Skip to main content

Targeting Redox Signaling and ROS Metabolism in Cancer Treatment

  • Living reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Mechanistic Aspects

Abstract

Reactive oxygen species (ROS) are reactive chemical and/or biochemical intermediates or fragments containing oxygen as peroxides, superoxide (O2●−), hydrogen peroxide (H2O2), hydroxyl radical (OH), hydroxyl ion (OH), singlet oxygen, and nitric oxide (NO). At optimal concentration ROS have been implicated to serve varieties of important physiological functions in different types of cells under normal physiological conditions. On the other hand, excessive amounts of ROS are one of the main determinants in the pathogenesis of different types of diseases including cancer, metabolic syndromes, cardiovascular, and neurodegeneration. The mechanism of the generation of ROS and its concentration decides the fate of cells in different types and conditions; excessive ROS can cause detrimental effects on normal cells, deregulate cellular homeostasis, and induce carcinogenic changes. In order to continue their growth and proliferation, cancer cells increase ROS production rate compared with normal cells, and to maintain their ROS homeostasis, they simultaneously increase their antioxidant capacity. It is now evident that this unique and altered redox environment of cancer cells upturns or increases their vulnerability to ROS-metabolism therapies. This chapter aims to discuss a current scenario of ROS in physiological and pathological contributions with emphasis on cellular and molecular mechanistic ways. In addition, it discusses the role of oxidative stress in initiation and progression of different types of cancers as well as current and new strategies targeting ROS for the development of therapeutic interventions of ROS-induced cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aggarwal V, Tuli HS, Varol A et al (2019) Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomol Ther 9(11):735

    CAS  Google Scholar 

  • Ali ES, Petrovsky N (2019) Calcium signaling as a therapeutic target for liver steatosis. Trends Endocrinol Metab 30(4):270–281

    Article  CAS  PubMed  Google Scholar 

  • Ali ES, Hua J, Wilson CH et al (2016) The glucagon-like peptide-1 analogue exendin-4 reverses impaired intracellular Ca(2+) signalling in steatotic hepatocytes. Biochim Biophys Acta 1863(9):2135–2146

    Article  CAS  PubMed  Google Scholar 

  • Ali ES, Rychkov GY, Barritt GJ (2017) Metabolic disorders and cancer: hepatocyte store-operated Ca(2+) channels in nonalcoholic fatty liver disease. Adv Exp Med Biol 993:595–621

    Article  CAS  PubMed  Google Scholar 

  • Ali ES, Rychkov GY, Barritt GJ (2019) Deranged hepatocyte intracellular Ca(2+) homeostasis and the progression of non-alcoholic fatty liver disease to hepatocellular carcinoma. Cell Calcium 82:102057

    Article  CAS  PubMed  Google Scholar 

  • Ali ES, Sahu U, Villa E et al. (2020) ERK2 phosphorylates PFAS to mediate posttranslational control of de novo purine synthesis. Mol Cell 78(6):1178–1191.e1176

    Google Scholar 

  • Basuroy S, Dunagan M, Sheth P et al (2010) Hydrogen peroxide activates focal adhesion kinase and c-Src by a phosphatidylinositol 3 kinase-dependent mechanism and promotes cell migration in Caco-2 cell monolayers. Am J Physiol Gastrointest Liver Physiol 299(1):G186–G195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben Sahra I, Laurent K, Giuliano S et al (2010) Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer Res 70(6):2465–2475

    Article  CAS  PubMed  Google Scholar 

  • Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85–95

    Article  CAS  PubMed  Google Scholar 

  • Carroll D, Zhao Y, Zhu H et al (2016) A novel redox based therapy targets the malignant cellular redox state. Free Radic Biol Med 100:S119

    Article  Google Scholar 

  • Ceci C, Atzori MG, Lacal PM et al (2020) Role of VEGFs/VEGFR-1 signaling and its inhibition in modulating tumor invasion: experimental evidence in different metastatic cancer models. Int J Mol Sci 21(4):1388

    Article  CAS  PubMed Central  Google Scholar 

  • Chakraborty S, Balan M, Flynn E et al (2019) Activation of c-Met in cancer cells mediates growth-promoting signals against oxidative stress through Nrf2-HO-1. Oncogene 8(2):7

    Article  CAS  Google Scholar 

  • Chio IIC, Tuveson DA (2017) ROS in cancer: the burning question. Trends Mol Med 23(5):411–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeNicola GM, Karreth FA, Humpton TJ et al (2011) Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475(7354):106–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dvorakova K, Waltmire CN, Payne CM et al (2001) Induction of mitochondrial changes in myeloma cells by imexon. Blood J Am Soc Hematol 97(11):3544–3551

    CAS  Google Scholar 

  • Franzese E, Centonze S, Diana A et al (2019) PARP inhibitors in ovarian cancer. Cancer Treat Rev 73:1–9

    Article  CAS  PubMed  Google Scholar 

  • Gaschler MM, Andia AA, Liu H et al (2018) FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat Chem Biol 14(5):507–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorrini C, Harris IS, Mak TW (2013) Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12(12):931–947

    Article  CAS  PubMed  Google Scholar 

  • Grant WB (2020) Review of recent advances in understanding the role of vitamin D in reducing cancer risk: breast, colorectal, prostate and overall cancer. Anticancer Res 40(1):491–499

    Article  CAS  PubMed  Google Scholar 

  • Habermann KJ, Grunewald L, van Wijk S et al (2017) Targeting redox homeostasis in rhabdomyosarcoma cells: GSH-depleting agents enhance auranofin-induced cell death. Cell Death Dis 8(10):e3067

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris IS, DeNicola GM (2020) The complex interplay between antioxidants and ROS in cancer. Trends Cell Biol 30(6):440–451

    Article  CAS  PubMed  Google Scholar 

  • Hayes JD, McMahon M (2009) NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem Sci 34(4):176–188

    Article  CAS  PubMed  Google Scholar 

  • Helfinger V, Schroeder K (2018) Redox control in cancer development and progression. Mol Asp Med 63:88–98

    Article  CAS  Google Scholar 

  • Hodny Z, Reinis M, Hubackova S et al (2016) Interferon gamma/NADPH oxidase defense system in immunity and cancer. Onco Targets Ther 5(2):e1080416

    Google Scholar 

  • Hwang AB, Lee S-J (2011) Regulation of life span by mitochondrial respiration: the HIF-1 and ROS connection. Aging (Albany NY) 3(3):304

    Article  CAS  Google Scholar 

  • Jeelani R, Khan SN, Shaeib F et al (2017) Cyclophosphamide and acrolein induced oxidative stress leading to deterioration of metaphase II mouse oocyte quality. Free Radic Biol Med 110:11–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keung MY, Wu Y, Badar F et al (2020) Response of breast cancer cells to PARP inhibitors is independent of BRCA status. J Clin Med 9(4):940

    Article  CAS  PubMed Central  Google Scholar 

  • Kidd ME, Shumaker DK, Ridge KM (2013) The role of vimentin intermediate filaments in the progression of lung cancer. Am J Respir Cell Mol Biol 50(1):1–6

    Article  Google Scholar 

  • Kim SJ, Kim HS, Seo YR (2019) Understanding of ROS-inducing strategy in anticancer therapy. Oxidative Med Cell Longev 2019:5381692

    Article  Google Scholar 

  • Kirkpatrick DL, Powis G (2017) Clinically evaluated cancer drugs inhibiting redox signaling. Antioxid Redox Signal 26(6):262–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Karin M (1999) Is NF-kappaB the sensor of oxidative stress? FASEB J 13(10):1137–1143

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Li Q, Zhou L et al (2016) Cancer drug resistance: redox resetting renders a way. Oncotarget 7(27):42740

    Article  PubMed  PubMed Central  Google Scholar 

  • Longley DB, Harkin DP, Johnston PG (2003) 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3(5):330–338

    Article  CAS  PubMed  Google Scholar 

  • Mai TT, Hamai A, Hienzsch A et al (2017) Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat Chem 9(10):1025–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marullo R, Werner E, Degtyareva N et al (2013) Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS One 8(11)

    Google Scholar 

  • Mikula-Pietrasik J, Witucka A, Pakula M et al (2019) Comprehensive review on how platinum- and taxane-based chemotherapy of ovarian cancer affects biology of normal cells. Cell Mol Life Sci 76(4):681–697

    Article  CAS  PubMed  Google Scholar 

  • Mishra SK, Kang JH, Lee CW et al (2013) Midazolam induces cellular apoptosis in human cancer cells and inhibits tumor growth in xenograft mice. Mol Cells 36(3):219–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montero AJ, Jassem J (2011) Cellular redox pathways as a therapeutic target in the treatment of cancer. Drugs 71(11):1385–1396

    Article  CAS  PubMed  Google Scholar 

  • Mou Y, Wang J, Wu J et al (2019) Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol 12(1):34

    Article  PubMed  PubMed Central  Google Scholar 

  • Omura GA (2008) Progress in gynecologic cancer research: the Gynecologic Oncology Group experience. Semin Oncol 35(5):507–521. Elsevier

    Article  PubMed  PubMed Central  Google Scholar 

  • Peiris-Pagès M, Martinez-Outschoorn UE et al (2015) Metastasis and oxidative stress: are antioxidants a metabolic driver of progression? Cell Metab 22(6):956–958

    Article  PubMed  CAS  Google Scholar 

  • Perillo B, Di Donato M, Pezone A et al (2020) ROS in cancer therapy: the bright side of the moon. Exp Mol Med 52(2):192–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peshavariya H, Dusting GJ, Jiang F et al (2009) NADPH oxidase isoform selective regulation of endothelial cell proliferation and survival. Naunyn Schmiedeberg’s Arch Pharmacol 380(2):193–204

    Article  CAS  Google Scholar 

  • Pizzino G, Irrera N, Cucinotta M et al (2017) Oxidative stress: harms and benefits for human health. Oxidative Med Cell Longev 2017:8416763

    Article  Google Scholar 

  • Poillet-Perez L, Despouy G, Delage-Mourroux R et al (2015) Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy. Redox Biol 4:184–192

    Article  CAS  PubMed  Google Scholar 

  • Qian Q, Chen W, Cao Y et al (2019) Targeting reactive oxygen species in cancer via chinese herbal medicine. Oxidative Med Cell Longev 2019:9240426

    Article  Google Scholar 

  • Rajkumar SV, Richardson PG, Lacy MQ et al (2007) Novel therapy with 2-methoxyestradiol for the treatment of relapsed and plateau phase multiple myeloma. Clin Cancer Res 13(20):6162

    Article  CAS  PubMed  Google Scholar 

  • Reczek CR, Chandel NS (2015) ROS-dependent signal transduction. Curr Opin Cell Biol 33:8–13

    Article  CAS  PubMed  Google Scholar 

  • Redza-Dutordoir M, Averill-Bates DA (2016) Activation of apoptosiss signalling pathways by reactive oxygen species. Biochim Biophys Acta Mol Cell Res 1863(12):2977–2992

    Article  CAS  Google Scholar 

  • Ren X, Zhao B, Chang H et al (2018) Paclitaxel suppresses proliferation and induces apoptosis through regulation of ROS and the AKT/MAPK signaling pathway in canine mammary gland tumor cells. Mol Med Rep 17(6):8289–8299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ricker JL, Chen Z, Yang XP et al (2004) 2-Methoxyestradiol inhibits hypoxia-inducible factor 1α, tumor growth, and angiogenesis and augments paclitaxel efficacy in head and neck squamous cell carcinoma. Clin Cancer Res 10(24):8665–8673

    Article  CAS  PubMed  Google Scholar 

  • Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24(10):R453–R462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sena LA, Chandel NS (2012) Physiological roles of mitochondrial reactive oxygen species. Mol Cell 48(2):158–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanmugam MK, Rane G, Kanchi MM et al (2015) The multifaceted role of curcumin in cancer prevention and treatment. Molecules 20(2):2728–2769

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sheveleva EV, Landowski TH, Samulitis BK et al (2012) Imexon induces an oxidative endoplasmic reticulum stress response in pancreatic cancer cells. Mol Cancer Res 10(3):392–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shireman JM, Atashi F, Lee G et al (2020) De-novo purine biosynthesis is a major driver of chemoresistance in glioblastoma. bioRxiv. 2020.2003.2013.991125

    Google Scholar 

  • Siska PJ, Beckermann KE, Mason FM et al (2017) Mitochondrial dysregulation and glycolytic insufficiency functionally impair CD8 T cells infiltrating human renal cell carcinoma. JCI Insight 2(12):e93411

    Article  PubMed Central  Google Scholar 

  • Srinivas US, Tan BWQ, Vellayappan BA et al (2019) ROS and the DNA damage response in cancer. Redox Biol 25:101084

    Article  CAS  PubMed  Google Scholar 

  • Stein EM, DiNardo CD, Pollyea DA et al (2017) Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood 130(6):722–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stockwell BR (2019) A powerful cell-protection system prevents cell death by ferroptosis. Nature 575(7784):597–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H-F, Yang X-l, Zhao Y et al (2019) Loss of TMEM126A promotes extracellular matrix remodeling, epithelial-to-mesenchymal transition, and breast cancer metastasis by regulating mitochondrial retrograde signaling. Cancer Lett 440:189–201

    Article  PubMed  CAS  Google Scholar 

  • Tam KC, Ali E, Hua J et al (2018) Evidence for the interaction of peroxiredoxin-4 with the store-operated calcium channel activator STIM1 in liver cells. Cell Calcium 74:14–28

    Article  CAS  PubMed  Google Scholar 

  • Townsend DM, Pazoles CJ, Tew KD (2008) NOV-002, a mimetic of glutathione disulfide. Expert Opin Investig Drugs 17(7):1075–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasan K, Werner M, Chandel NS (2020) Mitochondrial metabolism as a target for cancer therapy. Cell Metab 32:341–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velu P, Vijayalakshmi A, Vinothkumar V (2020) Syringic acid suppresses oral squamous cell carcinoma SCC131 cell proliferation via modulation of mitochondria-mediated apoptosis signaling pathways. J Biochem Mol Toxicol 35:e22586

    Google Scholar 

  • Villa E, Ali ES, Sahu U et al (2019) Cancer cells tune the signaling pathways to empower de novo synthesis of nucleotides. Cancers 11(5):688

    Google Scholar 

  • Waissbluth S, Daniel SJ (2013) Cisplatin-induced ototoxicity: transporters playing a role in cisplatin toxicity. Hear Res 299:37–45

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, He C (2020) Dietary vitamin A intake and the risk of ovarian cancer: a meta-analysis. Biosci Rep 40(4):BSR20193979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Yi J (2008) Cancer cell killing via ROS: to increase or decrease, that is the question. Cancer Biol Ther 7(12):1875–1884

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Leite de Oliveira R, Huijberts S et al (2018) An acquired vulnerability of drug-resistant melanoma with therapeutic potential. Cell 173(6):1413–1425 e1414

    Article  CAS  PubMed  Google Scholar 

  • Weinberg F, Ramnath N, Nagrath D (2019) Reactive oxygen species in the tumor microenvironment: an overview. Cancers (Basel) 11(8):1191

    Article  CAS  Google Scholar 

  • Wilson CH, Ali ES, Scrimgeour N et al (2015) Steatosis inhibits liver cell store-operated Ca(2)(+) entry and reduces ER Ca(2)(+) through a protein kinase C-dependent mechanism. Biochem J 466(2):379–390

    Article  CAS  PubMed  Google Scholar 

  • Winterbourn CC (2008) Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 4(5):278–286

    Article  CAS  PubMed  Google Scholar 

  • Xiang Y, Ye W, Huang C et al (2018) Brusatol enhances the chemotherapy efficacy of gemcitabine in pancreatic cancer via the Nrf2 signalling pathway. Oxidative Med Cell Longev 2018:2360427

    Article  CAS  Google Scholar 

  • Xu B, Wang S, Li R et al (2017) Disulfiram/copper selectively eradicates AML leukemia stem cells in vitro and in vivo by simultaneous induction of ROS-JNK and inhibition of NF-kappaB and Nrf2. Cell Death Dis 8(5):e2797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Villani RM, Wang H et al (2018) The role of cellular reactive oxygen species in cancer chemotherapy. J Exp Clin Cancer Res 37(1):266–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yun J, Mullarky E, Lu C et al (2015) Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science 350(6266):1391–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang DD (2006) Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev 38(4):769–789

    Article  CAS  PubMed  Google Scholar 

  • Zheng CY, Lam SK, Li YY et al (2015) Arsenic trioxide-induced cytotoxicity in small cell lung cancer via altered redox homeostasis and mitochondrial integrity. Int J Oncol 46(3):1067–1078

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad S. Mubarak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ali, E.S., Barua, D., Saha, S.K., Ahmed, M.U., Mishra, S.K., Mubarak, M.S. (2021). Targeting Redox Signaling and ROS Metabolism in Cancer Treatment. In: Chakraborti, S., Ray, B.K., Roychowdhury, S. (eds) Handbook of Oxidative Stress in Cancer: Mechanistic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-15-4501-6_119-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4501-6_119-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4501-6

  • Online ISBN: 978-981-15-4501-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics