Skip to main content

Biomimetic Composite Materials and Their Biological Applications

  • Chapter
  • First Online:
Molecular Architectonics and Nanoarchitectonics

Abstract

The principles of organisation and functioning of complex biological objects have inspired the development of new materials and systems in engineering, electronics, design, chemistry and other fields. Two major areas of biological applications of biomimetic systems are delivery of therapeutic and imaging agents and tissue engineering, both of which are described below. Biomimetic drug delivery systems can imitate the structure and functions of eukaryotic and prokaryotic cells or viruses by reproducing their morphology, mechanical properties and characteristic molecular traits. In tissue engineering, the biomimetic approach is essentially indispensable for reproducing natural tissues and organs in order to restore the organism functionality lost as a result of either trauma or disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yoo JW, Chambers E, Mitragotri S (2010) Factors that control the circulation time of nanoparticles in blood: challenges, solutions and future prospects. Curr Pharm Des 16(21):2298–2307

    Article  CAS  Google Scholar 

  2. Lu Y, Aimetti AA, Langer R et al (2017) Bioresponsive materials. Nat Rev Mater 2:16075

    Article  CAS  Google Scholar 

  3. Dzamukova MR, Naumenko EA, Lvov YM et al (2015) Enzyme-activated intracellular drug delivery with tubule clay nanoformulation. Sci Rep 5:10560

    Article  CAS  Google Scholar 

  4. Yoo JW, Irvine DJ, Discher DE et al (2011) Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat Rev Drug Discov 10(7):521–535

    Article  CAS  Google Scholar 

  5. Fang RH, Kroll AV, Gao W et al (2018) Cell membrane coating nanotechnology. Adv Mater 30(23):1706759

    Article  CAS  Google Scholar 

  6. Sen Gupta A (2017) Bio-inspired nanomedicine strategies for artificial blood components. WIREs Nanomed Nanobiotechnol 9(6):e1464

    Article  CAS  Google Scholar 

  7. Luk BT, Hu CMJ, Fang RH et al (2014) Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles. Nanoscale 6(5):2730–2737

    Article  CAS  Google Scholar 

  8. Gao C, Lin Z, Jurado-Sánchez B et al (2016) Stem cell membrane-coated nanogels for highly efficient in vivo tumor targeted drug delivery. Small 12(30):4056–4062

    Article  CAS  Google Scholar 

  9. Hu C-MJ, Fang RH, Wang K-C et al (2015) Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526(7571):118–121

    Article  CAS  Google Scholar 

  10. Chee E, Brown AC (2020) Biomimetic antimicrobial material strategies for combating antibiotic resistant bacteria. Biomater Sci 8(4):1089–1100

    Article  Google Scholar 

  11. Doshi N, Zahr AS, Bhaskar S et al (2009) Red blood cell-mimicking synthetic biomaterial particles. Proc Natl Acad Sci U S A 106(51):21495–21499

    Article  CAS  Google Scholar 

  12. Balmert SC, Little SR (2012) Biomimetic delivery with micro- and nanoparticles. Adv Mater 24:3757–3778

    Article  CAS  Google Scholar 

  13. Sproul EP, Nandi S, Chee E et al (2020) Development of biomimetic antimicrobial platelet-like particles comprised of microgel nanogold composites. Regen Eng Transl Med 6:299–309

    Article  CAS  Google Scholar 

  14. Sengupta S, Eavarone D, Capila I et al (2005) Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436(7050):568–572

    Article  CAS  Google Scholar 

  15. Holay M, Guo Z, Pihl J et al (2021) Bacteria-inspired nanomedicine. ACS Appl Bio Mater 4(5):3830–3848

    Article  CAS  Google Scholar 

  16. Gao F, Xu L, Yang B et al (2019) Kill the real with the fake: eliminate intracellular Staphylococcus aureus using nanoparticle coated with its extracellular vesicle membrane as active-targeting drug carrier. ACS Infect Dis 5(2):218–227

    Article  CAS  Google Scholar 

  17. Guo A, Durymanov M, Permyakova A et al (2019) Metal organic framework (MOF) particles as potential bacteria-mimicking delivery systems for infectious diseases: characterization and cellular internalization in alveolar macrophages. Pharm Res 36(4):53

    Article  CAS  Google Scholar 

  18. Farjadian F, Moghoofei M, Mirkiani S et al (2018) Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: set the bugs to work? Biotechnol Adv 36(4):968–985

    Article  CAS  Google Scholar 

  19. Demento SL, Siefert AL, Bandyopadhyay A et al (2011) Pathogen-associated molecular patterns on biomaterials: a paradigm for engineering new vaccines. Trends Biotechnol 29(6):294–306

    Article  CAS  Google Scholar 

  20. Nelson BJ, Kaliakatsos IK, Abbott JJ (2010) Microrobots for minimally invasive medicine. Annu. Rev Biomed Eng 12:55–85

