Skip to main content

Visual Prostheses: Neuroengineering Handbook

  • Living reference work entry
  • First Online:
Handbook of Neuroengineering

Abstract

Visual prostheses are devices that aim to provide artificial vision to those with vision loss by stimulating surviving functional neurons in the visual pathway. Since the first report of a functional retinal stimulator in the 1950s, clinical trials using more sophisticated devices, such as microelectrode arrays (MEAs) and micro-photodiode arrays (MPDAs), have continued to demonstrate that partial visual function can be restored even after long periods of blindness. These devices work by stimulating the retina, optic tract, and visual cortex. In the last 15 years, significant research efforts have also focused largely on developing novel electrode materials and alternative stimulation methods to address issues caused by bulk metallic electrodes used in conventional devices. This chapter begins with a discussion surrounding developments in electrical and photovoltaic visual prosthetic devices, commercial entities, and their latest clinical or preclinical reports and ends with an outlook on the future of the visual prostheses field. Key areas that have been reviewed include recently developed wire-free engineered photoreceptors, novel materials for improving the performance of electrical stimulation, and conceptual visual prostheses based on chemical, mechanical, photothermal, ultrasonic, optogenetic, and micromagnetic neurostimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AMD:

Age-related macular degeneration

ASR:

Artificial silicon retina

AV-DONE:

Artificial vision by direct optic nerve electrode

BVT:

Bionic Vision Technologies

CMOS:

Complementary metal oxide semiconductor

CNT:

Carbon nanotube

CRX:

Cone-rod homeobox

ERG:

Electroretinogram

HAR:

High-resolution artificial retina

HDE:

Humanitarian Device Exemption

IMI:

Intelligent Medical Implants

IR:

Infrared radiation

IRIS:

Intelligent Retinal Implant System

LCD:

Liquid crystal display

LED:

Light-emitting diode

LGN:

Lateral geniculate nucleus

LogMAR:

Logarithm of the minimum angle of resolution

μMS:

Micromagnetic stimulation

MEA:

Microelectrode array

MPDA:

Micro-photodiode arrays

NASA:

National Aeronautics and Space Administration

NR:

Nanorod

NW:

Nanowire

PEDOT:

Poly(3,4-ethylenedioxythiophene)

RCS:

Royal College of Surgeons

RD:

Retinal degeneration

RGC:

Retinal ganglion cell

RP:

Retinitis pigmentosa

TiN:

Titanium nitride

TRPV:

Transient receptor potential vanilloid

VEP:

Visual evoked potential

References

  1. Tassicker, G.E.: Retinal stimulator. US2760483A Patent (1956)

    Google Scholar 

  2. Tassicker, G.E.: Preliminary report on a retinal stimulator. Br. J. Physiol. Opt. 13, 102–105 (1956)

    Google Scholar 

  3. Ayton, L.N., Blamey, P.J., Guymer, R.H., Luu, C.D., Nayagam, D.A.X., Sinclair, N.C., Shivdasani, M.N., Yeoh, J., McCombe, M.F., Briggs, R.J., Opie, N.L., Villalobos, J., Dimitrov, P.N., Varsamidis, M., Petoe, M.A., McCarthy, C.D., Walker, J.G., Barnes, N., Burkitt, A.N., Williams, C.E., Shepherd, R.K., Allen, P.J., B. V. A. Res: First-in-human trial of a novel suprachoroidal retinal prosthesis. PLoS One. 9, e115239 (2014)

    Article  Google Scholar 

  4. Demchinsky, A.M., Shaimov, T.B., Goranskaya, D.N., Moiseeva, I.V., Kuznetsov, D.I., Kuleshov, D.S., Polikanov, D.V.: The first deaf-blind patient in Russia with Argus II retinal prosthesis system: What he sees and why. J. Neural Eng. 16, 025002 (2019)

    Article  Google Scholar 

  5. Palanker, D.V., Mer, Y.L., Hornig, R., Buc, G., Deterre, M., Bismuth, V., Sahel, J.A.: Restoration of sight in geographic atrophy using a photovoltaic subretinal prosthesis, presented at the ARVO Annual Meeting (2019)

    Google Scholar 

  6. Hornig, R., Dapper, M., Joliff, E., Hill, R., Ishaque, K., Posch, C., Benosman, R., LeMer, Y., Sahel, J.A.: Pixium vision: First clinical results and innovative developments. In: Gabel, V.P. (ed.) Artificial Vision, pp. 99–113. Springer (2017)

    Chapter  Google Scholar 

  7. Roessler, G., Laube, T., Brockmann, C., Kirschkamp, T., Mazinani, B., Goertz, M., Koch, C., Krisch, I., Sellhaus, B., Trieu, H.K., Weis, J., Bornfeld, N., Rothgen, H., Messner, A., Mokwa, W., Walter, P.: Implantation and explantation of a wireless epiretinal retina implant device: Observations during the epiret3 prospective clinical trial. Invest. Ophthalmol. Vis. Sci. 50, 3003–3008 (2009)

