Skip to main content

The Intricacy of ROS in Cancer Therapy Resistance

  • Living reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Mechanistic Aspects

Abstract

Cancer is one of the notable causes of death universally due to the emergence of therapy resistance despite the evolution of encouraging therapeutic blueprints. Increased levels of reactive oxygen species (ROS) and antioxidant defense systems leading to alteration of the redox balancing are the typical sources for cancer initiation, progression, and therapy resistance. The elevated ROS levels in cancer and therapy-resistant cells are due to the dysfunction of mitochondria and alteration of metabolism in the cancer cells. The oxidative stress induced by ROS has a dichotomous role in the regulation of cancer and therapy resistance; it may augment cancer progression leading to the therapy resistance or may facilitate cancer cell death depending upon the intensity and the extent of exposure of ROS. So, strategies have been employed either to inhibit or to increase ROS along with the manipulation of the antioxidant defense systems for sensitizing and killing the cancer cells. In this chapter, we have discussed the current understanding of the role of ROS in cancer and therapy resistance, and precisely, the sources, activation, and regulation of ROS, the dichotomous role of ROS in cancer progression and inhibition, and the molecular mechanisms involved in the ROS-mediated cancer therapy resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

3-MA:

3-Methyladenine

8-OG:

8-Oxoguanine

8OHG:

8-Hydroxyguanine

ABC:

ATP-binding cassette

AKR:

Aldo-ketoreductases

Akt:

Protein kinase B

AMPK:

AMP-activated protein kinase

ARE:

Antioxidant responsive element

ARF:

Alternative reading frame

ATM:

Ataxia-telangiectasia mutated

ATP:

Adenosine triphosphate

ATR:

ATM and Rad3-related

BRCA1:

Breast Cancer gene 1

Cdk:

Cyclin-dependent kinase

Chk:

Checkpoint kinase

COX2:

Cyclo-oxygenase 2

CXCL14:

C-X-C motif chemokine 14

Cyt-c:

Cytochrome- c

DDH:

Dihydrodiol dehydrogenase

DDR:

DNA damage response

DNA:

Deoxyribonucleicacid

DNMT1:

DNA methyltransferase 1

dNTP:

Deoxyribonucleotide triphosphate

DSB:

Double-strand break

EMT:

Epithelial to mesenchymal transition

ERK:

Extracellular signal-regulated kinase

ETC:

Electron transport chain

FADH2:

Flavin adenine Dinucleotide

FAK:

Focal adhesion kinase

FAO:

Fatty acid oxidation

FOXO:

Forkhead box transcription factor

G6PD:

Glucose-6-phosphate dehydrogenase

GPX:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Reduced Glutathione

GSSG:

Oxidized Glutathione

HIF1α:

Hypoxia-inducible factor 1α

HMGB1:

High-mobility group box 1

I-CAM:

Intercellular adhesion molecule 1

IL:

Interleukin

LC3:

Microtubule-associated protein 1A/1B-light chain 3

LDHA:

Lactate dehydrogenase A

LKB1:

Liver kinase B 1

MAPK:

Mitogen-activated protein kinase

MDR1:

Multidrug resistance 1

MEF:

Mouse embryonic fibroblasts

MIF:

Migration inhibitory factor

MMP:

Matrix metalloproteinases

MNC:

Multinucleated cells

MSH1:

MutS protein homolog 1

NADP:

Nicotinamide adenine dinucleotide phosphate

NADPH:

Nicotinamide adenine dinucleotide phosphate reduced

NF-kB:

Nuclear factor- kB

NRF2:

Nuclear factor erythroid 2-related factor 2

OGG1:

8-Oxoguanine DNA glycosylase 1

PAH:

Polycyclic aromatic hydrocarbon

PDGF:

Platelet-derived growth factor

P-gp:

P-glycoprotein

PI3K:

Phosphoinositide 3-kinase

PINK1:

PTEN-induced kinase 1

PPP:

Pentose phosphate pathway

PRX:

Peroxiredoxins

Rac1:

Ras-related C3 botulinum toxin substrate 1

ROS:

Reactive oxygen species

RUNX3:

Runt-related transcription factor 3

SOD:

Superoxide dismutase

Src:

Proto-oncogene c-Src

TNF:

Tumor necrosis factor

Trx:

Thioredoxins

VDAC:

Voltage-dependent anion-selective channel

VEGF:

Vascular-endothelial growth factor

References

  • Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K, Varol M, Jain A, Khan MA, Sethi G (2019) Role of Reactive Oxygen Species in Cancer Progression: Molecular Mechanisms and Recent Advancements. Biomolecules 9(11):735

    Article  CAS  PubMed Central  Google Scholar 

  • Ben-Porath I, Weinberg RA (2005) The signals and pathways activating cellular senescence. Int J Biochem Cell Biol 37(5):961–976

    Article  CAS  PubMed  Google Scholar 

  • Cadet J, Delatour T, Douki T, Gasparutto D, Pouget JP, Ravanat JL, Sauvaigo S (1999) Hydroxyl radicals and DNA base damage. Mutat Res 424(1–2):9–21

    Article  CAS  PubMed  Google Scholar 

  • Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8(9):729–740

    Article  CAS  PubMed  Google Scholar 

  • Carew JS, Kelly KR, Nawrocki ST (2012) Autophagy as a target for cancer therapy: new developments. Cancer Manag Res 4:357–365

    PubMed  PubMed Central  Google Scholar 

  • Carracedo A, Cantley LC, Pandolfi PP (2013) Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer 13(4):227–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Adikari M, Pallai R, Parekh HK, Simpkins H (2008) Dihydrodiol dehydrogenases regulate the generation of reactive oxygen species and the development of cisplatin resistance in human ovarian carcinoma cells. Cancer Chemother Pharmacol 61(6):979–987

    Article  CAS  PubMed  Google Scholar 

  • Chiarugi P, Fiaschi T (2007) Redox signalling in anchorage-dependent cell growth. Cell Signal 19(4):672–682

    Article  CAS  PubMed  Google Scholar 

  • Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341(Pt 2):233–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damia G, Garattini S (2014) The pharmacological point of view of resistance to therapy in tumors. Cancer Treat Rev 40(8):909–916

    Article  CAS  PubMed  Google Scholar 

  • Das CK, Linder B, Bonn F, Rothweiler F, Dikic I, Michaelis M, Cinatl J, Mandal M, Kogel D (2018a) BAG3 overexpression and cytoprotective autophagy mediate apoptosis resistance in chemoresistant breast cancer cells. Neoplasia 20(3):263–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das CK, Mandal M, Kogel D (2018b) Pro-survival autophagy and cancer cell resistance to therapy. Cancer Metastasis Rev 37(4):749–766

    Article  CAS  PubMed  Google Scholar 

  • Das CK, Banerjee I, Mandal M (2020) Pro-survival autophagy: an emerging candidate of tumor progression through maintaining hallmarks of cancer. Semin Cancer Biol 66:59–74

    Google Scholar 

  • Das CK, Parekh A, Parida PK, Bhutia SK, Mandal M (2019) Lactate dehydrogenase A regulates autophagy and tamoxifen resistance in breast cancer. Biochim Biophys Acta, Mol Cell Res 1866(6):1004–1018

    Article  CAS  Google Scholar 

  • Deng L, Tatebe S, Lin-Lee YC, Ishikawa T, Kuo MT (2002) MDR and MRP gene families as cellular determinant factors for resistance to clinical anticancer agents. Cancer Treat Res 112:49–66

    Article  CAS  PubMed  Google Scholar 

  • Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M, Joshua B, Kaplan MJ, Wapnir I, Dirbas FM, Somlo G, Garberoglio C, Paz B, Shen J, Lau SK, Quake SR, Brown JM, Weissman IL, Clarke MF (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458(7239):780–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinkova-Kostova AT, Holtzclaw WD, Wakabayashi N (2005) Keap1, the sensor for electrophiles and oxidants that regulates the phase 2 response, is a zinc metalloprotein. Biochemistry 44(18):6889–6899

    Article  CAS  PubMed  Google Scholar 

  • Dixon SJ, Stockwell BR (2014) The role of iron and reactive oxygen species in cell death. Nat Chem Biol 10(1):9–17

    Article  CAS  PubMed  Google Scholar 

  • Durackova Z (2010) Some current insights into oxidative stress. Physiol Res 59(4):459–469

    Article  CAS  PubMed  Google Scholar 

  • Galadari S, Rahman A, Pallichankandy S, Thayyullathil F (2015) Tumor suppressive functions of ceramide: evidence and mechanisms. Apoptosis 20(5):689–711

    Article  CAS  PubMed  Google Scholar 

  • Gamou S, Shimizu N (1995) Hydrogen peroxide preferentially enhances the tyrosine phosphorylation of epidermal growth factor receptor. FEBS Lett 357(2):161–164

    Article  CAS  PubMed  Google Scholar 

  • Gianni D, Bohl B, Courtneidge SA, Bokoch GM (2008) The involvement of the tyrosine kinase c-Src in the regulation of reactive oxygen species generation mediated by NADPH oxidase-1. Mol Biol Cell 19(7):2984–2994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilmore AP (2005) Anoikis. Cell Death Differ 12(Suppl 2):1473–1477

    Article  CAS  PubMed  Google Scholar 

  • Gorlach A, Bertram K, Hudecova S, Krizanova O (2015) Calcium and ROS: a mutual interplay. Redox Biol 6:260–271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2(1):48–58

    Article  CAS  PubMed  Google Scholar 

  • Guo JY, Chen HY, Mathew R, Fan J, Strohecker AM, Karsli-Uzunbas G, Kamphorst JJ, Chen G, Lemons JM, Karantza V, Coller HA, Dipaola RS, Gelinas C, Rabinowitz JD, White E (2011) Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 25(5):460–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahm ER, Sakao K, Singh SV (2014) Honokiol activates reactive oxygen species-mediated cytoprotective autophagy in human prostate cancer cells. Prostate 74(12):1209–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huot J, Houle F, Marceau F, Landry J (1997) Oxidative stress-induced actin reorganization mediated by the p38 mitogen-activated protein kinase/heat shock protein 27 pathway in vascular endothelial cells. Circ Res 80(3):383–392

    Article  CAS  PubMed  Google Scholar 

  • Ishimoto T, Nagano O, Yae T, Tamada M, Motohara T, Oshima H, Oshima M, Ikeda T, Asaba R, Yagi H, Masuko T, Shimizu T, Ishikawa T, Kai K, Takahashi E, Imamura Y, Baba Y, Ohmura M, Suematsu M, Baba H, Saya H (2011) CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth. Cancer Cell 19(3):387–400

    Article  CAS  PubMed  Google Scholar 

  • Iverson SL, Orrenius S (2004) The cardiolipin-cytochrome c interaction and the mitochondrial regulation of apoptosis. Arch Biochem Biophys 423(1):37–46

    Article  CAS  PubMed  Google Scholar 

  • Jeon SM, Chandel NS, Hay N (2012) AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 485(7400):661–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang KA, Zhang R, Kim GY, Bae SC, Hyun JW (2012) Epigenetic changes induced by oxidative stress in colorectal cancer cells: methylation of tumor suppressor RUNX3. Tumour Biol 33(2):403–412

    Article  CAS  PubMed  Google Scholar 

  • Kim EJ, Kim N, Cho SG (2013) The potential use of mesenchymal stem cells in hematopoietic stem cell transplantation. Exp Mol Med 45:e2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim J, Kim J, Bae JS (2016) ROS homeostasis and metabolism: a critical liaison for cancer therapy. Exp Mol Med 48(11):e269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim B, Jung JW, Jung J, Han Y, Suh DH, Kim HS, Dhanasekaran DN, Song YS (2017) PGC1alpha induced by reactive oxygen species contributes to chemoresistance of ovarian cancer cells. Oncotarget 8(36):60299–60311

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumari S, Badana AK, Murali Mohan G, Shailender G, Malla R (2018) Reactive oxygen species: a key constituent in cancer survival. Biomark Insights 13:1177271918755391

    Article  PubMed  PubMed Central  Google Scholar 

  • Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM, Royer RE, Vander Jagt DL, Semenza GL, Dang CV (2010) Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA 107(5):2037–2042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Csibi A, Yang S, Hoffman GR, Li C, Zhang E, Yu JJ, Blenis J (2015) Synthetic lethality of combined glutaminase and Hsp90 inhibition in mTORC1-driven tumor cells. Proc Natl Acad Sci USA 112(1):E21–E29

    Article  CAS  PubMed  Google Scholar 

  • Liberti MV, Locasale JW (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41(3):211–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim SO, Gu JM, Kim MS, Kim HS, Park YN, Park CK, Cho JW, Park YM, Jung G (2008) Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: methylation of the E-cadherin promoter. Gastroenterology 135(6):2128–2140. 2140 e2121–2128

    Article  CAS  PubMed  Google Scholar 

  • Liu LZ, Hu XW, Xia C, He J, Zhou Q, Shi X, Fang J, Jiang BH (2006) Reactive oxygen species regulate epidermal growth factor-induced vascular endothelial growth factor and hypoxia-inducible factor-1alpha expression through activation of AKT and P70S6K1 in human ovarian cancer cells. Free Radic Biol Med 41(10):1521–1533