    Article  CAS  Google Scholar 

  21. Geng YA, Dalhaimer P, Cai S et al (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2(4):249–255

    Article  CAS  Google Scholar 

  22. Pei D, Buyanova M (2019) Overcoming endosomal entrapment in drug delivery. Bioconjug Chem 30(2):273–283

    Article  CAS  Google Scholar 

  23. Niu Y, Yu M, Hartono SB et al (2013) Nanoparticles mimicking viral surface topography for enhanced cellular delivery. Adv Mater 25(43):6233–6237

    Article  CAS  Google Scholar 

  24. Lee E, Kim D, Youn Y et al (2008) A virus-mimetic nanogel vehicle. Angew Chem Int Ed 47:2418–2421

    Article  CAS  Google Scholar 

  25. Richards DA, Maruani A, Chudasama V (2017) Antibody fragments as nanoparticle targeting ligands: a step in the right direction. Chem Sci 8(1):63–77

    Article  CAS  Google Scholar 

  26. Yang K, Li S, Liu L et al (2019) Epitope imprinting technology: Progress, applications, and perspectives toward artificial antibodies. Adv Mater 31(50):1902048

    Article  CAS  Google Scholar 

  27. Hashemi-Moghaddam H, Zavareh S, Karimpour S et al (2017) Evaluation of molecularly imprinted polymer based on HER2 epitope for targeted drug delivery in ovarian cancer mouse model. React Funct Polym 121:82–90

    Article  CAS  Google Scholar 

  28. Pan J, Chen W, Ma Y et al (2018) Molecularly imprinted polymers as receptor mimics for selective cell recognition. Chem Soc Rev 47(15):5574–5587

    Article  CAS  Google Scholar 

  29. Rozhina E, Ishmukhametov I, Batasheva S et al (2019) Nanoarchitectonics meets cell surface engineering: shape recognition of human cells by halloysite-doped silica cell imprints. Beilstein J Nanotechnol 2019(10):1818–1825

    Article  CAS  Google Scholar 

  30. Borovička J, Metheringham WJ, Madden LA et al (2013) Photothermal colloid antibodies for shape-selective recognition and killing of microorganisms. J Am Chem Soc 135(14):5282–5285

    Article  CAS  Google Scholar 

  31. Kwansa AL, Freeman JW (2015) Ligament tissue engineering. In: Nukavarapu SP, Freeman JW, Laurencin CN (eds) Regenerative engineering of musculoskeletal tissues and interfaces. Woodhead Publishing, Cambridge, pp 161–193

    Chapter  Google Scholar 

  32. de Mel A, Seifalian AM, Birchall MA (2012) Orchestrating cell/material interactions for tissue engineering of surgical implants. Macromol Biosci 12:1010–1021

    Article  CAS  Google Scholar 

  33. Katvan E, Doron I, Ashkenazi T et al (2017) Age limitation for organ transplantation: the Israeli example. Age Ageing 46:8–10

    Google Scholar 

  34. Bružauskaite I, Bironaite D, Bagdonas E, Bernotiene E (2016) Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects. Cytotechnology 68:355

    Article  CAS  Google Scholar 

  35. Bardakova KN, Akopova TA, Kurkov AV et al (2019) From aggregates to porous three-dimensional scaffolds through a mechanochemical approach to design photosensitive chitosan derivatives. Mar Drugs 17(1):48

    Article  CAS  Google Scholar 

  36. Majima T, Funakosi T, Iwasaki N et al (2005) Alginate and chitosan polyion complex hybrid fibers for scaffolds in ligament and tissue engineering. J Orthop Sci 10(3):302–307

    Article  CAS  Google Scholar 

  37. Ma T, Li Y, Yang ST et al (2000) Effects of pore size in 3D fibrous matrix on human trophoblast tissue development. Biotechnol Bioeng 70:606–618

    Article  CAS  Google Scholar 

  38. Dzamukova MR, Naumenko EA, Lannik NI et al (2013) Surface modified magnetic human cells for scaffold-free tissue engineering. Biomater Sci 1:810–813

    Article  CAS  Google Scholar 

  39. Guryanov I, Naumenko E, Konnova S et al (2019) Spatial manipulation of magnetically-responsive nanoparticle engineered human neuronal progenitor cells. Nanomedicine: NBM 20:102038

    Article  CAS  Google Scholar 

  40. Ito A, Takahashi T, Kawabe Y et al (2009) Human beta defensin-3 engineered keratinocyte sheets constructed by a magnetic force-based tissue engineering technique. J Biosci Bioeng 108:244–247

    Article  CAS  Google Scholar 

  41. Fayol D, Frasca G, Le Visage C et al (2013) Use of magnetic forces to stem cell aggregation during differentiation, and cartilage tissue modeling. Adv Mater 25:2611–2616

    Article  CAS  Google Scholar 

  42. Luciani N, Du V, Gazeau F et al (2016) Successful chondrogenesis within scaffolds, using magnetic stem cell confinement and bioreactor maturation. Acta Biomater 37:101–110

    Article  CAS  Google Scholar 

  43. Daquinag AC, Souza GR, Kolonin MG (2012) Adipose tissue engineering in three-dimensional levitation tissue culture system based on magnetic nanoparticles. Tissue Eng Part C Methods 19:336–344

    Article  CAS  Google Scholar 

  44. Du V, Luciani N, Richard S et al (2017) A 3D magnetic tissue stretcher for remote mechanical control of embryonic stem cell differentiation. Nat Commun 8:400

    Article  CAS  Google Scholar 

  45. Ho VHB, Muller KH, Barcza A et al (2010) Generation and manipulation of magnetic multicellular spheroids. Biomaterials 31:3095–4102

    Article  CAS  Google Scholar 

  46. Naumenko EA, Dzamukova MR, Fakhrullin RF (2014a) Magnetically functionalized cells: fabrication, characterization, and biomedical applications. In: Katz E (ed) Implantable bioelectronics. Wiley VCH, Weinham, pp 7–26

    Chapter  Google Scholar 

  47. Naumenko EA, Dzamukova MR, Fakhrullina GI et al (2014b) Nano-labelled cells - a functional tool in biomedical applications. Curr Opin Pharmacol 18:84–90

    Article  CAS  Google Scholar 

  48. Jin R, Lin B, Li D et al (2014) Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications. Curr Opin Pharmacol 18:18–27

    Article  CAS  Google Scholar 

  49. Rozhina E, Batasheva S, Gomzikova M et al (2019) Multicellular spheroids formation: the synergistic effects of halloysite nanoclay and cationic magnetic nanoparticles. Colloids Surf A Physicochem Eng Asp 565:16–24

    Article  CAS  Google Scholar 

  50. Carver K, Ming X, Juliano RL (2014) Multicellular tumor spheroids as a model for assessing delivery of oligonucleotides in three dimensions. Mol Ther Nucleic Acids 3:e153

    Article  CAS  Google Scholar 

  51. Dufau I, Frongia C, Sicard F et al (2012) Multicellular tumor spheroid model to evaluate spatio-temporal dynamics effect of chemotherapeutics: application to the gemcitabine/CHK1 inhibitor combination in pancreatic cancer. BMC Cancer 12:15–26

    Article  CAS  Google Scholar 

  52. Mattix B, Olsen TR, Gu Y et al (2014) Biological magnetic cellular spheroids as building blocks for tissue engineering. Acta Biomater 10:623–629

    Article  CAS  Google Scholar 

  53. Berry CC, Wells S, Charles S et al (2003) Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials 24:4551–4557

    Article  CAS  Google Scholar 

  54. Mahmoudi M, Simchi A, Milani AS et al (2009) Cell toxicity of superparamagnetic iron oxide nanoparticles. J Colloid Interface Sci 336:510–518

    Article  CAS  Google Scholar 

  55. Liu M, Jia Z, Jia D et al (2014) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci 39:1498–1525

    Article  CAS  Google Scholar 

  56. Naumenko EA, Guryanov ID, Yendluri R et al (2016) Clay nanotube-biopolymer composite scaffolds for tissue engineering. Nanoscale 8(13):7257–7271

    Article  CAS  Google Scholar 

  57. Suner SS, Sahin D, Yetiskin B et al (2019) Cryogel composites based on hyaluronic acid and halloysite nanotubes as scaffold for tissue engineering. Int J Biol Macromol 130:627–635

    Article  CAS  Google Scholar 

  58. Mishra S, Sharma S, Javed MN et al (2019) Bioinspired nanocomposites: applications in disease diagnosis and treatment. Pharm Nanotechnol 7(3):206–219

    Article  CAS  Google Scholar 

  59. Naumenko E, Fakhrullin R (2019) Halloysite nanoclay/biopolymers composite materials in tissue engineering. Biotechnol J 14(12):1900055

    Article  CAS  Google Scholar 

  60. Fakhrullina GI, Akhatova FS, Lvov YM et al (2015) Toxicity of halloysite clay nanotubes in vivo: a Caenorhabditis elegans study. Environ Sci Nano 2:54–59

    Article  CAS  Google Scholar 

  61. Konnova S, Lvov Y, Fakhrullin R (2016) Magnetic halloysite nanotubes for yeast cell surface engineering. Clay Miner 51:429–433

    Article  CAS  Google Scholar 

  62. Kryuchkova M, Danilushkina A, Lvov Y et al (2016) Evaluation of toxicity of nanoclays and graphene oxide in vivo: a Paramecium caudatum study. Environ Sci Nano 3:442–452

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The reported study was funded by RFBR, project number 20-015-00353 A.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Batasheva, S., Naumenko, E., Fakhrullin, R. (2022). Biomimetic Composite Materials and Their Biological Applications. In: Govindaraju, T., Ariga, K. (eds) Molecular Architectonics and Nanoarchitectonics. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-4189-3_18

Download citation

Publish with us

Policies and ethics