    Article  Google Scholar 

  8. Klauke, S., Goertz, M., Rein, S., Hoehl, D., Thomas, U., Eckhorn, R., Bremmer, F., Wachtler, T.: Stimulation with a wireless intraocular epiretinal implant elicits visual percepts in blind humans. Invest. Ophthalmol. Vis. Sci. 52, 449–455 (2011)

    Article  Google Scholar 

  9. Fujikado, T., Kamei, M., Sakaguchi, H., Kanda, H., Morimoto, T., Ikuno, Y., Nishida, K., Kishima, H., Maruo, T., Konoma, K., Ozawa, M., Nishida, K.: Testing of semichronically implanted retinal prosthesis by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 52, 4726–4733 (2011)

    Article  Google Scholar 

  10. Fujikado, T., Kamei, M., Sakaguchi, H., Kanda, H., Morimoto, T., Ikuno, Y., Nishida, K., Kishima, H., Maruo, T., Sawai, H., Miyoshi, T., Osawa, K., Ozawa, M.: Clinical trial of chronic implantation of suprachoroidal-transretinal stimulation system for retinal prosthesis. Sensor Mater. 24, 181–187 (2012)

    Google Scholar 

  11. Fujikado, T., Kamei, M., Sakaguchi, H., Kanda, H., Endo, T., Hirota, M., Morimoto, T., Nishida, K., Kishima, H., Terasawa, Y., Oosawa, K., Ozawa, M., Nishida, K.: One-year outcome of 49-channel suprachoroidal-transretinal stimulation prosthesis in patients with advanced retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 57, 6147–6157 (2016)

    Article  Google Scholar 

  12. Endo, T., Fujikado, T., Hirota, M., Kanda, H., Morimoto, T., Nishida, K.: Light localization with low-contrast targets in a patient implanted with a suprachoroidal-transretinal stimulation retinal prosthesis. Graef Arch. Clin. Exp. 256, 1723–1729 (2018)

    Article  Google Scholar 

  13. Stingl, K., Bartz-Schmidt, K.U., Besch, D., Chee, C.K., Cottriall, C.L., Gekeler, F., Groppe, M., Jackson, T.L., MacLaren, R.E., Koitschev, A., Kusnyerik, A., Neffendorf, J., Nemeth, J., Naeem, M.A., Peters, T., Ramsden, J.D., Sachs, H., Simpson, A., Singh, M.S., Wilhelm, B., Wong, D., Zrenner, E.: Subretinal visual implant alpha IMS-clinical trial interim report. Vis. Res. 111, 149–160 (2015)

    Article  Google Scholar 

  14. Stingl, K., Bartz-Schmidt, K.U., Gekeler, F., Kusnyerik, A., Sachs, H., Zrenner, E.: Functional outcome in subretinal electronic implants depends on foveal eccentricity. Invest. Ophthalmol. Vis. Sci. 54, 7658–7665 (2013)

    Article  Google Scholar 

  15. Sakaguchi, H., Kamei, M., Fujikado, T., Yonezawa, E., Ozawa, M., Cecilia-Gonzalez, C., Ustariz-Gonzalez, O., Quiroz-Mercado, H., Tano, Y.: Artificial vision by direct optic nerve electrode (AV-done) implantation in a blind patient with retinitis pigmentosa. J. Artif. Organs. 12, 206–209 (2009)

    Article  Google Scholar 

  16. Nishida, K., Sakaguchi, H., Kamei, M., Cecilia-Gonzalez, C., Terasawa, Y., Velez-Montoya, R., Fujikado, T., Sanchez-Fontan, R., Ozawa, M., Quiroz-Mercado, H., Nishida, K.: Visual sensation by electrical stimulation using a new direct optic nerve electrode device. Brain Stimul. 8, 678–681 (2015)

    Article  Google Scholar 

  17. Veraart, C., Wanet-Defalque, M.C., Gerard, B., Vanlierde, A., Delbeke, J.: Pattern recognition with the optic nerve visual prosthesis. Artif. Organs. 27, 996–1004 (2003)

    Article  Google Scholar 

  18. Brelen, M.E., Duret, F., Gerard, B., Delbeke, J., Veraart, C.: Creating a meaningful visual perception in blind volunteers by optic nerve stimulation. J. Neural Eng. 2, S22–S28 (2005)

    Article  Google Scholar 

  19. Veraart, C., Raftopoulos, C., Mortimer, J.T., Delbeke, J., Pins, D., Michaux, G., Vanlierde, A., Parrini, S., Wanet-Defalque, M.C.: Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res. 813, 181–186 (1998)

    Article  Google Scholar 

  20. Second Sight Medical Products. https://www.secondsight.com/

  21. Weiland, J.D., Cho, A.K., Humayun, M.S.: Retinal prostheses: Current clinical results and future needs. Ophthalmology. 118, 2227–2237 (2011)

    Article  Google Scholar 

  22. Cheng, D.L., Greenberg, P.B., Borton, D.A.: Advances in retinal prosthetic research: A systematic review of engineering and clinical characteristics of current prosthetic initiatives. Curr. Eye Res. 42, 334–347 (2017)

    Article  Google Scholar 

  23. Damle, S., Lo, Y.H., Freeman, W.R.: High visual acuity retinal prosthesis: Understanding limitations and advancements toward functional prosthetic vision. Retina. 37, 1423–1427 (2017)

    Article  Google Scholar 

  24. Bloch, E., Luo, Y., da Cruz, L.: Advances in retinal prosthesis systems. Ther. Adv. Ophthalmol. 11, 2515841418817501 (2019)

    Google Scholar 

  25. Rizzo, J.F., Wyatt, J., Loewenstein, J., Kelly, S., Shire, D.: Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. Invest. Ophthalmol. Vis. Sci. 44, 5362–5369 (2003)

    Article  Google Scholar 

  26. Humayun, M.S., Weiland, J.D., Fujii, G.Y., Greenberg, R., Williamson, R., Little, J., Mech, B., Cimmarusti, V., Van Boemel, G., Dagnelie, G., de Juan, E.: Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vis. Res. 43, 2573–2581 (2003)

    Article  Google Scholar 

  27. Dorn, J.D., Ahuja, A.K., Caspi, A., da Cruz, L., Dagnelie, G., Sahel, J.A., Greenberg, R.J., McMahon, M.J., I. I. S. G. Gus: The detection of motion by blind subjects with the epiretinal 60-electrode (Argus II) retinal prosthesis. JAMA Ophthalmol. 131, 183–189 (2013)

    Article  Google Scholar 

  28. Ahuja, A.K., Dorn, J.D., Caspi, A., McMahon, M.J., Dagnelie, G., Dacruz, L., Stanga, P., Humayun, M.S., Greenberg, R.J., I. I. S. G. Argus: Blind subjects implanted with the Argus II retinal prosthesis are able to improve performance in a spatial-motor task. Br. J. Ophthalmol. 95, 539–543 (2011)

    Article  Google Scholar 

  29. Ho, A.C., Humayun, M.S., Dorn, J.D., da Cruz, L., Dagnelie, G., Handa, J., Barale, P.O., Sahel, J.A., Stanga, P.E., Hafezi, F., Safran, A.B., Salzmann, J., Santos, A., Birch, D., Spencer, R., Cideciyan, A.V., de Juan, E., Duncan, J.L., Eliott, D., Fawzi, A., Olmos de Koo, L.C., Brown, G.C., Haller, J.A., Regillo, C.D., Del Priore, L.V., Arditi, A., Geruschat, D.R., Greenberg, R.J., I. I. S. G. Argus: Long-term results from an epiretinal prosthesis to restore sight to the blind. Ophthalmology. 122, 1547–1554 (2015)

    Article  Google Scholar 

  30. Rachitskaya, A.V., Yuan, A.: Argus II retinal prosthesis system: An update. Ophthalmic Genet. 37, 260–266 (2016)

    Article  Google Scholar 

  31. Luo, Y.H., da Cruz, L.: The Argus((R)) II retinal prosthesis system. Prog. Retin. Eye Res. 50, 89–107 (2016)

    Article  Google Scholar 

  32. Humayun, M.S., Dorn, J.D., da Cruz, L., Dagnelie, G., Sahel, J.A., Stanga, P.E., Cideciyan, A.V., Duncan, J.L., Eliott, D., Filley, E., Ho, A.C., Santos, A., Safran, A.B., Arditi, A., Del Priore, L.V., Greenberg, R.J., A. I. S. Grp: Interim results from the international trial of second sight’s visual prosthesis. Ophthalmology. 119, 779–788 (2012)

    Article  Google Scholar 

  33. Stanga, P.: Argus II electronic epiretinal prosthesis in advanced dry amd: Safety and feasibility study and preliminary functional results, presented at the ARVO Annual Meeting (2016)

    Google Scholar 

  34. da Cruz, L., Dorn, J.D., Humayun, M.S., Dagnelie, G., Handa, J., Barale, P.O., Sahel, J.A., Stanga, P.E., Hafezi, F., Safran, A.B., Salzmann, J., Santos, A., Birch, D., Spencer, R., Cideciyan, A.V., de Juan, E., Duncan, J.L., Eliott, D., Fawzi, A., Olmos de Koo, L.C., Ho, A.C., Brown, G., Haller, J., Regillo, C., Del Priore, L.V., Arditi, A., Greenberg, R.J., I. I. S. G. Argus: Five-year safety and performance results from the Argus II retinal prosthesis system clinical trial. Ophthalmology. 123, 2248–2254 (2016)

    Article  Google Scholar 

  35. Yue, L., Falabella, P., Christopher, P., Wuyyuru, V., Dorn, J., Schor, P., Greenberg, R.J., Weiland, J.D., Humayun, M.S.: Ten-year follow-up of a blind patient chronically implanted with epiretinal prosthesis Argus I. Ophthalmology. 122, 2545–52.e1 (2015)

    Article  Google Scholar 

  36. Richard, G., Feucht, M., Bornfeld, N., Laube, T., Rossler, G., Velikay-Parel, M., Hornig, R.: Multicenter study on acute electrical stimulation of the human retina with an epiretinal implant: Clinical results in 20 patients. Invest. Ophthalmol. Vis. Sci. 46, e1–e8 (2005)

    Google Scholar 

  37. Compensation for Blindness With the Intelligent Retinal Implant System (IRIS V2) in Patients With Retinal Dystrophy (IRIS 2). https://clinicaltrials.gov/ct2/show/NCT02670980

  38. Muqit, M., LeMer, Y., De Rothschild, A., Michel, W., Gerard, D., Didier, A.: Compensation for blindness with the intelligent retinal implant system (IRIS V2) in patients with retinal dystrophy (IRIS 2), presented at the International Eye and Chip Conference (2017)

    Google Scholar 

  39. Pixium Vision. https://www.pixium-vision.com

  40. Menzel-Severing, J., Laube, T., Brockmann, C., Bornfeld, N., Mokwa, W., Mazinani, B., Walter, P., Roessler, G.: Implantation and explantation of an active epiretinal visual prosthesis: 2-year follow-up data from the epiret3 prospective clinical trial. Eye. 26, 502–509 (2012)

    Article  Google Scholar 

  41. Lohmann, T., Werner, C., Raffelberg, P., Waschkowski, F., Viga, R., Kokozinski, R., Mokwa, W., Johnen, S., Walter, P., Schaffrath, K.: Surgical feasibility and biocompatibility of the optoepiret retinal stimulator, presented at the ARVO Annual Meeting (2019)

    Google Scholar 

  42. Waschkowski, F., Hesse, S., Rieck, A.C., Lohmann, T., Brockmann, C., Laube, T., Bornfeld, N., Thumann, G., Walter, P., Mokwa, W., Johnen, S., Roessler, G.: Development of very large electrode arrays for epiretinal stimulation (VLARS). Biomed. Eng. Online. 13, 11 (2014)

    Article  Google Scholar 

  43. Jones, B.W., Pfeiffer, R.L., Ferrell, W.D., Watt, C.B., Marmor, M., Marc, R.E.: Retinal remodeling in human retinitis pigmentosa. Exp. Eye Res. 150, 149–165 (2016)

    Article  Google Scholar 

  44. Lorach, H., Lei, X., Galambos, L., Kamins, T., Mathieson, K., Dalal, R., Huie, P., Harris, J., Palanker, D.: Interactions of prosthetic and natural vision in animals with local retinal degeneration. Invest. Ophthalmol. Vis. Sci. 56, 7444–7450 (2015)

    Article  Google Scholar 

  45. Stingl, K., Gekeler, F., Bartz-Schmidt, K.U., Kogel, A., Zrenner, E., Gelisken, F.: Fluorescein angiographic findings in eyes of patients with a subretinal electronic implant. Curr. Eye Res. 38, 588–596 (2013)

    Article  Google Scholar 

  46. Peyman, G., Chow, A.Y., Liang, C., Chow, V.Y., Perlman, J.I., Peachey, N.S.: Subretinal semiconductor microphotodiode array. Ophthalmic Surg. Lasers. 29, 234–241 (1998)

    Article  Google Scholar 

  47. Chow, A.Y., Chow, V.Y.: Subretinal electrical stimulation of the rabbit retina. Neurosci. Lett. 225, 13–16 (1997)

    Article  Google Scholar 

  48. Chow, A.Y., Chow, V.Y., Packo, K.H., Pollack, J.S., Peyman, G.A., Schuchard, R.: The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch. Ophthalmol-Chic. 122, 460–469 (2004)

    Article  Google Scholar 

  49. Pardue, M.T., Phillips, M.J., Yin, H., Fernandes, A., Cheng, Y., Chow, A.Y., Ball, S.L.: Possible sources of neuroprotection following subretinal silicon chip implantation in RCS rats. J. Neural Eng. 2, S39–S47 (2005)

    Article  Google Scholar 

  50. Hanif, A.M., Kim, M.K., Thomas, J.G., Ciavatta, V.T., Chrenek, M., Hetling, J.R., Pardue, M.T.: Whole-eye electrical stimulation therapy preserves visual function and structure in p23h-1 rats. Exp. Eye Res. 149, 75–83 (2016)

    Article  Google Scholar 

  51. Ciavatta, V.T., Mocko, J.A., Kim, M.K., Pardue, M.T.: Subretinal electrical stimulation preserves inner retinal function in RCS rat retina. Mol. Vis. 19, 995–1005 (2013)

    Google Scholar 

  52. Morimoto, T., Fujikado, T., Choi, J.S., Kanda, H., Miyoshi, T., Fukuda, Y., Tano, Y.: Transcorneal electrical stimulation promotes the survival of photoreceptors and preserves retinal function in royal college of surgeons rats. Invest. Ophthalmol. Vis. Sci. 48, 4725–4732 (2007)

    Article  Google Scholar 

  53. Schatz, A., Arango-Gonzalez, B., Fischer, D., Enderle, H., Bolz, S., Rock, T., Naycheva, L., Grimm, C., Messias, A., Zrenner, E., Bartz-Schmidt, K.U., Willmann, G., Gekeler, F.: Transcorneal electrical stimulation shows neuroprotective effects in retinas of light-exposed rats. Invest. Ophthalmol. Vis. Sci. 53, 5552–5561 (2012)

    Article  Google Scholar 

  54. Henrich-Noack, P., Voigt, N., Prilloff, S., Fedorov, A., Sabel, B.A.: Transcorneal electrical stimulation alters morphology and survival of retinal ganglion cells after optic nerve damage. Neurosci. Lett. 543, 1–6 (2013)

    Article  Google Scholar 

  55. Schatz, A., Pach, J., Gosheva, M., Naycheva, L., Willmann, G., Wilhelm, B., Peters, T., Bartz-Schmidt, K.U., Zrenner, E., Messias, A., Gekeler, F.: Transcorneal electrical stimulation for patients with retinitis pigmentosa: A prospective, randomized, sham-controlled follow-up study over 1 year. Invest. Ophthalmol. Vis. Sci. 58, 257–269 (2017)

    Article  Google Scholar 

  56. Sehic, A., Guo, S., Cho, K.S., Corraya, R.M., Chen, D.F., Utheim, T.P.: Electrical stimulation as a means for improving vision. Am. J. Pathol. 186, 2783–2797 (2016)

    Article  Google Scholar 

  57. Goetz, G.A., Palanker, D.V.: Electronic approaches to restoration of sight. Rep. Prog. Phys. 79, 096701 (2016)

    Article  Google Scholar 

  58. Stingl, K., Bartz-Schmidt, K.U., Besch, D., Braun, A., Bruckmann, A., Gekeler, F., Greppmaier, U., Hipp, S., Hortdorfer, G., Kernstock, C., Koitschev, A., Kusnyerik, A., Sachs, H., Schatz, A., Stingl, K.T., Peters, T., Wilhelm, B., Zrenner, E.: Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc. Roy. Soc. B. 280, 20130077 (2013)

    Article  Google Scholar 

  59. Zrenner, E., Bartz-Schmidt, K.U., Benav, H., Besch, D., Bruckmann, A., Gabel, V.P., Gekeler, F., Greppmaier, U., Harscher, A., Kibbel, S., Koch, J., Kusnyerik, A., Peters, T., Stingl, K., Sachs, H., Stett, A., Szurman, P., Wilhelm, B., Wilke, R.: Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc. Roy. Soc. B. 278, 1489–1497 (2011)

    Article  Google Scholar 

  60. Daschner, R., Rothermel, A., Rudorf, R., Rudorf, S., Stett, A.: Functionality and performance of the subretinal implant chip alpha AMS. Sensor Mater. 30, 179–192 (2018)

    Article  Google Scholar 

  61. Stingl, K., Schippert, R., Bartz-Schmidt, K.U., Besch, D., Cottriall, C.L., Edwards, T.L., Gekeler, F., Greppmaier, U., Kiel, K., Koitschev, A., Kuhlewein, L., MacLaren, R.E., Ramsden, J.D., Roider, J., Rothermel, A., Sachs, H., Schroder, G.S., Tode, J., Troelenberg, N., Zrenner, E.: Interim results of a multicenter trial with the new electronic subretinal implant alpha AMS in 15 patients blind from inherited retinal degenerations. Front. Neurosci. 11, 445 (2017)

    Article  Google Scholar 

  62. Edwards, T.L., Cottriall, C.L., Xue, K.M., Simunovic, M.P., Ramsden, J.D., Zrenner, E., MacLaren, R.E.: Assessment of the electronic retinal implant alpha AMS in restoring vision to blind patients with end-stage retinitis pigmentosa. Ophthalmology. 125, 432–443 (2018)

    Article  Google Scholar 

  63. Lorach, H., Goetz, G., Smith, R., Lei, X., Mandel, Y., Kamins, T., Mathieson, K., Huie, P., Harris, J., Sher, A., Palanker, D.: Photovoltaic restoration of sight with high visual acuity. Nat. Med. 21, 476–482 (2015)

    Article  Google Scholar 

  64. Mathieson, K., Loudin, J., Goetz, G., Huie, P., Wang, L., Kamins, T.I., Galambos, L., Smith, R., Harris, J.S., Sher, A., Palanker, D.: Photovoltaic retinal prosthesis with high pixel density. Nat. Photonics. 6, 391–397 (2012)

    Article  Google Scholar 

  65. Palanker, D., Vankov, A., Huie, P., Baccus, S.: Design of a high-resolution optoelectronic retinal prosthesis. J. Neural Eng. 2, S105–S120 (2005)

    Article  Google Scholar 

  66. Palanker, D., Flores, T., Ho, E., Lorach, H., Bhuckory, M., Kamins, T., Huang, T., Mathieson, K.: Photovoltaic restoration of sight in age-related macular degeneration, presented at the Ophthalmic Technologies XXIX (2019)

    Google Scholar 

  67. Palanker, D., Le Mer, Y., Mohand-Said, S., Muqit, M., Sahel, J.A.: Photovoltaic restoration of central vision in atrophic age-related macular degeneration. Ophthalmology. 127, 1097–1104 (2020)

    Article  Google Scholar 

  68. Bareket, L., Barriga-Rivera, A., Zapf, M.P., Lovell, N.H., Suaning, G.J.: Progress in artificial vision through suprachoroidal retinal implants. J. Neural Eng. 14, 045002 (2017)

    Article  Google Scholar 

  69. Shivdasani, M.N., Sinclair, N.C., Dimitrov, P.N., Varsamidis, M., Ayton, L.N., Luu, C.D., Perera, T., McDermott, H.J., Blamey, P.J., B. V. A. Consortium: Factors affecting perceptual thresholds in a suprachoroidal retinal prosthesis. Invest. Ophthalmol. Vis. Sci. 55, 6467–6481 (2014)

    Article  Google Scholar 

  70. Sinclair, N.C., Shivdasani, M.N., Perera, T., Gillespie, L.N., McDermott, H.J., Ayton, L.N., Blamey, P.J., B. V. A. Consortium: The appearance of phosphenes elicited using a suprachoroidal retinal prosthesis. Invest. Ophthalmol. Vis. Sci. 57, 4948–4961 (2016)

    Article  Google Scholar 

  71. Shivdasani, M.N., Sinclair, N.C., Gillespie, L.N., Petoe, M.A., Titchener, S.A., Fallon, J.B., Perera, T., Pardinas-Diaz, D., Barnes, N.M., Blarney, P.J., B. V. A. Consortium: Identification of characters and localization of images using direct multiple-electrode stimulation with a suprachoroidal retinal prosthesis. Invest. Ophthalmol. Vis. Sci. 58, 3962–3974 (2017)

    Article  Google Scholar 

  72. Allen, P., Williams, C., Nayagam, D., Luu, C., Barnes, N., Kolic, M., Abbott, C., Young, K., Briggs, R., Kentler, W., Titchener, S., Yeoh, J., Petoe, M.: A fully implantable 44 channel suprachoroidal retinal prosthesis: Surgical safety, stability and initial functional results. Clin. Exp. Ophthalmol. 46, 45–46 (2018)

    Google Scholar 

  73. Petoe, M., Titchener, S., Shivdasani, M.N., Nayagam, D., Epp, S.B., Villalobos, J., Sinclair, N.C., Williams, C., Barnes, N., Kentler, W., Kolic, M., Baglin, E., Abbott, C., Ayton, L.N., Luu, C., Allen, P.: A 44 channel suprachoroidal retinal prosthesis: Initial psychophysical results, presented at the ARVO annual meeting (2019)

    Google Scholar 

  74. Suaning, G.J., Lovell, N.H., Lehmann, T.: Neuromodulation of the retina from the suprachoroidal space the phoenix 99 implant. Biomed Circ Syst C, pp. 256–259 (2014)

    Google Scholar 

  75. Delbeke, J., Wanet-Defalque, M.C., Gerard, B., Troosters, M., Michaux, G., Veraart, C.: The microsystems based visual prosthesis for optic nerve stimulation. Artif. Organs. 26, 232–234 (2002)

    Article  Google Scholar 

  76. Brelen, M.E., De Potter, P., Gersdorff, M., Cosnard, G., Veraart, C., Delbeke, J.: Intraorbital implantation of a stimulating electrode for an optic nerve visual prosthesis. Case report. J. Neurosurg. 104, 593–597 (2006)

    Article  Google Scholar 

  77. Brelen, M.E., Vince, V., Gerard, B., Veraart, C., Delbeke, J.: Measurement of evoked potentials after electrical stimulation of the human optic nerve. Invest. Ophthalmol. Vis. Sci. 51, 5351–5355 (2010)

    Article  Google Scholar 

  78. Pezaris, J.S., Reid, R.C.: Demonstration of artificial visual percepts generated through thalamic microstimulation. Proc. Natl. Acad. Sci. 104, 7670–7675 (2007)

    Article  Google Scholar 

  79. Panetsos, F., Sanchez-Jimenez, A., Diaz-de Cerio, E., Diaz-Guemes, I., Sanchez, F.M.: Consistent phosphenes generated by electrical microstimulation of the visual thalamus. An experimental approach for thalamic visual neuroprostheses. Front. Neurosci. 5, 00084 (2011)

    Article  Google Scholar 

  80. Pezaris, J.S., Reid, R.C.: Simulations of electrode placement for a thalamic visual prosthesis. IEEE Trans. Biomed. Eng. 56, 172–178 (2009)

    Article  Google Scholar 

  81. Marg, E., Dierssen, G.: Reported visual percepts from stimulation of the human brain with microelectrodes during therapeutic surgery. Confin. Neurol. 26, 57–75 (1965)

    Article  Google Scholar 

  82. Nguyen, H.T., Tangutooru, S.M., Rountree, C.M., Kantzos, A.J., Tarlochan, F., Yoon, W.J., Troy, J.B.: Thalamic visual prosthesis. IEEE Trans. Biomed. Eng. 63, 1573–1580 (2016)

    Article  Google Scholar 

  83. Pezaris, J.S., Eskandar, E.N.: Getting signals into the brain: Visual prosthetics through thalamic microstimulation. Neurosurg. Focus. 27, E6 (2009)

    Article  Google Scholar 

  84. Vurro, M., Crowell, A.M., Pezaris, J.S.: Simulation of thalamic prosthetic vision: Reading accuracy, speed, and acuity in sighted humans. Front. Hum. Neurosci. 8, 816 (2014)

    Article  Google Scholar 

  85. Bourkiza, B., Vurro, M., Jeffries, A., Pezaris, J.S.: Visual acuity of simulated thalamic visual prostheses in normally sighted humans. PLoS One. 8, e73592 (2013)

    Article  Google Scholar 

  86. Brindley, G.S., Lewin, W.S.: The visual sensations produced by electrical stimulation of the medial occipital cortex. J. Physiol. 194, 54–5P (1968)

    Google Scholar 

  87. Brindley, G.S., Lewin, W.S.: The sensations produced by electrical stimulation of the visual cortex. J. Physiol. 196, 479–493 (1968)

    Article  Google Scholar 

  88. Brindley, G.S., Rushton, D.N.: Implanted stimulators of visual cortex as visual prosthetic devices. Trans. Am. Acad. Ophthalmol. 78, O741–O745 (1974)

    Google Scholar 

  89. Dobelle, W.H., Quest, D.O., Antunes, J.L., Roberts, T.S., Girvin, J.P.: Artificial vision for the blind by electrical stimulation of the visual cortex. Neurosurgery. 5, 521–527 (1979)

    Article  Google Scholar 

  90. Dobelle, W.H., Mladejovsky, M.G.: Phosphenes produced by electrical-stimulation of human occipital cortex, and their application to development of a prosthesis for blind. J. Physiol. 243, 553–576 (1974)

    Article  Google Scholar 

  91. Dobelle, W.H., Mladejovsky, M.G., Girvin, J.P.: Artificial vision for blind - electrical-stimulation of visual-cortex offers hope for a functional prosthesis. Science. 183, 440–444 (1974)

    Article  Google Scholar 

  92. Lewis, P.M., Ackland, H.M., Lowery, A.J., Rosenfeld, J.V.: Restoration of vision in blind individuals using bionic devices: A review with a focus on cortical visual prostheses. Brain Res. 1595, 51–73 (2015)

    Article  Google Scholar 

  93. Niketeghad, S., Pouratian, N.: Brain machine interfaces for vision restoration: The current state of cortical visual prosthetics. Neurotherapeutics. 16, 134–143 (2019)

    Article  Google Scholar 

  94. Lewis, P.M., Rosenfeld, J.V.: Electrical stimulation of the brain and the development of cortical visual prostheses: An historical perspective. Brain Res. 1630, 208–224 (2016)

    Article  Google Scholar 

  95. Bradley, D.C., Troyk, P.R., Berg, J.A., Bak, M., Cogan, S., Erickson, R., Kufta, C., Mascaro, M., McCreery, D., Schmidt, E.M., Towle, V.L., Xu, H.: Visuotopic mapping through a multichannel stimulating implant in primate V1. J. Neurophysiol. 93, 1659–1670 (2005)

    Article  Google Scholar 

  96. Troyk, P., Bak, T., Berg, J., Bradley, D., Cogan, S., Erickson, R., Kufta, C., McCreery, D., Schmidt, E., Towle, T.: A model for intracortical visual prosthesis research. Artif. Organs. 27, 1005–1015 (2003)

    Article  Google Scholar 

  97. Development of a Cortical Visual Neuroprosthesis for the Blind (CORTIVIS). https://clinicaltrials.gov/ct2/show/NCT02983370

  98. Kaskhedikar, G., Yang, L.C., Troyk, P., Dagnelie, G.: Object recognition, eye-hand coordination and wayfinding performance with simulated intracortical prosthetic vision, presented at the ARVO Annual Meeting (2016)

    Google Scholar 

  99. Wang, C., Brunton, E., Haghgooie, S., Cassells, K., Lowery, A., Rajan, R.: Characteristics of electrode impedance and stimulation efficacy of a chronic cortical implant using novel annulus electrodes in rat motor cortex. J. Neural Eng. 10, 046010 (2013)

    Article  Google Scholar 

  100. Coulombe, J., Sawan, M., Gervais, J.F.: A highly flexible system for microstimulation of the visual cortex: Design and implementation. IEEE Trans. Biomed. Circuits Syst. 1, 258–269 (2007)

    Article  Google Scholar 

  101. Fernández, E., Normann, R.: Cortivis approach for an intracortical visual prostheses. In: Gabel, V.P. (ed.) Artificial Vision, pp. 191–201. Springer (2017)

    Chapter  Google Scholar 

  102. Fernandez, E., Alfaro, A., Toledano, R., Albisua, J., Garcia, A.: Perceptions elicited by electrical stimulation of human visual cortex, presented at the ARVO Annual Meeting (2015)

    Google Scholar 

  103. Early Feasibility Study of the Orion Visual Cortical Prosthesis System. https://clinicaltrials.gov/ct2/show/NCT03344848

  104. PRIMA US-Feasibility Study in Atrophic Dry AMD (PRIMA-FS-US). https://clinicaltrials.gov/ct2/show/NCT03392324

  105. Feasibility Study of Compensation for Blindness With the PRIMA System in Patients With Dry Age Related Macular Degeneration (PRIMA FS). https://www.clinicaltrials.gov/ct2/show/NCT03333954

  106. Abbott, C.J., Nayagam, D.A.X., Luu, C.D., Epp, S.B., Williams, R.A., Salinas-LaRosa, C.M., Villalobos, J., McGowan, C., Shivdasani, M.N., Burns, O., Leavens, J., Yeoh, J., Brandli, A.A., Thien, P.C., Zhou, J., Feng, H., Williams, C.E., Shepherd, R.K., Allen, P.J.: Safety studies for a 44-channel suprachoroidal retinal prosthesis: A chronic passive study. Invest. Ophthalmol. Vis. Sci. 59, 1410–1424 (2018)

    Article  Google Scholar 

  107. Abbott, C.J., Luu, C.D., Nayagam, D.A.X., Brandli, A., Yeoh, J., Villalobos, J., Burns, O., Epp, S.B., Shivdasani, M.N., Thien, P.C., McGowan, C., Williams, R., Guymer, R.H., Williams, C.E., Shepherd, R.K., Allen, P.J.: Passive safety outcomes of a preclinical 44-channel suprachoroidal retinal prosthesis, presented at the ARVO Annual Meeting (2017)

    Google Scholar 

  108. Study of a Suprachoroidal Retinal Prosthesis. https://clinicaltrials.gov/ct2/show/NCT03406416

  109. Rizzo, J.F., Wyatt, J., Loewenstein, J., Kelly, S., Shire, D.: Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays. Invest. Ophthalmol. Vis. Sci. 44, 5355–5361 (2003)

    Article  Google Scholar 

  110. Shire, D.B., Kelly, S.K., Chen, J.H., Doyle, P., Gingerich, M.D., Cogan, S.F., Drohan, W.A., Mendoza, O., Theogarajan, L., Wyatt, J.L., Rizzo, J.F.: Development and implantation of a minimally invasive wireless subretinal neurostimulator. IEEE Trans. Biomed. Eng. 56, 2502–2511 (2009)

    Article  Google Scholar 

  111. Kelly, S.K., Shire, D.B., Chen, J., Doyle, P., Gingerich, M.D., Cogan, S.F., Drohan, W.A., