Skip to main content

MDR and MRP Gene Families as Cellular Determinant Factors for Resistance to Clinical Anticancer Agents

  • Chapter
Clinically Relevant Resistance in Cancer Chemotherapy

Part of the book series: Cancer Treatment and Research ((CTAR,volume 112))

Abstract

The constant threat by a countless array of environmental poisons, natural products and synthetic agents, over evolutionary time has led living organisms to develop many elaborate mechanisms that combat the toxic effects of these insults. Among such mechanisms is one that decreases the intracellular accumulation of a toxic substance by directly pumping toxic molecules out of the cells, and another that modifies the metabolism of the toxic substances and effluxes the metabolized compounds. The former mechanism is typified by the mammalian multidrug resistance system mediated by P-glycoproteins (P-gp) that are encoded by the MDR gene family. The second mechanism is exemplified by the multidrug resistance protein (MRP). Both P-gp and MRP contain ATP-binding cassettes and therefore belong to the ABC superfamily of membrane transporters

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gottesman MM, Pastan I, Ambudkar SV. P-glycoprotein and multidrug resistance.Curr Opinion Genet Dev, 6:610–617, 1996.

    Article  CAS  Google Scholar 

  2. Ling V. Multidrug resistance: molecular mechanisms and clinical relevance. Cancer Chemother Pharmacol, 40 Suppl:S3–8, 1997.

    Article  Google Scholar 

  3. Cole SP, Deeley RG. Multidrug resistance mediated by the ATP-binding cassette transporter protein MRP. BioEssays, 20: 931–940, 1998.

    Article  PubMed  CAS  Google Scholar 

  4. Borst P, Evers R, Kool M, Wijnholds J. The multidrug resistance protein family. Biochim Biophys Acta, 1461:347–357, 1999.

    Article  PubMed  CAS  Google Scholar 

  5. Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta, 455:152–162, 1976.

    Article  PubMed  CAS  Google Scholar 

  6. Borst P, Schinkel AH. What have we learnt thus far from mice with disrupted Pglycoprotein genes? Eur J Cancer, 32A:985–990, 1996.

    Article  PubMed  CAS  Google Scholar 

  7. Zhang ZJ, Saito T, Kimura Yet al.Disruption of mdr 1 a P-glycoprotein gene results in dysfunction of blood-inner ear barrier in mice. Brain Res, 852:116–216, 2000.

    Article  PubMed  CAS  Google Scholar 

  8. Capranico G, De Isabella P, Castelli Cet al.P-glycoprotein gene amplification and expression in multidrug-resistant murine P388 and B16 cell lines. Br J Cancer, 59:682–685, 1989.

    Article  PubMed  CAS  Google Scholar 

  9. Kuo MT, Julian J, Husain Fet al.Regulation of multidrug resistance gene mdr1b/mdr1 expression in isolated mouse uterine epithelial cells. J Cell Physiol, 164:132–141, 1995.

    Article  PubMed  CAS  Google Scholar 

  10. Jackson RJ. Cytoplasmic regulation of mRNA function: the importance of the 3’ untranslated region. Cell, 74:9–14, 1993.

    Article  PubMed  CAS  Google Scholar 

  11. Center MS. Evidence that adriamycin resistance in Chinese hamster lung cells is regulated by phosphorylation of a plasma membrane glycoprotein. Biochem Biophys Res Commun, 115:159–166, 1983.

    Article  PubMed  Google Scholar 

  12. Kramer R, Weber TK, Arceci Ret al.Inhibition of N-linked glycosylation of Pglycoprotein by tunicamycin results in a reduced multidrug resistance phenotype. Br J Cancer, 71:670–675, 1995.

    Article  PubMed  CAS  Google Scholar 

  13. Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem, 62:385–427, 1993.

    Article  PubMed  CAS  Google Scholar 

  14. Chin KV, Ueda K, Pastan I, Gottesman MM. Modulation of activity of the promoter of the human MDR1 gene by Ras and p53. Science, 255:459–462, 1992.

    Article  PubMed  CAS  Google Scholar 

  15. Bargou RC, Jurchott K, Wagener Cet al.Nuclear localization and increased levels of transcription factor YB-1 in primary human breast cancers are associated with intrinsic MDR1 gene expression. Nature Med, 3:447–450, 1997.

    Article  PubMed  CAS  Google Scholar 

  16. Del Poeta G, Venditti A, Aronica Get al.P-glycoprotein expression in de novo acute myeloid leukemia. Leukemia Lymphoma, 27:257–274, 1997.

    PubMed  Google Scholar 

  17. Senent L, Jarque I, Martin Get al.P-glycoprotein expression and prognostic value in acute myeloid leukemia. Haematologica, 83:783–787, 1998.

    PubMed  CAS  Google Scholar 

  18. Leith CP, Kopecky KJ, Godwin Jet al.Acute myeloid leukemia in the elderly: assessment of multidrug resistance (MDR1) and cytogenetics distinguishes biologic subgroups with remarkably distinct responses to standard chemotherapy. A Southwest Oncology Group study. Blood, 89:3323–3329, 1997.

    PubMed  CAS  Google Scholar 

  19. Marie JP, Zhou DC, Gurbuxani Set al.MDR1/P-glycoprotein in haematological neoplasms. Eur J Cancer, 32A:1034–1038, 1996.

    Article  PubMed  CAS  Google Scholar 

  20. to Boekhorst PA, de Leeuw K, Schoester Met al.Predominance of functional multidrug resistance (MDR-1) phenotype in CD34+ acute myeloid leukemia cells. Blood, 82:3157–3162, 1993.

    Google Scholar 

  21. Guerci A, Merlin JL, Missoum Net aLPredictive value for treatment outcome in acute myeloid leukemia of cellular daunorubicin accumulation and P-glycoprotein expression simultaneously determined by flow cytometry. Blood, 85:2147–2153, 1995.

    PubMed  CAS  Google Scholar 

  22. Moscow JA, Schneider E, Ivy SP, Cowan KH. Multidrug resistance. Cancer Chemother Biol Response Modif, 17:139–177, 1997.

    PubMed  CAS  Google Scholar 

  23. Goasguen I, Dossot J, Fardel O. Expression of the multidrug resistance-associated Pglycoprotein (P-170) in 59 cases of de novo acute lymphoblastic leukemia: prognostic implications. Blood, 81:2394–2398, 1993.

    PubMed  CAS  Google Scholar 

  24. Dhooge C, De Moerloose B. Clinical significance of P-glycoprotein (P-gp) expression in childhood acute lymphoblastic leukemia. Results of a 6-year prospective study. Adv Exp Med Biol, 457:11–19, 1999.

    Article  PubMed  CAS  Google Scholar 

  25. Rossi JF. Chemoresistance and multiple myeloma: from biological to clinical aspects. Stem Cells, 13 Suppl 2:64–71, 1995.

    Google Scholar 

  26. Sonneveld P. Modulation of multidrug resistance in multiple myeloma. Baillieres Clin Haematol, 84:831–844, 1995.

    Article  Google Scholar 

  27. Hegewisch-Becker S, Hossfeld DK. The MDR phenotype in hematologic malignancies: prognostic relevance and future perspectives. Ann Hematol, 72:105–117, 1996.

    Article  PubMed  CAS  Google Scholar 

  28. Baldini N. Multidrug resistance--a multiplex phenomenon. Nature Med, 3:378–380, 1997.

    Article  PubMed  CAS  Google Scholar 

  29. Trock BJ, Leonessa F, Clarke RJ. Multidrug resistance in breast cancer: a meta-analysis of MDRI/gp170 expression and its possible functional significance. J Natl Cancer Inst, 89:917–931, 1997.

    Article  PubMed  CAS  Google Scholar 

  30. Yokoyama H, Ishida T, Sugio Ket al.Immunohistochemical evidence that Pglycoprotein in non-small cell lung cancers is associated with shorter survival. Surg Today, 29:1141–1147, 1999.

    Article  PubMed  CAS  Google Scholar 

  31. Savaraj N, Wu CJ, Xu Ret al.Multidrug-resistant gene expression in small-cell lung cancer. Amer J Clin Oncol, 20:398–403, 1997.

    Article  CAS  Google Scholar 

  32. Oka M, Fukuda M, Sakamoto Aet al.The clinical role of MDR1 gene expression in human lung cancer. Anticancer Res, 17:721–724, 1997.

    PubMed  CAS  Google Scholar 

  33. Campling BG, Young LC, Baer KAet aLExpression of the MRP and MDR1 multidrug resistance genes in small cell lung cancer. Clin Cancer Res, 3:115–122, 1997.

    PubMed  CAS  Google Scholar 

  34. Punyammalee B, Manoromana S, Purisa Wet al.Association of mdrl gene expression with other prognostic factors and clinical outcome in human breast cancer. J Med Assoc Thai, 80:S162–173, 1997.

    PubMed  Google Scholar 

  35. Linn SC, Giaccone G, van Diest PJet al.Prognostic relevance of P-glycoprotein expression in breast cancer. Ann Oncol, 6:679–685, 1995.

    PubMed  CAS  Google Scholar 

  36. Gregorcyk S, Kang Y, Brandt Det al.P-glycoprotein expression as a predictor of breast cancer recurrence. Ann Surg Oncol, 3:8–14, 1996.

    Article  PubMed  CAS  Google Scholar 

  37. Lizard-Nacol S, Genne P, Coudert Bet al.MDR1 and thymidylate synthase (TS) gene expressions in advanced breast cancer: relationships to drug exposure, p53 mutations, and clinical outcome of the patients. Anticancer Res, 19:3575–3581, 1999.

    PubMed  CAS  Google Scholar 

  38. Hegewisch-Becker S, Staib F, Loning Tet al.No evidence of significant activity of the multidrug resistance gene product in primary human breast cancer. Ann Oncol, 9:85–93, 1998.

    Article  PubMed  CAS  Google Scholar 

  39. Ng I0, Liu CL, Fan ST, Ng M. Expression of P-glycoprotein in hepatocellular carcinoma. A determinant of chemotherapy response. Amer J Clin Pathol, 113:355–363, 2000.

    Article  CAS  Google Scholar 

  40. Goldstein LJ. MDR1 gene expression in solid tumours. Eur J Cancer, 32A:1039–1050, 1996.

    Article  PubMed  CAS  Google Scholar 

  41. Raderer M, Scheithauer W. Clinical trials of agents that reverse multidrug resistance. A literature review. Cancer, 72:3553–3563, 1993.

    Article  PubMed  CAS  Google Scholar 

  42. Wilson WH, Jamis-Dow C, Bryant Get al.Phase I and pharmacokinetic study of the multidrug resistance modulator dexverapamil with EPOCH chemotherapy. J Clin Oncol, 13:1985–1994, 1995.

    PubMed  CAS  Google Scholar 

  43. Wilson WH, Bates SE, Fojo A, Chabner BA. Modulation of multidrug resistance by dexverapamil in EPOCH-refractory lymphomas. J Cancer Res Clin Oncol, 121 Suppl 3:R25–29, 1995.

    Article  Google Scholar 

  44. Atadja P, Watanabe T, Xu H, Cohen D. PSC-833, a frontier in modulation of Pglycoprotein mediated multidrug resistance. Cancer Metastasis Rev, 17:163–168, 1998.

    Article  PubMed  CAS  Google Scholar 

  45. Advani R, Saba HI, Tallman MSet al.Treatment of refractory and relapsed acute myelogenous leukemia with combination chemotherapy plus the multidrug resistance modulator PSC 833 (Valspodar). Blood, 93:787–795, 1999.

    PubMed  CAS  Google Scholar 

  46. List AF, Kopecky KJ, Willman CLet al.Benefit of cyclosporine modulation of drug resistance in patients with poor-risk acute myeloid leukemia: a Southwest Oncology Group study. Blood, 98:3212–3220, 2001.

    Article  PubMed  CAS  Google Scholar 

  47. Ferry DR, Traunecker H, Kerr DJ. Clinical trials of P-glycoprotein reversal in solid tumours. Eur J Cancer, 32A:1070–1081, 1996.

    Article  PubMed  CAS  Google Scholar 

  48. Ehrlich PH, Moustafa ZA, Archinal-Mattheis AEet al.The reversal of multidrug resistance in multicellular tumor spheroids by SDZ PSC 833. Anticancer Res, 17:129–133, 1997.

    PubMed  CAS  Google Scholar 

  49. Rodenburg CJ, Nooter KL, Herweijer Het al.Phase II study of combining vinblastine and cyclosporin-A to circumvent multidrug resistance in renal cell cancer. Ann Oncol, 2:305–306, 1991.

    PubMed  CAS  Google Scholar 

  50. Verweij J, Herweijer H, Oosterom Ret al.A phase II study of epidoxorubicin in colorectal cancer and the use of cyclosporin-A in an attempt to reverse multidrug resistance. Br J Cancer, 64:361–364, 1991.

    Article  PubMed  CAS  Google Scholar 

  51. Baekelandt MM, Holm R, Nesland JMet al.P-glycoprotein expression is a marker for chemotherapy resistance and prognosis in advanced ovarian cancer. Anticancer Res, 20:1061–1067, 2000.

    PubMed  CAS  Google Scholar 

  52. Fields A, Hochster H, Runowicz Cet al.PSC833: initial clinical results in refractory ovarian cancer patients. Curr Opinion Oncol, 10 Suppl 1:S21, 1998.

    Google Scholar 

  53. Beketic-Oreskovic L, Duran GE, Chen Get al.Decreased mutation rate for cellular resistance to doxorubicin and suppression of mdr 1 gene activation by the cyclosporin PSC 833. J Natl Cancer Inst, 87:1593–1602, 1995.

    Article  PubMed  CAS  Google Scholar 

  54. Sikic BI, Fisher GA, Lum BLet al.Modulation and prevention of multidrug resistance by inhibitors of P-glycoprotein. Cancer Chemother Pharmacol, 40 Suppl:S13–19, 1997.

    Article  Google Scholar 

  55. Baldini N, Scotlandi K, Barbanti-Brodano Bet al.Expression of P-glycoprotein in high-grade osteosarcomas in relation to clinical outcome. New Engl J Med, 333:1380–1385, 1995.

    Article  PubMed  CAS  Google Scholar 

  56. Pinedo HM, Giaccone G. P-glycoprotein¡ªa marker of cancer-cell behavior. New Engl J Med, 333:1417–1419, 1995.

    Article  PubMed  CAS  Google Scholar 

  57. Scotlandi K, Serra M, Nicoletti Get al.Multidrug resistance and malignancy in human osteosarcoma. Cancer Res, 56:2434–2439, 1996.

    PubMed  CAS  Google Scholar 

  58. Weinstein RS, Jakate SM, Dominguez JMet al.Relationship of the expression of the multidrug resistance gene product (P-glycoprotein) in human colon carcinoma to local tumor aggressiveness and lymph node metastasis. Cancer Res, 51:2720–2726, 1991.

    PubMed  CAS  Google Scholar 

  59. Chevillard S, Lebeau J, Pouillart Pet al.Biological and clinical significance of concurrent p53 gene alterations, MDRI gene expression, and S-phase fraction analyses in breast cancer patients treated with primary chemotherapy or radiotherapy. Clin Cancer Res, 3:2471–2478, 1997.

    PubMed  CAS  Google Scholar 

  60. Scotlandi K, Manara MC, Serra Met al.The expression of P-glycoprotein is causally related to a less aggressive phenotype in human osteosarcoma cells. Oncogene, 18:739–746, 1999.

    Article  PubMed  CAS  Google Scholar 

  61. Takanishi K, Miyazaki M, Ohtsuka M, Nakajima N. Inverse relationship between Pglycoprotein expression and its proliferative activity in hepatocellular carcinoma. Oncol, 54:231–237, 1997.

    Article  CAS  Google Scholar 

  62. Jedlitschky G, Leier I, Buchholz Uet al.ATP-dependent glutathione disulphide transport mediated by the MRP gene-encoded conjugate export pump. Cancer Res, 56:988–994, 1996.

    PubMed  CAS  Google Scholar 

  63. Ishikawa T. The ATP-dependent glutathione S-conjugate export pump. Trends Biochem Sci, 17:463–468, 1992.

    Article  PubMed  CAS  Google Scholar 

  64. Wijnholds J, Evers R, van Leusden MRet al.Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein. Nature Med, 3:1275–1279, 1997.

    Article  PubMed  CAS  Google Scholar 

  65. Bilchler M, Konig J, Brom Met al. cDNA cloning of the hepatocyte canalicular isoform of the multidrug resistance protein, cMrp, reveals a novel conjugate export pump deficient in hyperbilirubinemic mutant rats. J Biol Chem, 271:15091–15118, 1996.

    Article  Google Scholar 

  66. Taniguchi K, Wada M, Kohno Ket al.A human canalicular multispecific organic anion transporter (cMOAT) gene is overexpressed in cisplatin-resistant human cancer cell lines with decreased drug accumulation. Cancer Res, 56:4124–4129, 1996.

    PubMed  CAS  Google Scholar 

  67. Cui Y, Konig J, Buchholz JKet al.Drug resistance and ATP-dependent conjugate transport mediated by the apical multidrug resistance protein, MRP2, permanently expressed in human and canine cells. Mol Pharmacol, 55:929–937, 1999.

    PubMed  CAS  Google Scholar 

  68. Evers R, Kool M, van Deemter Let al.Drug export activity of the human canalicular multispecific organic anion transporter in polarized kidney MDCK cells expressing cMOAT (MRP2) cDNA. J Clin Invest, 101:1310–1319, 1998.

    PubMed  CAS  Google Scholar 

  69. Hirohashi TH, Suzuki H, Sugiyama Y. Characterization of the transport properties of cloned rat multidrug resistance-associated protein 3(MRP3). J Biol Chem, 274:15181–15185, 1999.

    Article  PubMed  CAS  Google Scholar 

  70. Kool M, van-der-Linden M, de Haas Met al.MRP3, an organic anion transporter able to transport anti-cancer drugs. Proc Natl Acad Sci USA, 96:6914–6919, 1999.

    Article  PubMed  CAS  Google Scholar 

  71. Schuetz JD, Connelly MC, Sun Det al.MRP4: A previously unidentified factor in resistance to nucleoside-based antiviral drugs. Nature Med, 5:1048–1051, 1999.

    Article  PubMed  CAS  Google Scholar 

  72. Kool M, de Haas M, Scheffer GLet al.Analysis of expression of cMOAT (MRP2), MRP3, MRP4, and MRP5, homologues of the multidrug resistance-associated protein gene (MRP1), in human cancer cell lines. Cancer Res, 57:3537–3547, 1997.

    PubMed  CAS  Google Scholar 

  73. Kool M, van der Linden M, de Haas Met al.Expression of human MRP6, a homologue of the multidrug resistance protein gene MRP1, in tissues and cancer cells. Cancer Res, 59:175–182, 1999.

    PubMed  CAS  Google Scholar 

  74. Loe DW, Deeley RG, Cole SP. Biology of the multidrug resistance-associated protein, MRP. Eur J Cancer, 32A:945–957, 1996.

    Article  PubMed  CAS  Google Scholar 

  75. Meister A. Glutathione metabolism and its selective modification. J Biol Chem, 263:17205–17208, 1988.

    PubMed  CAS  Google Scholar 

  76. Yamane Y, Furuichi M, Song Ret al.Expression of multidrug resistance protein/GS-X pump and gamma-glutamylcysteine synthetase genes is regulated by oxidative stress. J Biol Chem, 273:31075–31085, 1998.

    Article  PubMed  CAS  Google Scholar 

  77. Zhu Q, Center MS. Evidence that SP1 modulates transcriptional activity of the multidrug resistance-associated protein gene. DNA Cell Biol, 15:105–111, 1996.

    Article  PubMed  CAS  Google Scholar 

  78. Gomi A, Masuzawa T, Ishikawa T, Kuo MT. Posttranscriptional regulation of MRP/GS-X pump and gamma-glutamylcysteine synthetase expression by 1-(4-amino-2-methyl-5- pyrimidinyl) methyl-3-(2-chloroethyl)-3-nitrosourea and by cycloheximide in human glioma cells. Biochem Biophys Res Commun, 239:51–56, 1997.

    Article  PubMed  CAS  Google Scholar 

  79. Wang Q, Beck WT. Transcriptional suppression of multidrug resistance-associated protein (MRP) gene expression by wild-type p53. Cancer Res, 58:5762–5769, 1998.

    PubMed  CAS  Google Scholar 

  80. Oshika Y, Nakamura M, Tokunaga Tet al.Multidrug resistance-associated protein and mutant p53 protein expression in non-small cell lung cancer. Mod Pathol, 11:1059–1063, 1998.

    PubMed  CAS  Google Scholar 

  81. Fukushima Y, Oshika Y, Tokunaga Tet al.Multidrug resistance-associated protein (MRP) expression is correlated with expression of aberrant p53 protein in colorectal cancer. Eur J Cancer, 35:935–938, 1999.

    Article  PubMed  CAS  Google Scholar 

  82. Sullivan GF, Yang JM, Vassil Aet al.Regulation of expression of the multidrug resistance protein MRP1 by p53 in human prostate cancer cells. J Clin Invest, 105:1261–1267, 2000.

    Article  PubMed  CAS  Google Scholar 

  83. Hipfner DR, Gauldie SD, Deeley RG, Cole SP. Detection of the M(r) 190,000 multidrug resistance protein, MRP, with monoclonal antibodies. Cancer Res, 54:5788–5792, 1994.

    PubMed  CAS  Google Scholar 

  84. Flens MJ, Izquierdo MA, Scheffer GLet al.Immunochemical detection of the multidrug resistance-associated protein MRP in human multidrug-resistant tumor cells by monoclonal antibodies. Cancer Res, 54:4557–4563, 1994.

    PubMed  CAS  Google Scholar 

  85. Stewart AJ, Canitrot Y, Baracchini Eet al.Reduction of expression of the multidrug resistance protein (MRP) in human tumor cells by antisense phosphorothioate oligonucleotides. Biochem Pharmacol, 51:461–469, 1996.

    Article  PubMed  CAS  Google Scholar 

  86. Nooter K, Westerman AM, Flens MJet al.Expression of the multidrug resistance-associated protein (MRP) gene in human cancers. Clin Cancer Res, 1:1301–1310, 1995.

    PubMed  CAS  Google Scholar 

  87. Sullivan GF, Amenta PS, Villanueva JDet al.The expression of drug resistance gene products during the progression of human prostate cancer. Clin Cancer Res, 4:1393–1403, 1998.

    PubMed  CAS  Google Scholar 

  88. Kuo MT, Bao JJ, Curley SAet al.Frequent coordinated overexpression of the MRP/GSX pump and gamma-glutamylcysteine synthetase genes in human colorectal cancers. Cancer Res, 56:3642–3644, 1996.

    PubMed  CAS  Google Scholar 

  89. Nooter K, Brutel de la Riviere G, Look MPet al.The prognostic significance of expression of the multidrug resistance-associated protein (MRP) in primary breast cancer. Br J Cancer, 76:486–493, 1997.

    Article  PubMed  CAS  Google Scholar 

  90. Endo K, Maehara Y, Ichiyoshi Yet aLMultidrug resistance-associated protein expression in clinical gastric carcinoma. Cancer, Suppl 77:1681–1687, 1996.

    CAS  Google Scholar 

  91. Young LC, Campling BG, Voskoglou-Nomikos Tet al.Expression of multidrug resistance protein-related genes in lung cancer: correlation with drug response. Clin Cancer Res, 5:673–680, 1999.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Deng, L., Tatebe, S., Lin-Lee, YC., Ishikawa, T., Kuo, M.T. (2002). MDR and MRP Gene Families as Cellular Determinant Factors for Resistance to Clinical Anticancer Agents. In: Andersson, B., Murray, D. (eds) Clinically Relevant Resistance in Cancer Chemotherapy. Cancer Treatment and Research, vol 112. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1173-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1173-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5428-4

  • Online ISBN: 978-1-4615-1173-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics