2012) BDNF: the career of a multifaceted neurotrophin in spinal cord injury. Exp Neurol 238:254–264

    Article  CAS  PubMed  Google Scholar 

  • Weiss S, Dunne C, Hewson J, Wohl C, Wheatley M, Peterson AC, Reynolds BA (1996) Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci 16:7599–7609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • William JB, Prabakaran R, Ayyappan S, Puskhinraj H, Rao D, Manjunath SR, Thamaraikannan P, Dedeepiya VD, Kuroda S, Yoshioka H et al (2011) Functional recovery of spinal cord injury following application of Intralesional bone marrow mononuclear cells embedded in polymer scaffold–two year follow-up in a canine. J Stem Cell Res Ther 1:110

    Article  CAS  Google Scholar 

  • Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61:364–370

    Article  CAS  PubMed  Google Scholar 

  • Wu G-H, Shi H-J, Che M-T, Huang M-Y, Wei Q-S, Feng B, Ma Y-H, Wang L-J, Jiang B, Wang Y-Q, Hang I, Ling E-A, Zeng X, Zeng Y-S (2018) Recovery of paralyzed limb motor function in canine with complete spinal cord injury following implantation of MSC-derived neural network tissue. Biomaterials 181:15–34

    Article  CAS  PubMed  Google Scholar 

  • Xiao C (2014) The research process of recurrent lumbar disc herniation and its surgical treatment. J Clin Med Lit 2:132–138

    Google Scholar 

  • Xin H, Chopp M, Shen LH et al (2013) Multipotent mesenchymal stromal cells decrease transforming growth factor β1 expression in microglia/macrophages and down-regulate plasminogen activator inhibitor 1 expression in astrocytes after stroke. Neurosci Lett 542:81–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong H, Bai C, Wu S, Gao Y, Lu T, Hu Q, Guan W, Ma Y (2014) Biological characterization of mesenchymal stem cells from bovine umbilical cord. Anim Cells Syst 1(1):59–67

    Article  Google Scholar 

  • Xu C, Fu F, Li X, Zhang S (2017a) Mesenchymal stem cells maintain the microenvironment of central nervous system by regulating the polarization of macrophages/microglia after traumatic brain injury. Int J Neurosci 127:1124–1135

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Hu J, Lu H (2017b) Histological observation of a gelatin sponge transplant loaded with bone marrow-derived mesenchymal stem cells combined with platelet-rich plasma in repairing an annulus defect. PLoS One 12(2):e0171500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yao G (2009) Therapeutic choice of lumbar intervertebral disc herniation. China J Orthop Trauma 22:247–249

    Google Scholar 

  • Yin Y, Cui Q, Li Y, Irwin N, Fischer D, Harvey AR, Benowitz LI (2003) Macrophage-derived factors stimulate optic nerve regeneration. J Neurosci 23(6):2284–2293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ying Q, Nichols J, Evans EP, Smith AG (2002) Changing potency by spontaneous fusion. Nature 416:545–547

    Article  CAS  PubMed  Google Scholar 

  • Zafranskaya MM, Nizhegorodova DB, Aleynikova NE, Kuznetsova TE, Vanslav MI, Ignatovich TV et al (2019) The migration of multipotent mesenchymal stromal cells after systemic and local administration in an experimental model of Parkinson’s disease. Ann Clin Exp Neurol 13:32–40

    Google Scholar 

  • Zanier ER, Pischiutta F, Riganti L, Marchesi F, Turola E, Fumagalli S, Perego C, Parotto E, Vinci P, Veglianese P, D'Amico G, Verderio C, De Simoni MG (2014) Bone marrow mesenchymal stromal cells drive protective M2 microglia polarization after brain trauma. Neurotherapeutics 11(3):679–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zappa Villar MF, López Hanotte J, Pardo J, Morel GR, Mazzolini G, García MG, Reggiani PC (2020) Mesenchymal stem cells therapy improved the Streptozotocin-induced behavioral and hippocampal impairment in rats. Mol Neurobiol 57:600–615

    Article  CAS  PubMed  Google Scholar 

  • Zeira O, Asiag N, Aralla M, Ghezzi E, Pettinari L, Martinelli L, Zahirpour D, Dumas MP, Lupi D, Scaccia S et al (2015) Adult autologous mesenchymal stem cells for the treatment of suspected non-infectious inflammatory diseases of the canine central nervous system: safety, feasibility and preliminary clinical findings. J Neuroinflammation 12:181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang S, Zou Z, Jiang X, Xu R, Zhang W et al (2008) The therapeutic effects of tyrosine hydroxylase gene transfected hematopoietic stem cells in a rat model of Parkinson’s disease. Cell Mol Neurobiol 28:529–543

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Liu Y, Yan K, Chen L, Chen XR, Li P, Chen FF, Jiang XD (2013) Anti-inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in experimental traumatic brain injury. J Neuroinflammation 23(10):106. https://doi.org/10.1186/1742-2094-

    Article  Google Scholar 

  • Zhang LF, Qi J, Zuo G, Jia P, Shen X, Shao J, Kang H, Yang H, Deng L (2014) Osteoblast-secreted factors promote proliferation and osteogenic differentiation of bone marrow stromal cells via VEGF/heme-oxygenase-1 pathway. PLoS One 9(6):e99946

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang C, Gullbrand SE, Schaer TP, Boorman S, Elliott DM, Chen W, Dodge GR, Mauck RL, Malhotra NR, Smith LJ (2021) Combined hydrogel and mesenchymal stem cell therapy for moderate-severity disc degeneration in goats. Tissue Eng Part A 27(1-2):117–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gugjoo, M.B. (2022). Mesenchymal Stem Cells Therapeutic Applications in Central Nervous System Disorders. In: Therapeutic Applications of Mesenchymal Stem Cells in Veterinary Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-19-3277-9_5

Download citation

Publish with us

Policies and ethics