Skip to main content

Advertisement

Log in

Metal Organic Framework (MOF) Particles as Potential Bacteria-Mimicking Delivery Systems for Infectious Diseases: Characterization and Cellular Internalization in Alveolar Macrophages

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Intramacrophagic bacteria pose a great challenge for the treatment of infectious diseases despite many macrophage targeted drug delivery approaches explored. The use of biomimetic approaches for treating infectious diseases is promising, but not studied extensively. The study purpose is to evaluate iron-based metal-organic frameworks (MOF) as a potential bacteria-mimicking delivery system for infectious diseases.

Methods

Two types of carboxylated MOFs, MIL-88A(Fe) and MIL-100(Fe) were developed as “pathogen-like” particles by surface coating with mannose. MOF morphology, cellular uptake kinetics, and endocytic mechanisms in 3D4/21 alveolar macrophages were characterized.

Results

MIL-88A(Fe) is rod-shape (aspect ratio 1:5) with a long-axis size of 3628 ± 573 nm and MIL-100(Fe) is spherical with diameter of 103.9 ± 7.2 nm. Cellular uptake kinetics of MOFs showed that MIL-100(Fe) nanoparticles were internalized at a faster rate and higher extent compared to MIL-88A(Fe) microparticles. Mannosylation did not improve the uptake of MIL-100(Fe) particles, whereas it highly increased MIL-88A(Fe) cellular uptake and number of cells involved in internalization. Cell uptake inhibition studies indicated that macropinocytosis/phagocytosis was the main endocytic pathway for internalization of MOFs. Accumulation of MOF particles in acidic compartments was clearly observed.

Conclusions

The successfully synthesized “pathogen-like” particles provide a novel application of MOF-based particles as biomimetic delivery system for intramacrophagic-based infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Huxford RC, Della Rocca J, Lin W. Metal–organic frameworks as potential drug carriers. Curr Opin Chem Biol. 2010;14(2):262–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Keskin S, Kızılel S. Biomedical applications of metal organic frameworks. Ind Eng Chem Res. 2011;50(4):1799–812.

    Article  CAS  Google Scholar 

  3. Zhou H-C, Long JR, Yaghi OM. Introduction to metal–organic frameworks. In: ACS Publications; 2012.

  4. Simon-Yarza T, Mielcarek A, Couvreur P, Serre C. Nanoparticles of metal-organic frameworks: on the road to in vivo efficacy in biomedicine. Adv Mater. 2018;30:1707365.

    Article  CAS  Google Scholar 

  5. Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, et al. Metal–organic frameworks in biomedicine. Chem Rev. 2011;112(2):1232–68.

    Article  PubMed  CAS  Google Scholar 

  6. Taylor-Pashow KM, Della Rocca J, Xie Z, Tran S, Lin W. Postsynthetic modifications of iron-carboxylate nanoscale metal− organic frameworks for imaging and drug delivery. J Am Chem Soc. 2009;131(40):14261–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McKinlay AC, Xiao B, Wragg DS, Wheatley PS, Megson IL, Morris RE. Exceptional behavior over the whole adsorption− storage− delivery cycle for no in porous metal organic frameworks. J Am Chem Soc. 2008;130(31):10440–4.

    Article  CAS  PubMed  Google Scholar 

  8. Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, et al. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater. 2010;9(2):172–8.

    Article  CAS  PubMed  Google Scholar 

  9. Wyszogrodzka G, Dorożyński P, Gil B, Roth WJ, Strzempek M, Marszałek B, et al. Iron-based metal-organic frameworks as a Theranostic carrier for local tuberculosis therapy. Pharm Res. 2018;35(7):144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Taherzade SD, Soleimannejad J, Tarlani A. Application of metal-organic framework Nano-MIL-100 (Fe) for sustainable release of doxycycline and tetracycline. Nano. 2017;7(8):215.

    Google Scholar 

  11. Baati T, Njim L, Neffati F, Kerkeni A, Bouttemi M, Gref R, et al. In depth analysis of the in vivo toxicity of nanoparticles of porous iron (III) metal–organic frameworks. Chem Sci. 2013;4(4):1597–607.

    Article  CAS  Google Scholar 

  12. Sheikhpour M, Barani L, Kasaeian A. Biomimetics in drug delivery systems: a critical review. J Control Release. 2017;253:97–109.

    Article  CAS  PubMed  Google Scholar 

  13. Yoo J-W, Irvine DJ, Discher DE, Mitragotri S. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat Rev Drug Discov. 2011;10(7):521–35.