    Article  CAS  PubMed  Google Scholar 

  • Lock R, Roy S, Kenific CM, Su JS, Salas E, Ronen SM, Debnath J (2011) Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol Biol Cell 22(2):165–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luanpitpong S, Chanvorachote P, Stehlik C, Tse W, Callery PS, Wang L, Rojanasakul Y (2013) Regulation of apoptosis by Bcl-2 cysteine oxidation in human lung epithelial cells. Mol Biol Cell 24(6):858–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahjabeen I, Masood N, Baig RM, Sabir M, Inayat U, Malik FA, Kayani MA (2012) Novel mutations of OGG1 base excision repair pathway gene in laryngeal cancer patients. Familial Cancer 11(4):587–593

    Article  CAS  PubMed  Google Scholar 

  • Maya-Mendoza A, Ostrakova J, Kosar M, Hall A, Duskova P, Mistrik M, Merchut-Maya JM, Hodny Z, Bartkova J, Christensen C, Bartek J (2015) Myc and Ras oncogenes engage different energy metabolism programs and evoke distinct patterns of oxidative and DNA replication stress. Mol Oncol 9(3):601–616

    Article  CAS  PubMed  Google Scholar 

  • Milligan SA, Owens MW, Grisham MB (1996) Augmentation of cytokine-induced nitric oxide synthesis by hydrogen peroxide. Am J Phys 271(1 Pt 1):L114–L120

    CAS  Google Scholar 

  • Nguyen T, Sherratt PJ, Pickett CB (2003) Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol 43:233–260

    Article  CAS  PubMed  Google Scholar 

  • Nogueira V, Hay N (2013) Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clin Cancer Res 19(16):4309–4314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okon IS, Zou MH (2015) Mitochondrial ROS and cancer drug resistance: implications for therapy. Pharmacol Res 100:170–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parekh A, Das S, Parida S, Das CK, Dutta D, Mallick SK, Wu PH, Kumar BNP, Bharti R, Dey G, Banerjee K, Rajput S, Bharadwaj D, Pal I, Dey KK, Rajesh Y, Jena BC, Biswas A, Banik P, Pradhan AK, Das SK, Das AK, Dhara S, Fisher PB, Wirtz D, Mills GB, Mandal M (2018) Multi-nucleated cells use ROS to induce breast cancer chemo-resistance in vitro and in vivo. Oncogene 37(33):4546–4561

    Article  CAS  PubMed  Google Scholar 

  • Pelicano H, Lu W, Zhou Y, Zhang W, Chen Z, Hu Y, Huang P (2009) Mitochondrial dysfunction and reactive oxygen species imbalance promote breast cancer cell motility through a CXCL14-mediated mechanism. Cancer Res 69(6):2375–2383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pike LS, Smift AL, Croteau NJ, Ferrick DA, Wu M (2011) Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochim Biophys Acta 1807(6):726–734

    Article  CAS  PubMed  Google Scholar 

  • Poillet-Perez L, Despouy G, Delage-Mourroux R, Boyer-Guittaut M (2015) Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy. Redox Biol 4:184–192

    Article  CAS  PubMed  Google Scholar 

  • Quinlan CL, Perevoshchikova IV, Hey-Mogensen M, Orr AL, Brand MD (2013) Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biol 1:304–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radisky DC, Levy DD, Littlepage LE, Liu H, Nelson CM, Fata JE, Leake D, Godden EL, Albertson DG, Nieto MA, Werb Z, Bissell MJ (2005) Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436(7047):123–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray PD, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24(5):981–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinett ZN, Bathla G, Wu A, Clark JJ, Sibenaller ZA, Wilson T, Kirby P, Allen BG, Hansen MR (2018) Persistent oxidative stress in vestibular schwannomas after stereotactic radiation therapy. Otol Neurotol 39(9):1184–1190

    Article  PubMed  PubMed Central  Google Scholar 

  • Roebuck KA (1999) Oxidant stress regulation of IL-8 and ICAM-1 gene expression: differential activation and binding of the transcription factors AP-1 and NF-kappaB (review). Int J Mol Med 4(3):223–230

    CAS  PubMed  Google Scholar 

  • Safa AR (2012) c-FLIP, a master anti-apoptotic regulator. Exp Oncol 34(3):176–184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sallmyr A, Fan J, Rassool FV (2008) Genomic instability in myeloid malignancies: increased reactive oxygen species (ROS), DNA double strand breaks (DSBs) and error-prone repair. Cancer Lett 270(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30(11):1191–1212

    Article  CAS  PubMed  Google Scholar 

  • Schrader M, Fahimi HD (2006) Peroxisomes and oxidative stress. Biochim Biophys Acta 1763(12):1755–1766

    Article  CAS  PubMed  Google Scholar 

  • Seebacher NA, Richardson DR, Jansson PJ (2015) Glucose modulation induces reactive oxygen species and increases P-glycoprotein-mediated multidrug resistance to chemotherapeutics. Br J Pharmacol 172(10):2557–2572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shokolenko I, Venediktova N, Bochkareva A, Wilson GL, Alexeyev MF (2009) Oxidative stress induces degradation of mitochondrial DNA. Nucleic Acids Res 37(8):2539–2548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla LI, Adhikary A, Pazdro R, Becker D, Sevilla MD (2004) Formation of 8-oxo-7,8-dihydroguanine-radicals in gamma-irradiated DNA by multiple one-electron oxidations. Nucleic Acids Res 32(22):6565–6574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tobar N, Caceres M, Santibanez JF, Smith PC, Martinez J (2008) RAC1 activity and intracellular ROS modulate the migratory potential of MCF-7 cells through a NADPH oxidase and NFkappaB-dependent mechanism. Cancer Lett 267(1):125–132

    Article  CAS  PubMed  Google Scholar 

  • Toyokuni S (2008) Molecular mechanisms of oxidative stress-induced carcinogenesis: from epidemiology to oxygenomics. IUBMB Life 60(7):441–447

    Article  CAS  PubMed  Google Scholar 

  • Tsai IC, Pan ZC, Cheng HP, Liu CH, Lin BT, Jiang MJ (2016) Reactive oxygen species derived from NADPH oxidase 1 and mitochondria mediate angiotensin II-induced smooth muscle cell senescence. J Mol Cell Cardiol 98:18–27

    Article  CAS  PubMed  Google Scholar 

  • Ushio-Fukai M, Nakamura Y (2008) Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett 266(1):37–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Li XM, Bai Z, Chi BX, Wei Y, Chen X (2018) Curcumol induces cell cycle arrest in colon cancer cells via reactive oxygen species and Akt/ GSK3beta/cyclin D1 pathway. J Ethnopharmacol 210:1–9

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Ni X (2015) ROS-mediated DNA methylation pattern alterations in carcinogenesis. Curr Drug Targets 16(1):13–19

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Villani RM, Wang H, Simpson MJ, Roberts MS, Tang M, Liang X (2018) The role of cellular reactive oxygen species in cancer chemotherapy. J Exp Clin Cancer Res 37(1):266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Ishak Gabra MB, Hanse EA, Lowman XH, Tran TQ, Li H, Milman N, Liu J, Reid MA, Locasale JW, Gil Z, Kong M (2019) MiR-135 suppresses glycolysis and promotes pancreatic cancer cell adaptation to metabolic stress by targeting phosphofructokinase-1. Nat Commun 10(1):809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin L, Kufe T, Avigan D, Kufe D (2014) Targeting MUC1-C is synergistic with bortezomib in downregulating TIGAR and inducing ROS-mediated myeloma cell death. Blood 123(19):2997–3006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Liu H, Davies KJ, Sioutas C, Finch CE, Morgan TE, Forman HJ (2012) Nrf2-regulated phase II enzymes are induced by chronic ambient nanoparticle exposure in young mice with age-related impairments. Free Radic Biol Med 52(9):2038–2046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Kang KA, Kim KC, Na SY, Chang WY, Kim GY, Kim HS, Hyun JW (2013) Oxidative stress causes epigenetic alteration of CDX1 expression in colorectal cancer cells. Gene 524(2):214–219

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, He R, Shen M, Zhu F, Wang M, Liu Y, Chen H, Li X, Qin R (2019) PINK1/Parkin-mediated mitophagy regulation by reactive oxygen species alleviates rocaglamide A-induced apoptosis in pancreatic cancer cells. Front Pharmacol 10:968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zong WX, Thompson CB (2006) Necrotic death as a cell fate. Genes Dev 20(1):1–15

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We would like to acknowledge Department of Science and Technology (DST-INSPIRE-IF130677), University Grants Commission (UGC), Council of Scientific and Industrial Research (CSIR), Indian Council of Medical Research (ICMR), Science and Engineering Research Board (SERB-J C Bose National Fellowship), Ministry of Human Resource and Development (MHRD), Government of India; Indian Institute of Technology Kharagpur, India; and German Academic Exchange Service (DAAD), Germany, for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahitosh Mandal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Das, C.K., Majumder, R., Roy, P., Mandal, M. (2021). The Intricacy of ROS in Cancer Therapy Resistance. In: Chakraborti, S., Ray, B.K., Roychowdhury, S. (eds) Handbook of Oxidative Stress in Cancer: Mechanistic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-15-4501-6_125-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4501-6_125-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4501-6

  • Online ISBN: 978-981-15-4501-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics