Skip to main content

Mfsd2a: A Physiologically Important Lysolipid Transporter in the Brain and Eye

  • Chapter
  • First Online:
Lipid Transfer in Lipoprotein Metabolism and Cardiovascular Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1276))

Abstract

Lipids and essential fatty acids are required for normal brain development and continued photoreceptor membrane biogenesis for the maintenance of vision. The blood-brain barrier and blood-eye barriers prohibit the free diffusion of solutes into the brain and eye so that transporter-mediated uptake predominates at these barriers. The major facilitator superfamily of transporters constitutes one of the largest families of facilitative transporters across all domains of life. A unique family member, major facilitator superfamily domain containing 2a (Mfsd2a) is a lysophosphatidylcholine (LPC) transporter expressed at the blood-brain and blood-retinal barriers and demonstrated to be the major pathway for brain and eye accretion of docosahexaenoic acid (DHA) as an LPC. In addition to LPC-DHA, Mfsd2a can transport other LPCs containing mono- and polyunsaturated fatty acids. Mfsd2a deficiency in mouse and humans results in severe microcephaly, underscoring the importance of LPC transport in brain development. Beyond its role in brain development, LPC-DHA uptake in the brain and eye negatively regulates de novo lipogenesis. This review focuses on the current understanding of the physiological roles of Mfsd2a in the brain and eye and the proposed transport mechanism of Mfsd2a.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S (2003) Structure and mechanism of the lactose permease of Escherichia coli. Science 301:610–615

    Article  CAS  PubMed  Google Scholar 

  2. Alakbarzade V, Hameed A, Quek DQ, Chioza BA, Baple EL, Cazenave-Gassiot A, Nguyen LN, Wenk MR, Ahmad AQ, Sreekantan-Nair A et al (2015) A partially inactivating mutation in the sodium-dependent lysophosphatidylcholine transporter MFSD2A causes a non-lethal microcephaly syndrome. Nat Genet 47:814–817

    Article  CAS  PubMed  Google Scholar 

  3. Alfei F, Kanev K, Hofmann M, Wu M, Ghoneim HE, Roelli P, Utzschneider DT, von Hoesslin M, Cullen JG, Fan Y et al (2019) TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature 571:265–269

    Article  CAS  PubMed  Google Scholar 

  4. Andreone BJ, Chow BW, Tata A, Lacoste B, Ben-Zvi A, Bullock K, Deik AA, Ginty DD, Clish CB, Gu C (2017) Blood-brain barrier permeability is regulated by lipid transport-dependent suppression of caveolae-mediated transcytosis. Neuron 94:581–594. e585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Angers M, Uldry M, Kong D, Gimble JM, Jetten AM (2008) Mfsd2a encodes a novel major facilitator superfamily domain-containing protein highly induced in brown adipose tissue during fasting and adaptive thermogenesis. Biochem J 416:347–355

    Article  CAS  PubMed  Google Scholar 

  6. Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K et al (2010) Pericytes regulate the blood-brain barrier. Nature 468:557–561

    Article  CAS  PubMed  Google Scholar 

  7. Baack ML, Puumala SE, Messier SE, Pritchett DK, Harris WS (2016) Daily enteral DHA supplementation alleviates deficiency in premature infants. Lipids 51:423–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81:871–927

    Article  CAS  PubMed  Google Scholar 

  9. Bazan NG (2006) Cell survival matters: docosahexaenoic acid signaling, neuroprotection and photoreceptors. Trends Neurosci 29:263–271

    Article  CAS  PubMed  Google Scholar 

  10. Ben-Zvi A, Lacoste B, Kur E, Andreone BJ, Mayshar Y, Yan H, Gu C (2014) Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature 509:507–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Berger JH, Charron MJ, Silver DL (2012) Major facilitator superfamily domain-containing protein 2a (MFSD2A) has roles in body growth, motor function, and lipid metabolism. PLoS One 7:e50629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Betsholtz C (2015) Lipid transport and human brain development. Nat Genet 47:699–701

    Article  CAS  PubMed  Google Scholar 

  13. Carver JD, Benford VJ, Han B, Cantor AB (2001) The relationship between age and the fatty acid composition of cerebral cortex and erythrocytes in human subjects. Brain Res Bull 56:79–85

    Article  CAS  PubMed  Google Scholar 

  14. Catalani A, Sabbatini M, Consoli C, Cinque C, Tomassoni D, Azmitia E, Angelucci L, Amenta F (2002) Glial fibrillary acidic protein immunoreactive astrocytes in developing rat hippocampus. Mech Ageing Dev 123:481–490

    Article  CAS  PubMed  Google Scholar 

  15. Chan JP, Wong BH, Chin CF, Galam DLA, Foo JC, Wong LC, Ghosh S, Wenk MR, Cazenave-Gassiot A, Silver DL (2018) The lysolipid transporter Mfsd2a regulates lipogenesis in the developing brain. PLoS Biol 16:e2006443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Chow BW, Gu C (2017) Gradual suppression of transcytosis governs functional blood-retinal barrier formation. Neuron 93:1325–1333. e1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Clandinin MT, Chappell JE, Heim T, Swyer PR, Chance GW (1981) Fatty acid utilization in perinatal de novo synthesis of tissues. Early Hum Dev 5:355–366

    Article  CAS  PubMed  Google Scholar 

  18. Collins CT, Sullivan TR, McPhee AJ, Stark MJ, Makrides M, Gibson RA (2015) A dose response randomised controlled trial of docosahexaenoic acid (DHA) in preterm infants. Prostaglandins Leukot Essent Fat Acids 99:1–6

    Article  CAS  Google Scholar 

  19. Colombo J, Kannass KN, Shaddy DJ, Kundurthi S, Maikranz JM, Anderson CJ, Blaga OM, Carlson SE (2004) Maternal DHA and the development of attention in infancy and toddlerhood. Child Dev 75:1254–1267

    Article  PubMed  Google Scholar 

  20. Croset M, Brossard N, Polette A, Lagarde M (2000) Characterization of plasma unsaturated lysophosphatidylcholines in human and rat. Biochem J 345(Pt 1):61–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cunha-Vaz J (1979) The blood-ocular barriers. Surv Ophthalmol 23:279–296

    Article  CAS  PubMed  Google Scholar 

  22. Cunha-Vaz JG, Shakib M, Ashton N (1966) Studies on the permeability of the blood-retinal barrier. I. On the existence, development, and site of a blood-retinal barrier. Br J Ophthalmol 50:441–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cunnane SC, Francescutti V, Brenna JT, Crawford MA (2000) Breast-fed infants achieve a higher rate of brain and whole body docosahexaenoate accumulation than formula-fed infants not consuming dietary docosahexaenoate. Lipids 35:105–111

    Article  CAS  PubMed  Google Scholar 

  24. Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468:562–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Delgado-Noguera MF, Calvache JA, Bonfill Cosp X (2010) Supplementation with long chain polyunsaturated fatty acids (LCPUFA) to breastfeeding mothers for improving child growth and development Cochrane Database Syst Rev:CD007901

    Google Scholar 

  26. Deng D, Sun P, Yan C, Ke M, Jiang X, Xiong L, Ren W, Hirata K, Yamamoto M, Fan S et al (2015) Molecular basis of ligand recognition and transport by glucose transporters. Nature 526:391–396

    Article  CAS  PubMed  Google Scholar 

  27. Deng D, Xu C, Sun P, Wu J, Yan C, Hu M, Yan N (2014) Crystal structure of the human glucose transporter GLUT1. Nature 510:121–125

    Article  CAS  PubMed  Google Scholar 

  28. Dobbing J, Sands J (1979) Comparative aspects of the brain growth spurt. Early Hum Dev 3:79–83

    Article  CAS  PubMed  Google Scholar 

  29. Ethayathulla AS, Yousef MS, Amin A, Leblanc G, Kaback HR, Guan L (2014) Structure-based mechanism for Na(+)/melibiose symport by MelB. Nat Commun 5:3009

    Article  PubMed  CAS  Google Scholar 

  30. Fliesler SJ, Anderson RE (1983) Chemistry and metabolism of lipids in the vertebrate retina. Prog Lipid Res 22:79–131

    Article  CAS  PubMed  Google Scholar 

  31. Gould JF, Smithers LG, Makrides M (2013) The effect of maternal omega-3 (n-3) LCPUFA supplementation during pregnancy on early childhood cognitive and visual development: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 97:531–544

    Article  CAS  PubMed  Google Scholar 

  32. Guemez-Gamboa A, Nguyen LN, Yang H, Zaki MS, Kara M, Ben-Omran T, Akizu N, Rosti RO, Rosti B, Scott E et al (2015) Inactivating mutations in MFSD2A, required for omega-3 fatty acid transport in brain, cause a lethal microcephaly syndrome. Nat Genet 47:809–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guesnet P, Alessandri JM (2011) Docosahexaenoic acid (DHA) and the developing central nervous system (CNS) – implications for dietary recommendations. Biochimie 93:7–12

    Article  CAS  PubMed  Google Scholar 

  34. Harel T, Quek DQY, Wong BH, Cazenave-Gassiot A, Wenk MR, Fan H, Berger I, Shmueli D, Shaag A, Silver DL et al (2018) Homozygous mutation in MFSD2A, encoding a lysolipid transporter for docosahexanoic acid, is associated with microcephaly and hypomyelination. Neurogenetics 19:227–235

    Article  PubMed  Google Scholar 

  35. Heird WC, Lapillonne A (2005) The role of essential fatty acids in development. Annu Rev Nutr 25:549–571

    Article  CAS  PubMed  Google Scholar 

  36. Huang Y, Lemieux MJ, Song J, Auer M, Wang DN (2003) Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301:616–620

    Article  CAS  PubMed  Google Scholar 

  37. Illingworth DR, Portman OW (1972) The uptake and metabolism of plasma lysophosphatidylcholine in vivo by the brain of squirrel monkeys. Biochem J 130:557–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Innis SM (2005) Essential fatty acid transfer and fetal development. Placenta 26(Suppl A):S70–S75

    Article  PubMed  CAS  Google Scholar 

  39. Kawahara A, Nishi T, Hisano Y, Fukui H, Yamaguchi A, Mochizuki N (2009) The sphingolipid transporter spns2 functions in migration of zebrafish myocardial precursors. Science 323:524–527

    Article  CAS  PubMed  Google Scholar 

  40. Khan O, Giles JR, McDonald S, Manne S, Ngiow SF, Patel KP, Werner MT, Huang AC, Alexander KA, Wu JE et al (2019) TOX transcriptionally and epigenetically programs CD8(+) T cell exhaustion. Nature 571:211–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Korade Z, Kenworthy AK (2008) Lipid rafts, cholesterol, and the brain. Neuropharmacology 55:1265–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lagarde M, Bernoud N, Brossard N, Lemaitre-Delaunay D, Thies F, Croset M, Lecerf J (2001) Lysophosphatidylcholine as a preferred carrier form of docosahexaenoic acid to the brain. J Mol Neurosci 16:201–204; discussion 215-221

    Article  CAS  PubMed  Google Scholar 

  44. Lands WE (1960) Metabolism of glycerolipids. 2. The enzymatic acylation of lysolecithin. J Biol Chem 235:2233–2237

    Article  CAS  PubMed  Google Scholar 

  45. Law CJ, Maloney PC, Wang DN (2008) Ins and outs of major facilitator superfamily antiporters. Annu Rev Microbiol 62:289–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lobanova ES, Schuhmann K, Finkelstein S, Lewis TR, Cady MA, Hao Y, Keuthan C, Ash JD, Burns ME, Shevchenko A et al (2019) Disrupted blood-retina lysophosphatidylcholine transport impairs photoreceptor health but not visual signal transduction. J Neurosci 39:9689–9701

    Article  PubMed  PubMed Central  Google Scholar 

  47. Martinez M (1992) Tissue levels of polyunsaturated fatty acids during early human development. J Pediatr 120:S129–S138

    Article  CAS  PubMed  Google Scholar 

  48. Martinez M (1996) Docosahexaenoic acid therapy in docosahexaenoic acid-deficient patients with disorders of peroxisomal biogenesis. Lipids 31(Suppl):S145–S152

    Article  CAS  PubMed  Google Scholar 

  49. McNamara RK (2010) DHA deficiency and prefrontal cortex neuropathology in recurrent affective disorders. J Nutr 140:864–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. McNamara RK, Liu Y, Jandacek R, Rider T, Tso P (2008) The aging human orbitofrontal cortex: decreasing polyunsaturated fatty acid composition and associated increases in lipogenic gene expression and stearoyl-CoA desaturase activity. Prostaglandins Leukot Essent Fat Acids 78:293–304

    Article  CAS  Google Scholar 

  51. Micheva KD, Beaulieu C (1996) Quantitative aspects of synaptogenesis in the rat barrel field cortex with special reference to GABA circuitry. J Comp Neurol 373:340–354

    Article  CAS  PubMed  Google Scholar 

  52. Nguyen LN, Ma D, Shui G, Wong P, Cazenave-Gassiot A, Zhang X, Wenk MR, Goh EL, Silver DL (2014) Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature 509:503–506

    Article  CAS  PubMed  Google Scholar 

  53. Pao SS, Paulsen IT, Saier MH Jr (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62:1–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Piccirillo AR, Hyzny EJ, Beppu LY, Menk AV, Wallace CT, Hawse WF, Buechel HM, Wong BH, Foo JC, Cazenave-Gassiot A et al (2019) The lysophosphatidylcholine transporter MFSD2A is essential for CD8(+) memory T cell maintenance and secondary response to infection. J Immunol 203:117–126

    Article  CAS  PubMed  Google Scholar 

  55. Qawasmi A, Landeros-Weisenberger A, Leckman JF, Bloch MH (2012) Meta-analysis of long-chain polyunsaturated fatty acid supplementation of formula and infant cognition. Pediatrics 129:1141–1149

    Article  PubMed  PubMed Central  Google Scholar 

  56. Quehenberger O, Armando AM, Brown AH, Milne SB, Myers DS, Merrill AH, Bandyopadhyay S, Jones KN, Kelly S, Shaner RL et al (2010) Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res 51:3299–3305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Quek DQ, Nguyen LN, Fan H, Silver DL (2016) Structural insights into the transport mechanism of the human sodium-dependent lysophosphatidylcholine transporter Mfsd2a. J Biol Chem 291:9383–9394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. SanGiovanni JP, Chew EY (2005) The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog Retin Eye Res 24:87–138

    Article  CAS  PubMed  Google Scholar 

  59. Shakib M, Cunha-Vaz JG (1966) Studies on the permeability of the blood-retinal barrier. IV. Junctional complexes of the retinal vessels and their role in the permeability of the blood-retinal barrier. Exp Eye Res 5:229–234

    Article  CAS  PubMed  Google Scholar 

  60. Shi Y (2013) Common folds and transport mechanisms of secondary active transporters. Annu Rev Biophys 42:51–72

    Article  PubMed  CAS  Google Scholar 

  61. Silbereis JC, Pochareddy S, Zhu Y, Li M, Sestan N (2016) The cellular and molecular landscapes of the developing human central nervous system. Neuron 89:248–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Simopoulos AP (2008) The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med (Maywood) 233:674–688

    Article  CAS  Google Scholar 

  63. Steinberg RH (1985) Interactions between the retinal pigment epithelium and the neural retina. Doc Ophthalmol 60:327–346

    Article  CAS  PubMed  Google Scholar 

  64. Sugasini D, Thomas R, Yalagala PCR, Tai LM, Subbaiah PV (2017) Dietary docosahexaenoic acid (DHA) as lysophosphatidylcholine, but not as free acid, enriches brain DHA and improves memory in adult mice. Sci Rep 7:11263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Suzuki R, Ferris HA, Chee MJ, Maratos-Flier E, Kahn CR (2013) Reduction of the cholesterol sensor SCAP in the brains of mice causes impaired synaptic transmission and altered cognitive function. PLoS Biol 11:e1001532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Svennerholm L (1968) Distribution and fatty acid composition of phosphoglycerides in normal human brain. J Lipid Res 9:570–579

    Article  CAS  PubMed  Google Scholar 

  67. Switzer S, Eder HA (1965) Transport of lysolecithin by albumin in human and rat plasma. J Lipid Res 6:506–511

    Article  CAS  PubMed  Google Scholar 

  68. Tabula Muris C, Overall c, Logistical c, Organ c, processing, Library, p., sequencing, Computational data a, Cell type a, Writing g et al (2018) Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562:367–372

    Google Scholar 

  69. Thies F, Delachambre MC, Bentejac M, Lagarde M, Lecerf J (1992) Unsaturated fatty acids esterified in 2-acyl-l-lysophosphatidylcholine bound to albumin are more efficiently taken up by the young rat brain than the unesterified form. J Neurochem 59:1110–1116

    Article  CAS  PubMed  Google Scholar 

  70. Thies F, Pillon C, Moliere P, Lagarde M, Lecerf J (1994) Preferential incorporation of sn-2 lysoPC DHA over unesterified DHA in the young rat brain. Am J Phys 267:R1273–R1279

    CAS  Google Scholar 

  71. van Deijk AF, Camargo N, Timmerman J, Heistek T, Brouwers JF, Mogavero F, Mansvelder HD, Smit AB, Verheijen MH (2017) Astrocyte lipid metabolism is critical for synapse development and function in vivo. Glia 65:670–682

    Article  PubMed  Google Scholar 

  72. Vanlandewijck M, He L, Mae MA, Andrae J, Ando K, Del Gaudio F, Nahar K, Lebouvier T, Lavina B, Gouveia L et al (2018) A molecular atlas of cell types and zonation in the brain vasculature. Nature 560:475–480

    Article  CAS  Google Scholar 

  73. Vu TM, Ishizu AN, Foo JC, Toh XR, Zhang F, Whee DM, Torta F, Cazenave-Gassiot A, Matsumura T, Kim S et al (2017) Mfsd2b is essential for the sphingosine-1-phosphate export in erythrocytes and platelets. Nature 550:524–528

    Article  CAS  PubMed  Google Scholar 

  74. Wong BH, Chan JP, Cazenave-Gassiot A, Poh RW, Foo JC, Galam DL, Ghosh S, Nguyen LN, Barathi VA, Yeo SW et al (2016) Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid (DHA) in eye and is important for photoreceptor cell development. J Biol Chem 291:10501–10514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yan N (2015) Structural biology of the major facilitator superfamily transporters. Annu Rev Biophys 44:257–283

    Article  CAS  PubMed  Google Scholar 

  76. Young RW (1967) The renewal of photoreceptor cell outer segments. J Cell Biol 33:61–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Young RW (1976) Visual cells and the concept of renewal. Invest Ophthalmol Vis Sci 15:700–725

    CAS  PubMed  Google Scholar 

  78. Young SG, Davies BS, Voss CV, Gin P, Weinstein MM, Tontonoz P, Reue K, Bensadoun A, Fong LG, Beigneux AP (2011) GPIHBP1, an endothelial cell transporter for lipoprotein lipase. J Lipid Res 52:1869–1884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N et al (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34:11929–11947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Research Foundation, Singapore (NRF-NRFI2017-05 to D.L.S.), and the Ministry of Health (MOH-000217-00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Silver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wong, B.H., Silver, D.L. (2020). Mfsd2a: A Physiologically Important Lysolipid Transporter in the Brain and Eye. In: Jiang, XC. (eds) Lipid Transfer in Lipoprotein Metabolism and Cardiovascular Disease. Advances in Experimental Medicine and Biology, vol 1276. Springer, Singapore. https://doi.org/10.1007/978-981-15-6082-8_14

Download citation

Publish with us

Policies and ethics