Skip to main content

Anticarcinogenic Potential of Probiotic, Postbiotic Metabolites and Paraprobiotics on Human Cancer Cells

  • Chapter
  • First Online:
Probiotic Bacteria and Postbiotic Metabolites: Role in Animal and Human Health

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 2))

Abstract

The performance of probiotic bacteria and their metabolites in the control and treatment of various cancers has been shown by a number of clinical studies. Among probiotic bacteria, lactic acid bacteria are well known for their beneficial role in colonic health, where they also exert anticarcinogenic effects. These beneficial bacteria can inhibit the occurrence of cancer by (1) lowering PH, (2) reducing the level of pro-carcinogenic enzymes, (3) enhancing cell proliferation by inhibiting normal cell apoptosis and by promoting cell differentiation and cytoprotective activities, (4) suppressing inflammation-induced cell apoptosis, (5) enhancing innate immunity, (6) promoting various gut homeostasis, and (7) displaying antioxidant activity. Several research findings showed that probiotic metabolites (postbiotics) can regulate cell proliferation in colorectal cancer and might be considered a therapeutic alternative for treating chemoresistant colorectal cancer. These metabolites including short-chain fatty acids, exopolysaccharides, vitamins, bacteriocin, H2O2, etc. are known to be involved in decreasing the viability of cancer cells and the induction of apoptosis by influencing different signaling pathway. Despite the general definition that probiotics are live microorganisms, a variety of biological responses have been reported from administering dead and frequently heat-killed (Paraprobiotic) probiotic bacterial cultures to various mammalians. The preparations of dead cells have also been fractionated and various cellular components shown to produce a range of biological responses. Many of the biological responses found with the heat-killed probiotic bacterial cells are not antimicrobial effects but are, rather, immunomodulating effects. Owing to the fact that probiotics, paraprobiotics and metabiotics or postbiotics metabolites are the most widely studied biological therapeutic alternatives for the treatment of cancer; hence in this chapter their functions and mechanism of action would be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdi-Ali A, Worobec E, Deezagi A, Malekzadeh F (2004) Cytotoxic effects of pyocin S2 produced by Pseudomonas aeruginosa on the growth of three human cell lines. Can J Microbiol 50:375–381

    Article  CAS  PubMed  Google Scholar 

  • Adesulu-Dahunsi AT, Jeyaram K, Sanni AI, Banwo K (2018) Production of exopolysaccharide by strains of Lactobacillus plantarum YO175 and OF101 isolated from traditional fermented cereal beverage. Peer J 6:e5326

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Aguilar-Toalá J, Garcia-Varela R, Garcia H, Mata-Haro V, González-Córdova A, Vallejo-Cordoba B, Hernández-Mendoza A (2018) Postbiotics: an evolving term within the functional foods field. Trends Food Sci Technol 75:105–114

    Article  CAS  Google Scholar 

  • Ale EC, Bourin MJ-B, Peralta GH, Burns PG, Ávila OB, Contini L, Reinheimer J, Binetti AG (2019) Functional properties of exopolysaccharide (EPS) extract from Lactobacillus fermentum Lf2 and its impact when combined with Bifidobacterium animalis INL1 in yoghurt. Int Dairy J 96:114–125

    Article  CAS  Google Scholar 

  • Altonsy MO, Andrews SC, Tuohy KM (2010) Differential induction of apoptosis in human colonic carcinoma cells (Caco-2) by Atopobium, and commensal, probiotic and enteropathogenic bacteria: mediation by the mitochondrial pathway. Int J Food Microbiol 137:190–203

    Article  PubMed  Google Scholar 

  • Angelin J, Kavitha M (2020) Exopolysaccharides from probiotic bacteria and their health potential. Int J Biol Macromol 162:853–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arvind NKS, Sinha PR (2009) Inhibition of 1, 2 dimethylhydrazine induced genotoxicity in rats by the administration of probiotic curd. Int J Probiotics Prebiotics 4:201–204

    Google Scholar 

  • Azad M, Kalam A, Sarker M, Li T, Yin J (2018) Probiotic species in the modulation of gut microbiota: an overview. Biomed Res Int 2018:9478630. https://doi.org/10.1155/2018/9478630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444