    Article  CAS  PubMed  Google Scholar 

  14. Rosenthal JA, Chen L, Baker JL, Putnam D, DeLisa MP. Pathogen-like particles: biomimetic vaccine carriers engineered at the nanoscale. Curr Opin Biotechnol. 2014;28:51–8.

    Article  CAS  PubMed  Google Scholar 

  15. Mohsen MO, Zha L, Cabral-Miranda G, Bachmann MF. Major findings and recent advances in virus–like particle (VLP)-based vaccines. In.Semin Immunol: Elsevier; 2017, 34, 123, 132.

  16. Lemmer Y, Kalombo L, Pietersen R-D, Jones AT, Semete-Makokotlela B, Van Wyngaardt S, et al. Mycolic acids, a promising mycobacterial ligand for targeting of nanoencapsulated drugs in tuberculosis. J Control Release. 2015;211:94–104.

    Article  CAS  PubMed  Google Scholar 

  17. Menina S, Labouta HI, Geyer R, Krause T, Gordon S, Dersch P, et al. Invasin-functionalized liposome nanocarriers improve the intracellular delivery of anti-infective drugs. RSC Adv. 2016;6(47):41622–9.

    Article  CAS  Google Scholar 

  18. Labouta HI, Menina S, Kochut A, Gordon S, Geyer R, Dersch P, et al. Bacteriomimetic invasin-functionalized nanocarriers for intracellular delivery. J Control Release. 2015;220:414–24.

    Article  CAS  PubMed  Google Scholar 

  19. Upham JP, Pickett D, Irimura T, Anders EM, Reading PC. Macrophage receptors for influenza a virus: role of the macrophage galactose-type lectin and mannose receptor in viral entry. J Virol. 2010;84(8):3730–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hartley JL, Adams GA, Tornabene TG. Chemical and physical properties of lipopolysaccharide of Yersinia pestis. J Bacteriol. 1974;118(3):848–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee C-J, Fraser BA, Szu S, Lin K-T. Chemical structure of and immune response to polysaccharides of Streptococcus pneumoniae. Rev Infect Dis. 1981;3(2):323–31.

    Article  CAS  PubMed  Google Scholar 

  22. Diaz-Silvestre H, Espinosa-Cueto P, Sanchez-Gonzalez A, Esparza-Ceron MA, Pereira-Suarez AL, Bernal-Fernandez G, et al. The 19-kDa antigen of Mycobacterium tuberculosis is a major adhesin that binds the mannose receptor of THP-1 monocytic cells and promotes phagocytosis of mycobacteria. Microb Pathog. 2005;39(3):97–107.

    Article  CAS  PubMed  Google Scholar 

  23. Taylor PR, Martinez-Pomares L, Stacey M, Lin H-H, Brown GD, Gordon S. Macrophage receptors and immune recognition. Annu Rev Immunol. 2005;23:901–44.

    Article  CAS  PubMed  Google Scholar 

  24. Stephenson JD, Shepherd VL. Purification of the human alveolar macrophage mannose receptor. Biochem Biophys Res Commun. 1987;148(2):883–9.

    Article  CAS  PubMed  Google Scholar 

  25. Vassallo R, Thomas CF, Vuk-Pavlovic Z, Limper AH. Alveolar macrophage interactions with pneumocystis carinii. J Lab Clin Med. 1999;133(6):535–40.

    Article  CAS  PubMed  Google Scholar 

  26. Athamna A, Ofek I, Keisari Y, Markowitz S, Dutton G, Sharon N. Lectinophagocytosis of encapsulated Klebsiella pneumoniae mediated by surface lectins of Guinea pig alveolar macrophages and human monocyte-derived macrophages. Infect Immun. 1991;59(5):1673–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Koziel H, Eichbaum Q, Kruskal BA, Pinkston P, Rogers RA, Armstrong MY, et al. Reduced binding and phagocytosis of pneumocystis carinii by alveolar macrophages from persons infected with HIV-1 correlates with mannose receptor downregulation. J Clin Invest. 1998;102(7):1332–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rajaram MV, Brooks MN, Morris JD, Torrelles JB, Azad AK, Schlesinger LS. Mycobacterium tuberculosis activates human macrophage peroxisome proliferator-activated receptor γ linking mannose receptor recognition to regulation of immune responses. J Immunol. 2010:1000866.

  29. Chavez-Santoscoy AV, Roychoudhury R, Pohl NL, Wannemuehler MJ, Narasimhan B, Ramer-Tait AE. Tailoring the immune response by targeting C-type lectin receptors on alveolar macrophages using “pathogen-like” amphiphilic polyanhydride nanoparticles. Biomaterials. 2012;33(18):4762–72.

    Article  CAS  PubMed  Google Scholar 

  30. Alexandru-Flaviu T, Cornel C. Macrophages targeted drug delivery as a key therapy in infectious disease. BMBN. 2014;2(1):17–20.

    Google Scholar 

  31. Chalati T, Horcajada P, Gref R, Couvreur P, Serre C. Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A. J Mater Chem. 2011;21(7):2220–7.

    Article  CAS  Google Scholar 

  32. García Márquez A, Demessence A, Platero-Prats AE, Heurtaux D, Horcajada P, Serre C, et al. Green microwave synthesis of MIL-100 (Al, Cr, Fe) nanoparticles for thin-film elaboration. Eur J Inorg Chem. 2012;2012(32):5165–74.

    Article  CAS  Google Scholar 

  33. Zimpel A, Preiß T, Röder R, Engelke H, Ingrisch M, Peller M, et al. Imparting functionality to MOF nanoparticles by external surface selective covalent attachment of polymers. Chem Mater. 2016;28(10):3318–26.

    Article  CAS  Google Scholar 

  34. Königsberger L-C, Königsberger E, May PM, Hefter GT. Complexation of iron (III) and iron (II) by citrate. Implications for iron speciation in blood plasma. J Inorg Biochem. 2000;78(3):175–84.

    Article  PubMed  Google Scholar 

  35. Hasegawa U, Inubushi R, Uyama H, Uematsu T, Kuwabata S, van der Vlies AJ. Mannose-displaying fluorescent framboidal nanoparticles containing phenylboronic acid groups as a potential drug carrier for macrophage targeting. Colloids Surf B: Biointerfaces. 2015;136:1174–81.

    Article  CAS  PubMed  Google Scholar 

  36. Garapaty A, Champion JA. Tunable particles alter macrophage uptake based on combinatorial effects of physical properties. Bioengineering Translational Med. 2017;2(1):92–101.

    Article  CAS  Google Scholar 

  37. Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H. Nanoparticle uptake: the phagocyte problem. Nano Today. 2015;10(4):487–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Patel B, Gupta N, Ahsan F. Particle engineering to enhance or lessen particle uptake by alveolar macrophages and to influence the therapeutic outcome. Eur J Pharm Biopharm. 2015;89:163–74.

    Article  CAS  PubMed  Google Scholar 

  39. Kuhn DA, Vanhecke D, Michen B, Blank F, Gehr P, Petri-Fink A, et al. Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages. Beilstein J Nanotechnol. 2014;5:1625–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Kim S, Choi I-H. Phagocytosis and endocytosis of silver nanoparticles induce interleukin-8 production in human macrophages. Yonsei Med J. 2012;53(3):654–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fiorentino I, Gualtieri R, Barbato V, Mollo V, Braun S, Angrisani A, et al. Energy independent uptake and release of polystyrene nanoparticles in primary mammalian cell cultures. Exp Cell Res. 2015;330(2):240–7.

    Article  CAS  PubMed  Google Scholar 

  42. Agostoni V, Chalati T, Horcajada P, Willaime H, Anand R, Semiramoth N, et al. Towards an improved anti-HIV activity of NRTI via metal–organic frameworks nanoparticles. Advanced Healthcare Materials. 2013;2(12):1630–7.

    Article  CAS  PubMed  Google Scholar 

  43. Orellana-Tavra C, Haddad S, Marshall RJ, Abánades Lázaro I, Boix G, Imaz I, et al. Tuning the endocytosis mechanism of Zr-based metal–organic frameworks through linker functionalization. ACS Appl Mater Interfaces. 2017;9(41):35516–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Orellana-Tavra C, Mercado SA, Fairen-Jimenez D. Endocytosis mechanism of Nano metal-organic frameworks for drug delivery. Advanced Healthcare Materials. 2016;5(17):2261–70.

    Article  CAS  PubMed  Google Scholar 

  45. Zhao D, Yuan D, Zhou H-C. The current status of hydrogen storage in metal–organic frameworks. Energy Environ Sci. 2008;1(2):222–35.

    Article  CAS  Google Scholar 

  46. Li J-R, Kuppler RJ, Zhou H-C. Selective gas adsorption and separation in metal–organic frameworks. Chem Soc Rev. 2009;38(5):1477–504.

    Article  CAS  PubMed  Google Scholar 

  47. Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT. Metal–organic framework materials as catalysts. Chem Soc Rev. 2009;38(5):1450–9.

    Article  CAS  PubMed  Google Scholar 

  48. McKinlay AC, Morris RE, Horcajada P, Férey G, Gref R, Couvreur P, et al. BioMOFs: metal–organic frameworks for biological and medical applications. Angew Chem Int Ed. 2010;49(36):6260–6.

    Article  CAS  Google Scholar 

  49. Rijnaarts T, Mejia-Ariza R, Egberink RJ, van Roosmalen W, Huskens J. Metal–organic frameworks (MOFs) as multivalent materials: size control and surface functionalization by monovalent capping ligands. Chem Eur J. 2015;21(29):10296–301.

    Article  CAS  PubMed  Google Scholar 

  50. Mejia-Ariza R, Huskens J. The effect of PEG length on the size and guest uptake of PEG-capped MIL-88A particles. J Mater Chem B. 2016;4(6):1108–15.

    Article  CAS  PubMed  Google Scholar 

  51. Agostoni V, Horcajada P, Noiray M, Malanga M, Aykaç A, Jicsinszky L, et al. A “green” strategy to construct non-covalent, stable and bioactive coatings on porous MOF nanoparticles. Sci Rep. 2015;5:7925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cai W, Gao H, Chu C, Wang X, Wang J, Zhang P, et al. Engineering Phototheranostic nanoscale metal–organic frameworks for multimodal imaging-guided Cancer therapy. ACS Appl Mater Interfaces. 2017;9(3):2040–51.

    Article  CAS  PubMed  Google Scholar 

  53. Hidalgo T, Giménez-Marqués M, Bellido E, Avila J, Asensio M, Salles F, et al. Chitosan-coated mesoporous MIL-100 (Fe) nanoparticles as improved bio-compatible oral nanocarriers. Sci Rep. 2017;7:43099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen D, Yang D, Dougherty CA, Lu W, Wu H, He X, et al. In vivo targeting and positron emission tomography imaging of tumor with intrinsically radioactive metal–organic frameworks nanomaterials. ACS Nano. 2017;11(4):4315–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang F, Hopwood P, Abrams CC, Downing A, Murray F, Talbot R, et al. Macrophage transcriptional responses following in vitro infection with a highly virulent African swine fever virus isolate. J Virol. 2006;80(21):10514–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yue H, Wei W, Yue Z, Lv P, Wang L, Ma G, et al. Particle size affects the cellular response in macrophages. Eur J Pharm Sci. 2010;41(5):650–7.

    Article  CAS  PubMed  Google Scholar 

  57. Champion JA, Mitragotri S. Role of target geometry in phagocytosis. Proc Natl Acad Sci U S A. 2006;103(13):4930–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dasgupta S, Auth T, Gompper G. Shape and orientation matter for the cellular uptake of nonspherical particles. Nano Lett. 2014;14(2):687–93.

    Article  CAS  PubMed  Google Scholar 

  59. Kolhar P, Anselmo AC, Gupta V, Pant K, Prabhakarpandian B, Ruoslahti E, et al. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc Natl Acad Sci. 2013;110(26):10753–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Toy R, Peiris PM, Ghaghada KB, Karathanasis E. Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine. 2014;9(1):121–34.

    Article  CAS  PubMed  Google Scholar 

  61. Champion JA, Walker A, Mitragotri S. Role of particle size in phagocytosis of polymeric microspheres. Pharm Res. 2008;25(8):1815–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lázaro IA, Lázaro SA, Forgan RS. Enhancing anticancer cytotoxicity through bimodal drug delivery from ultrasmall Zr MOF nanoparticles. Chem Commun. 2018;54(22):2792–5.

    Article  Google Scholar 

  63. Lázaro IA, Haddad S, Sacca S, Orellana-Tavra C, Fairen-Jimenez D, Forgan RS. Selective surface PEGylation of UiO-66 nanoparticles for enhanced stability, cell uptake, and pH-responsive drug delivery. Chem. 2017;2(4):561–78.

    Article  CAS  Google Scholar 

  64. Ernst RK, Guina T, Miller SI. How intracellular bacteria survive: surface modifications that promote resistance to host innate immune responses. J Infect Dis 1999;179(Supplement_2):S326-S330.

  65. Kumar Y, Valdivia RH. Leading a sheltered life: intracellular pathogens and maintenance of vacuolar compartments. Cell Host Microbe. 2009;5(6):593–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Reineke.

Additional information

Ailin Guo, Mikhail Durymanov and Anastasia Permyakova contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 656 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, A., Durymanov, M., Permyakova, A. et al. Metal Organic Framework (MOF) Particles as Potential Bacteria-Mimicking Delivery Systems for Infectious Diseases: Characterization and Cellular Internalization in Alveolar Macrophages. Pharm Res 36, 53 (2019). https://doi.org/10.1007/s11095-019-2589-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2589-4

Key Words

Navigation