Skip to main content
Log in

Characterization of neuron-like cells derived from canine bone marrow stromal cells

  • Original Article
  • Published:
Veterinary Research Communications Aims and scope Submit manuscript

Abstract

Regenerative therapy using bone marrow stromal cells (BMSCs) has begun to be clinically applied in humans and dogs for neurological disorders such as spinal cord injury. Under appropriate conditions in vitro, BMSCs differentiate into neuronal cells, which may improve the effects of regenerative therapy. In this study, we evaluated canine neuron-like cells (NLCs) derived from BMSCs. We speculated on their suitability for neuro-transplantation from the point of view of their morphological features, long-term viability, abundant availability, and ability to be subcultured. Canine NLCs were differentiated as follows: third-passage BMSCs were maintained in pre-induction medium containing 2-mercaptoethanol and dimethylsulfoxide for 5 h, and then cells were transferred to neuronal induction medium containing fetal bovine serum, basic fibroblast growth factor, epidermal growth factor, dibutyryl cyclic AMP, and isobutylmethylxanthine for 7 or 14 days. Canine NLCs fulfilled the transplantation criteria and expressed markers of both immature neurons (nestin, 84.7 %) and mature neuronal cells (microtubule-associated protein-2, 95.7 %; βIII-tubulin protein, 12.9 %; glial fibrillary acidic protein, 9.2 %). These results suggest that canine BMSCs can be induced to differentiate into neuronal cells and may be suitable for neuro-transplantation. This study may provide information for improving cellular therapy for neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Azari MF, Mathias L, Ozturk E, Cram DS, Boyd RL, Petratos S (2010) Mesenchymal stem cells for treatment of CNS injury. Curr Neuropharmacol 8:316–323

    Article  PubMed  CAS  Google Scholar 

  • Beresford JN, Bennett JH, Devlin C, Leboy PS, Owen ME (1992) Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromalcellcultures. J Cell Sci 102(Pt 2):341–351

    PubMed  CAS  Google Scholar 

  • Björklund A, Lindvall O (2000) Cell replacement therapies for central nervous system disorders. Nat Neurosci 3:537–544

    Article  PubMed  Google Scholar 

  • Chiba Y, Kuroda S, Shichinohe H, Hokari M, Osanai T, Maruichi K, Yano S, Hida K, Iwasaki Y (2010) Synergistic effects of bone marrow stromal cells and a Rho kinase (ROCK) inhibitor, fasudil on axon regeneration in rat spinal cord injury. Neuropathology 30:241–250

    Article  PubMed  Google Scholar 

  • Chopp M, Zhang XH, Li Y, Wang L, Chen J, Lu D, Lu M, Rosenblum M (2000) Spinal cord injury in rat: treatment with bone marrow stromal cell transplantation. Neuroreport 11:3001–3005

    Article  PubMed  CAS  Google Scholar 

  • Deng W, Obrocka M, Fischer I, Prockop DJ (2001) In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem Biophys Res Commun 282:148–152

    Article  PubMed  CAS  Google Scholar 

  • Doi D, Morizane A, Kikuchi T, Onoe H, Hayashi T, Kawasaki T, Motono M, Sasai Y, Saiki H, Gomi M, Yoshikawa T, Hayashi H, Shinoyama M, Refaat MM, Suemori H, Miyamoto S, Takahashi J (2012) Prolonged maturation culture favors a reduction in the tumorigenicity and dopaminergic function of human ESC-derived neural cells in a primate model of Parkinson’s disease. Stem Cells 30:935–945

    Article  PubMed  CAS  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for cellular therapy position statement. Cytotherapy 8:315–317

    Article  PubMed  CAS  Google Scholar 

  • Doucette R (1995) Olfactory ensheathing cells: potential for glial cell transplantation into areas of CNS injury. Histol Histopathol 10:503–507

    PubMed  CAS  Google Scholar 

  • Edamura K, Kuriyama K, Kato K, Nakano R, Teshima K, Asano K, Sato T, Tanaka S (2012) Proliferation capacity, neuronal differentiation potency and microstructures after the differentiation of canine bone marrow stromal cells into neurons. J Vet Med Sci 74:923–927

    Article  PubMed  Google Scholar 

  • Himes BT, Neuhuber B, Coleman C, Kushner R, Swanger SA, Kopen GC, Wagner J, Shumsky JS, Fischer I (2006) Recovery of function following grafting of human bone marrow-derived stromal cells into the injured spinal cord. Neurorehabil Neural Repair 20:278–296

    Article  PubMed  Google Scholar 

  • Hiyama A, Mochida J, Iwashina T, Omi H, Watanabe T, Serigano K, Tamura F, Sakai D (2008) Transplantation of mesenchymal stem cells in a canine disc degeneration model. J Orthop Res 26:589–600

    Article  PubMed  CAS  Google Scholar 

  • Iwashita Y, Kawaguchi S, Murata M (1994) Restoration of function by replacement of spinal cord segments in the rat. Nature 367:167–170

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Lv Z, Gu Y, Li J, Xu L, Xu W, Lu J, Xu J (2010) Adult rat mesenchymal stem cells differentiate into neuronal-like phenotype and express a variety of neuro-regulatory molecules in vitro. Neurosci Res 66:46–52