    Article  CAS  PubMed  Google Scholar 

  • Barteneva NS, Baiken Y, Fasler-Kan E, Alibek K, Wang S, Maltsev N, Ponomarev ED, Sautbayeva Z, Kauanova S, Moore A (2017) Extracellular vesicles in gastrointestinal cancer in conjunction with microbiota: on the border of Kingdoms. Biochim Biophys Acta 1868:372–393

    CAS  Google Scholar 

  • Batista, V.L., Da Silva, T.F., De Jesus, L.C.L., Dias Coelho-Rocha, N., Barroso, F.A.L., Tavares, L.M., Azevedo, V.A.D.C., Mancha-Agresti, P.D.C., Drumond, M.M., 2020. Probiotics, prebiotics, synbiotics, and paraprobiotics as a therapeutic alternative for intestinal mucositis running head: alternative treatment for intestinal mucositis. Front Microbiol 11, 2246

    Google Scholar 

  • Beaulieu L, Tolkatchev D, Jette J-F, Groleau D, Subirade M (2007) Production of active pediocin PA-1 in Escherichia coli using a thioredoxin gene fusion expression approach: cloning, expression, purification, and characterization. Can J Microbiol 53:1246–1258

    Article  CAS  PubMed  Google Scholar 

  • Bedada TL, Feto TK, Awoke KS, Garedew AD, Yifat FT, Birri DJ (2020) Probiotics for cancer alternative prevention and treatment. Biomed Pharmacother 129:110409

    Article  CAS  Google Scholar 

  • Busscher H, Van der Mei H (1997) Physico-chemical interactions in initial microbial adhesion and relevance for biofilm formation. Adv Dent Res 11:24–32

    Article  CAS  PubMed  Google Scholar 

  • Cao X-H, Wang A-H, Wang C-L, Mao D-Z, Lu M-F, Cui Y-Q, Jiao R-Z (2010) Surfactin induces apoptosis in human breast cancer MCF-7 cells through a ROS/JNK-mediated mitochondrial/caspase pathway. Chem Biol Interact 183:357–362

    Article  CAS  PubMed  Google Scholar 

  • Cao X-H, Zhao S-S, Liu D-Y, Wang Z, Niu L-L, Hou L-H, Wang C-L (2011) ROS-Ca2+ is associated with mitochondria permeability transition pore involved in surfactin-induced MCF-7 cells apoptosis. Chem Biol Interact 190:16–27

    Article  CAS  PubMed  Google Scholar 

  • Chumchalova J, Šmarda J (2003) Human tumor cells are selectively inhibited by colicins. Folia Microbiol 48:111–115

    Article  CAS  Google Scholar 

  • Degeest B, Mozzi F, De Vuyst L (2002) Effect of medium composition and temperature and pH changes on exopolysaccharide yields and stability during Streptococcus thermophilus LY03 fermentations. Int J Food Microbiol 79:161–174

    Article  CAS  PubMed  Google Scholar 

  • Dehghan-Noudeh G, Housaindokht M, Bazzaz BSF (2005) Isolation, characterization, and investigation of surface and hemolytic activities of a lipopeptide biosurfactant produced by Bacillus subtilis ATCC 6633. J Microbiol 43:272–276

    Google Scholar 

  • Dicks LM, Dreyer L, Smith C, Van Staden AD (2018) A review: the fate of bacteriocins in the human gastro-intestinal tract: do they cross the gut–blood barrier? Front Microbiol 9:2297

    Article  PubMed  PubMed Central  Google Scholar 

  • dos Reis SA, da Conceição LL, Siqueira NP, Rosa DD, da Silva LL, Maria do Carmo GP (2017) Review of the mechanisms of probiotic actions in the prevention of colorectal cancer. Nutr Res 37:1–19

    Article  PubMed  CAS  Google Scholar 

  • Duarte C, Gudiña EJ, Lima CF, Rodrigues LR (2014) Effects of biosurfactants on the viability and proliferation of human breast cancer cells. AMB Express 4:40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fariq A, Saeed A (2016) Production and biomedical applications of probiotic biosurfactants. Curr Microbiol 72:489–495

    Article  CAS  PubMed  Google Scholar 

  • Forsyth CB, Farhadi A, Jakate SM, Tang Y, Shaikh M, Keshavarzian A (2009) Lactobacillus GG treatment ameliorates alcohol-induced intestinal oxidative stress, gut leakiness, and liver injury in a rat model of alcoholic steatohepatitis. Alcohol 43:163–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fracchia L, Cavallo M, Martinotti MG, Banat IM (2012) Biosurfactants and bioemulsifiers biomedical and related applications–present status and future potentials. Biomed Sci Eng Technol 14:326–335

    Google Scholar 

  • Fujiki T, Hirose Y, Yamamoto Y, Murosaki S (2012) Enhanced immunomodulatory activity and stability in simulated digestive juices of Lactobacillus plantarum L-137 by heat treatment. Biosci Biotechnol Biochem 76:918–922

    Article  CAS  PubMed  Google Scholar 

  • Fuska J, Fusková A, Šmarda J, Mach J (1979) Effect of colicin E3 on leukemia cells P 388 in vitro. Experientia 35:406–407

    Article  CAS  PubMed  Google Scholar 

  • Ghanavati R, Asadollahi P, Shapourabadi MB, Razavi S, Talebi M, Rohani M (2020) Inhibitory effects of Lactobacilli cocktail on HT-29 colon carcinoma cells growth and modulation of the Notch and Wnt/β-catenin signaling pathways. Microb Pathog 139:103829

    Article  CAS  PubMed  Google Scholar 

  • Goldin BR, Gorbach SL (1980) Effect of Lactobacillus acidophilus dietary supplements on 1, 2-dimethylhydrazine dihydrochloride-induced intestinal cancer in rats. J Natl Cancer Inst 64:263–265

    Article  CAS  PubMed  Google Scholar 

  • Goŀek P, Bednarski W, Brzozowski B, Dziuba B (2009) The obtaining and properties of biosurfactants synthesized by bacteria of the genusLactobacillus. Ann Microbiol 59:119–126

    Article  Google Scholar 

  • Górska A, Przystupski D, Niemczura MJ, Kulbacka J (2019) Probiotic bacteria: a promising tool in cancer prevention and therapy. Curr Microbiol:1–11

    Google Scholar 

  • Gudina EJ, Teixeira JA, Rodrigues LR (2010) Isolation and functional characterization of a biosurfactant produced by Lactobacillus paracasei. Colloids Surf B: Biointerfaces 76:298–304

    Article  CAS  PubMed  Google Scholar 

  • Gudiña EJ, Rangarajan V, Sen R, Rodrigues LR (2013) Potential therapeutic applications of biosurfactants. Trends Pharmacol Sci 34:667–675

    Article  PubMed  CAS  Google Scholar 

  • Han KJ, Lee N-K, Park H, Paik H-D (2015) Anticancer and anti-inflammatory activity of probiotic Lactococcus lactis NK34. J Microbiol Biotechnol 25:1697–1701

    Article  PubMed  Google Scholar 

  • Hetz Flores C, Bono Merino MR, Barros LF, Lagos Mónaco R (2002) Microcin E492, a channel-forming bacteriocin from Klebsiella pneumoniae, induces apoptosis in some human cell lines. Proc Natl Acad Sci 99:2696–2971

    Article  CAS  Google Scholar 

  • Hu J, Wang C, Ye L, Yang W, Huang H, Meng F, Shi S, Ding Z (2015) Anti-tumour immune effect of oral administration of Lactobacillus plantarum to CT26 tumour-bearing mice. J Biosci 40:269–279

    Article  CAS  PubMed  Google Scholar 

  • Hussain A, Zia KM, Tabasum S, Noreen A, Ali M, Iqbal R, Zuber M (2017) Blends and composites of exopolysaccharides; properties and applications: a review. Int J Biol Macromol 94:10–27

    Article  CAS  PubMed  Google Scholar 

  • Ismail B, Nampoothiri K (2013) Exposition of antitumour activity of a chemically characterized exopolysaccharide from a probiotic Lactobacillus plantarum MTCC 9510. Biologia 68:1041–1047

    Article  CAS  Google Scholar 

  • Isoda H, Nakahara T (1997) Mannosylerythritol lipid induces granulocytic differentiation and inhibits the tyrosine phosphorylation of human myelogenous leukemia cell line K562. Cytotechnology 25:191–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacouton E, Chain F, Sokol H, Langella P, Bermudez-Humaran LG (2017) Probiotic strain Lactobacillus casei BL23 prevents colitis-associated colorectal cancer. Front Immunol 8:1553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kahouli I, Tomaro-Duchesneau C, Prakash S (2013) Probiotics in colorectal cancer (CRC) with emphasis on mechanisms of action and current perspectives. J Med Microbiol 62:1107–1123