    Article  PubMed  CAS  Google Scholar 

  • Jung DI, Ha J, Kang BT, Kim JW, Quan FS, Lee JH, Woo EJ, Park HM (2009) A comparison of autologous and allogenic bone marrow-derived mesenchymal stem cell transplantation in canine spinal cord injury. J Neurol Sci 285:67–77

    Article  PubMed  Google Scholar 

  • Kadiyala S, Young RG, Thiede MA, Bruder SP (1997) Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant 6:125–134

    Article  PubMed  CAS  Google Scholar 

  • Kamishina H, Deng J, Oji T, Cheeseman JA, Clemmons RM (2006) Expression of neural markers on bone marrow-derived canine mesenchymal stem cells. Am J Vet Res 67:1921–1928

    Article  PubMed  CAS  Google Scholar 

  • Lennon DP, Haynesworth SE, Young RG, Dennis JE, Caplan AI (1995) A chemically defined medium supports in vitro proliferation and maintains the osteochondral potential of rat marrow-derived mesenchymal stem cells. Exp Cell Res 219:211–222

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Field PM, Raisman G (1997) Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science 277:2000–2002

    Article  PubMed  CAS  Google Scholar 

  • Martin D, Robe P, Franzen R, Delrée P, Schoenen J, Stevenaert A, Moonen G (1996) Effects of Schwann cell transplantation in a contusion model of rat spinal cord injury. J Neurosci Res 45:588–597

    Article  PubMed  CAS  Google Scholar 

  • McDonald JW, Liu XZ, Qu Y, Liu S, Mickey SK, Turetsky D, Gottlieb DI, Choi DW (1999) Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 5:1410–1412

    Article  PubMed  CAS  Google Scholar 

  • Nishida H, Nakayama M, Tanaka H, Kitamura M, Hatoya S, Sugiura K, Suzuki Y, Ide C, Inaba T (2011) Evaluation of transplantation of autologous bone marrow stromal cells into the cerebrospinal fluid for treatment of chronic spinal cord injury in dogs. Am J Vet Res 72:1118–1123

    Article  PubMed  Google Scholar 

  • Ogita H, Nakagawa T, Sakamoto T, Inaoka T, Ito J (2010) Transplantation of bone marrow-derivedneurospheres into guinea pig cochlea. Laryngoscope 120:576–581

    Article  PubMed  Google Scholar 

  • Ohta M, Suzuki Y, Noda T, Ejiri Y, Dezawa M, Kataoka K, Chou H, Ishikawa N, Matsumoto N, Iwashita Y, Mizuta E, Kuno S, Ide C (2004) Bone marrow stromal cells infused into the cerebrospinal fluid promote functional recovery of the injured rat spinal cord with reduced cavity formation. Exp Neurol 187:266–278

    Article  PubMed  CAS  Google Scholar 

  • Pedram MS, Dehghan MM, Soleimani M, Sharifi D, Marjanmehr SH, Nasiri Z (2010) Transplantation of a combination of autologous neural differentiated and undifferentiated mesenchymal stem cells into injured spinal cord of rats. Spinal Cord 48:457–463

    Article  PubMed  CAS  Google Scholar 

  • Saito F, Nakatani T, Iwase M, Maeda Y, Hirakawa A, Murao Y, Suzuki Y, Onodera R, Fukushima M, Ide C (2008) Spinal cord injury treatment with intrathecal autologous bone marrow stromal cell transplantation: the first clinical trial case report. J Trauma 64:53–59

    Article  PubMed  Google Scholar 

  • Saito F, Nakatani T, Iwase M, Maeda Y, Murao Y, Suzuki Y, Fukushima M, Ide C (2012) Administration of cultured autologous bone marrow stromal cells into cerebrospinal fluid in spinal injury patients: a pilot study. Restor Neurol Neurosci 30:127–136

    PubMed  Google Scholar 

  • Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, Freeman TB, Saporta S, Janssen W, Patel N, Cooper DR, Sanberg PR (2000) Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164:247–256

    Article  PubMed  CAS  Google Scholar 

  • Wakitani S, Saito T, Caplan AI (1995) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18:1417–1426

    Article  PubMed  CAS  Google Scholar 

  • Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61:364–370

    Article  PubMed  CAS  Google Scholar 

  • Yang Q, Mu J, Li Q, Li A, Zeng Z, Yang J, Zhang X, Tang J, Xie P (2008) A simple and efficient method for deriving neurospheres from bone marrow stromal cells. Biochem Biophys Res Commun 372:520–524

    Article  PubMed  CAS  Google Scholar 

  • Yoshihara H, Shumsky JS, Neuhuber B, Otsuka T, Fischer I, Murray M (2006) Combining motor training with transplantation of rat bone marrow stromal cells does not improve repair or recovery in rats with thoracic contusion injuries. Brain Res 1119:65–75

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Tani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oda, Y., Tani, K., Kanei, T. et al. Characterization of neuron-like cells derived from canine bone marrow stromal cells. Vet Res Commun 37, 133–138 (2013). https://doi.org/10.1007/s11259-013-9555-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11259-013-9555-0

Keywords

Navigation