    Article  CAS  PubMed  Google Scholar 

  • Kaur S, Kaur S (2015) Bacteriocins as potential anticancer agents. Front Pharmacol 6:272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim SW, Kim HM, Yang KM, Kim S-A, Kim S-K, An MJ, Park JJ, Lee SK, Kim TI, Kim WH (2010) Bifidobacterium lactis inhibits NF-κB in intestinal epithelial cells and prevents acute colitis and colitis-associated colon cancer in mice. Inflamm Bowel Dis 16:1514–1525

    Article  PubMed  Google Scholar 

  • Kumar M, Kumar A, Nagpal R, Mohania D, Behare P, Verma V, Kumar P, Poddar D, Aggarwal P, Henry C (2010) Cancer-preventing attributes of probiotics: an update. Int J Food Sci Nutrit 61:473–496

    Article  CAS  Google Scholar 

  • Kumar RS, Kanmani P, Yuvaraj N, Paari K, Pattukumar V, Thirunavukkarasu C, Arul V (2012) Lactobacillus plantarum AS1 isolated from south Indian fermented food Kallappam suppress 1, 2-dimethyl hydrazine (DMH)-induced colorectal cancer in male Wistar rats. Appl Biochem Biotechnol 166:620–631

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Nam SH, Seo WT, Yun HD, Hong SY, Kim MK, Cho KM (2012) The production of surfactin during the fermentation of cheonggukjang by potential probiotic Bacillus subtilis CSY191 and the resultant growth suppression of MCF-7 human breast cancer cells. Food Chem 131:1347–1354

    Article  CAS  Google Scholar 

  • Lee N-K, Son S-H, Jeon EB, Jung GH, Lee J-Y, Paik H-D (2015) The prophylactic effect of probiotic Bacillus polyfermenticus KU3 against cancer cells. J Funct Foods 14:513–518

    Article  CAS  Google Scholar 

  • Liu Z, Li C, Huang M, Tong C, Zhang X, Wang L, Peng H, Lan P, Zhang P, Huang N (2015) Positive regulatory effects of perioperative probiotic treatment on postoperative liver complications after colorectal liver metastases surgery: a double-center and double-blind randomized clinical trial. BMC Gastroenterol 15:34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lüke J, Vukoja V, Brandenbusch T, Nassar K, Rohrbach JM, Grisanti S, Lüke M, Tura A (2016) CD147 and matrix-metalloproteinase-2 expression in metastatic and non-metastatic uveal melanomas. BMC Ophthalmol 16:74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma EL, Choi YJ, Choi J, Pothoulakis C, Rhee SH, Im E (2010) The anticancer effect of probiotic Bacillus polyfermenticus on human colon cancer cells is mediated through ErbB2 and ErbB3 inhibition. Int J Cancer 127:780–790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Madhu AN, Prapulla SG (2014) Evaluation and functional characterization of a biosurfactant produced by Lactobacillus plantarum CFR 2194. Appl Biochem Biotechnol 172:1777–1789

    Article  CAS  PubMed  Google Scholar 

  • Maghsood F, Mirshafiey A, Farahani MM, Modarressi MH, Jafari P, Motevaseli E (2018) Dual effects of cell free supernatants from Lactobacillus acidophilus and Lactobacillus rhamnosus GG in regulation of MMP-9 by up-regulating TIMP-1 and down-regulating CD147 in PMA-differentiated THP-1 cells. Cell J (Yakhteh) 19:559

    Google Scholar 

  • Marques FZ, Nelson E, Chu P-Y, Horlock D, Fiedler A, Ziemann M, Tan JK, Kuruppu S, Rajapakse NW, El-Osta A (2017) High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation 135:964–977

    Article  CAS  PubMed  Google Scholar 

  • Mehra N, Majumdar R, Kumar S, Dhewa T (2012) Probiotics: preventive and clinical applications. Biosci Res Bull 1:15–20

    Google Scholar 

  • Moldes A, Paradelo R, Vecino X, Cruz J, Gudiña E, Rodrigues L, Teixeira J, Domínguez JM, Barral M (2013) Partial characterization of biosurfactant from Lactobacillus pentosus and comparison with sodium dodecyl sulphate for the bioremediation of hydrocarbon contaminated soil. Biomed Res Int 2013

    Google Scholar 

  • Morais I, Cordeiro A, Teixeira G, Domingues V, Nardi R, Monteiro A, Alves R, Siqueira E, Santos V (2017) Biological and physicochemical properties of biosurfactants produced by Lactobacillus jensenii P 6A and Lactobacillus gasseri P 65. Microb Cell Factories 16:155

    Article  CAS  Google Scholar 

  • Motevaseli E, Shirzad M, Akrami SM, Mousavi A-S, Mirsalehian A, Modarressi MH (2013) Normal and tumour cervical cells respond differently to vaginal lactobacilli, independent of pH and lactate. J Med Microbiol 62:1065–1072

    Article  PubMed  Google Scholar 

  • Noorozi E, Mojgani N, Motaveselli E, Tebianian M, Modaressi S (2021) Prophylactic role of probiotic, paraprobiotic and postbiotic of Lactobacillus casei strains against colorectal cancer cell; invitro studies. Braz J Pharm Res (in press)

    Google Scholar 

  • Oelschlaeger TA (2010) Mechanisms of probiotic actions—a review. Int J Med Microbiol 300:57–62

    Article  CAS  PubMed  Google Scholar 

  • Orlando A, Refolo M, Messa C, Amati L, Lavermicocca P, Guerra V, Russo F (2012) Antiproliferative and proapoptotic effects of viable or heat-killed Lactobacillus paracasei IMPC2. 1 and Lactobacillus rhamnosus GG in HGC-27 gastric and DLD-1 colon cell lines. Nutr Cancer 64:1103–1111

    Article  CAS  PubMed  Google Scholar 

  • Paiva AD, Breukink E, Mantovani HC (2011) Role of lipid II and membrane thickness in the mechanism of action of the lantibiotic bovicin HC5. Antimicrob Agents Chemother 55:5284–5293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paiva AD, de Oliveira MD, de Paula SO, Baracat-Pereira MC, Breukink E, Mantovani HC (2012) Toxicity of bovicin HC5 against mammalian cell lines and the role of cholesterol in bacteriocin activity. Microbiology 158:2851–2858

    Article  CAS  PubMed  Google Scholar 

  • Patel S, Majumder A, Goyal A (2012) Potentials of exopolysaccharides from lactic acid bacteria. Indian J Microbiol 52:3–12

    Article  CAS  PubMed  Google Scholar 

  • Rajoka MSR, Mehwish HM, Fang H, Padhiar AA, Zeng X, Khurshid M, He Z, Zhao L (2019) Characterization and anti-tumor activity of exopolysaccharide produced by Lactobacillus kefiri isolated from Chinese kefir grains. J Funct Foods 63:103588

    Article  CAS  Google Scholar 

  • Rodrigues LR (2011) Inhibition of bacterial adhesion on medical devices. Adv Exp Med Biol 715:351–367

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57:609–618

    Article  CAS  PubMed  Google Scholar 

  • Sand SL, Haug TM, Nissen-Meyer J, Sand O (2007) The bacterial peptide pheromone plantaricin A permeabilizes cancerous, but not normal, rat pituitary cells and differentiates between the outer and inner membrane leaflet. J Membr Biol 216:61–71

    Article  CAS  PubMed  Google Scholar 

  • Sand SL, Oppegård C, Ohara S, Iijima T, Naderi S, Blomhoff HK, Nissen-Meyer J, Sand O (2010) Plantaricin A, a peptide pheromone produced by Lactobacillus plantarum, permeabilizes the cell membrane of both normal and cancerous lymphocytes and neuronal cells. Peptides 31:1237–1244

    Article  CAS  PubMed  Google Scholar 

  • Sand SL, Nissen-Meyer J, Sand O, Haug TM (2013) Plantaricin A, a cationic peptide produced by Lactobacillus plantarum, permeabilizes eukaryotic cell membranes by a mechanism dependent on negative surface charge linked to glycosylated membrane proteins. Biochim Biophys Acta 1828:249–259

    Article  CAS  PubMed  Google Scholar 

  • Sanders M, Merenstein D, Merrifield C, Hutkins R (2018) Probiotics for human use. Nutr Bull 43:212–225

    Article  Google Scholar 

  • Saravanakumari P, Mani K (2010) Structural characterization of a novel xylolipid biosurfactant from Lactococcus lactis and analysis of antibacterial activity against multi-drug resistant pathogens. Bioresour Technol 101:8851–8854

    Article  CAS  PubMed  Google Scholar 

  • Sauvageau J, Ryan J, Lagutin K, Sims IM, Stocker BL, Timmer MS (2012) Isolation and structural characterisation of the major glycolipids from Lactobacillus plantarum. Carbohydr Res 357:151–156

    Article  CAS  PubMed  Google Scholar 

  • Saxami G, Karapetsas A, Lamprianidou E, Kotsianidis I, Chlichlia A, Tassou C, Zoumpourlis V, Galanis A (2016) Two potential probiotic lactobacillus strains isolated from olive microbiota exhibit adhesion and anti-proliferative effects in cancer cell lines. J Funct Foods 24:461–471

    Article  CAS  Google Scholar 

  • Schug ZT, Voorde JV, Gottlieb E (2016) The metabolic fate of acetate in cancer. Nat Rev Cancer 16:708–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A (2019) Importance of probiotics in cancer prevention and treatment. In: Recent developments in applied microbiology and biochemistry. Elsevier, pp 33–45

    Google Scholar 

  • Sharma M, Shukla G (2016) Metabiotics: one step ahead of probiotics; an insight into mechanisms involved in anticancerous effect in colorectal cancer. Front Microbiol 7:1940

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma D, Singh Saharan B (2014) Simultaneous production of biosurfactants and bacteriocins by probiotic Lactobacillus casei MRTL3. Int J Microbiol 2014

    Google Scholar 

  • Sharma D, Saharan BS, Chauhan N, Bansal A, Procha S (2014) Production and structural characterization of Lactobacillus helveticus derived biosurfactant. Sci World J 2014

    Google Scholar 

  • Sharma D, Saharan BS, Chauhan N, Procha S, Lal S (2015) Isolation and functional characterization of novel biosurfactant produced by Enterococcus faecium. Springerplus 4:1–14

    Article  Google Scholar 

  • Sivakumar T, Sivasankara Narayani S, Shankar T, Vijayabaskar P (2012) Optimization of cultural conditions for exopolysaccharides production by Frateuria aurentia. Int J Appl Biol Pharm Technol 3:133–144

    CAS  Google Scholar 

  • Sivamaruthi BS, Kesika P, Chaiyasut C (2020) The role of probiotics in colorectal cancer management. Evid Based Complement Alternat Med:3535982

    Google Scholar 

  • Sivapathasekaran C, Das P, Mukherjee S, Saravanakumar J, Mandal M, Sen R (2010) Marine bacterium derived lipopeptides: characterization and cytotoxic activity against cancer cell lines. Int J Pept Res Ther 16:215–222

    Article  CAS  Google Scholar 

  • Šmarda J, Obdržálek V, Táborský I, Mach J (1978) The cytotoxic and cytocidal effect of colicin E3 on mammalian tissue cells. Folia Microbiol 23:272–277

    Article  Google Scholar 

  • Sungur T, Aslim B, Karaaslan C, Aktas B (2017) Impact of Exopolysaccharides (EPSs) of Lactobacillus gasseri strains isolated from human vagina on cervical tumor cells (HeLa). Anaerobe 47:137–144

    Article  PubMed  Google Scholar 

  • Symmank H, Franke P, Saenger W, Bernhard F (2002) Modification of biologically active peptides: production of a novel lipohexapeptide after engineering of Bacillus subtilis surfactin synthetase. Protein Eng 15:913–921

    Article  CAS  PubMed  Google Scholar 

  • Tahmourespour A, Salehi R, Kermanshahi RK (2011) Lactobacillus acidophilus-derived biosurfactant effect on gtfB and gtfC expression level in Streptococcus mutans biofilm cells. Braz J Microbiol 42:330–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taverniti V, Guglielmetti S (2011) The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept). Genes Nutr 6:261–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thavasi R, Jayalakshmi S, Banat IM (2011) Application of biosurfactant produced from peanut oil cake by Lactobacillus delbrueckii in biodegradation of crude oil. Bioresour Technol 102:3366–3372

    Article  CAS  PubMed  Google Scholar 

  • Tiptiri-Kourpeti A, Spyridopoulou K, Santarmaki V, Aindelis G, Tompoulidou E, Lamprianidou EE, Saxami G, Ypsilantis P, Lampri ES, Simopoulos C (2016) Lactobacillus casei exerts anti-proliferative effects accompanied by apoptotic cell death and up-regulation of TRAIL in colon carcinoma cells. PLoS One 11:e0147960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Hoogmoed CG, van der Mei HC, Busscher HJ (2004) The influence of biosurfactants released by S. mitis BMS on the adhesion of pioneer strains and cariogenic bacteria. Biofouling 20:261–267

    Article  PubMed  CAS  Google Scholar 

  • Vecino X, Devesa-Rey R, Moldes A, Cruz J (2014) Formulation of an alginate-vineyard pruning waste composite as a new eco-friendly adsorbent to remove micronutrients from agroindustrial effluents. Chemosphere 111:24–31

    Article  CAS  PubMed  Google Scholar 

  • Vecino X, Barbosa-Pereira L, Devesa-Rey R, Cruz JM, Moldes AB (2015) Optimization of extraction conditions and fatty acid characterization of Lactobacillus pentosus cell-bound biosurfactant/bioemulsifier. J Sci Food Agric 95:313–320

    Article  CAS  PubMed  Google Scholar 

  • Velraeds MM, van der Mei HC, Reid G, Busscher HJ (1996) Physicochemical and biochemical characterization of biosurfactants released by Lactobacillus strains. Colloids Surf B: Biointerfaces 8:51–61

    Article  CAS  Google Scholar 

  • Villarante KI, Elegado FB, Iwatani S, Zendo T, Sonomoto K, de Guzman EE (2011) Purification, characterization and in vitro cytotoxicity of the bacteriocin from Pediococcus acidilactici K2a2-3 against human colon adenocarcinoma (HT29) and human cervical carcinoma (HeLa) cells. World J Microbiol Biotechnol 27:975–980

    Article  CAS  Google Scholar 

  • Voigt H, Vetter-Kauczok CS, Schrama D, Hofmann UB, Becker JC, Houben R (2009) CD147 impacts angiogenesis and metastasis formation. Cancer Investig 27:329–333

    Article  CAS  Google Scholar 

  • Walia S, Kamal R, Kanwar SS, Dhawan DK (2015) Cyclooxygenase as a target in chemoprevention by probiotics during 1, 2-dimethylhydrazine induced colon carcinogenesis in rats. Nutr Cancer 67:603–611

    Article  PubMed  Google Scholar 

  • Wang K, Li W, Rui X, Chen X, Jiang M, Dong M (2014a) Characterization of a novel exopolysaccharide with antitumor activity from Lactobacillus plantarum 70810. Int J Biol Macromol 63:133–139

    Article  CAS  PubMed  Google Scholar 

  • Wang S-M, Zhang L-W, Fan R-B, Han X, Yi H-X, Zhang L-L, Xue C-H, Li H-B, Zhang Y-H, Shigwedha N (2014b) Induction of HT-29 cells apoptosis by lactobacilli isolated from fermented products. Res Microbiol 165:202–214

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Saito H (1980) Cytotoxicity of pyocin S2 to tumor and normal cells and its interaction with cell surfaces. Biochim Biophys Acta 633:77–86

    Article  CAS  PubMed  Google Scholar 

  • Williams EA, Coxhead JM, Mathers JC (2003) Anti-cancer effects of butyrate: use of micro-array technology to investigate mechanisms. Proc Nutr Soc 62:107–115

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Zhang Y, Ye L, Wang C (2020) The anti-cancer effects and mechanisms of lactic acid bacteria exopolysaccharides in vitro: a review. Carbohydr Polym 253:117308

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Sood R, Jutila A, Bose S, Fimland G, Nissen-Meyer J, Kinnunen PK (2006) Interaction of the antimicrobial peptide pheromone Plantaricin A with model membranes: implications for a novel mechanism of action. Biochim Biophys Acta 1758:1461–1474

    Article  CAS  PubMed  Google Scholar 

  • Zhong L, Zhang X, Covasa M (2014) Emerging roles of lactic acid bacteria in protection against colorectal cancer. World J Gastroenterol: WJG 20:7878

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Noroozi, E., Tebianian, M., Taghizadeh, M., Dadar, M., Mojgani, N. (2021). Anticarcinogenic Potential of Probiotic, Postbiotic Metabolites and Paraprobiotics on Human Cancer Cells. In: Mojgani, N., Dadar, M. (eds) Probiotic Bacteria and Postbiotic Metabolites: Role in Animal and Human Health. Microorganisms for Sustainability, vol 2. Springer, Singapore. https://doi.org/10.1007/978-981-16-0223-8_6

Download citation

Publish with us

Policies and ethics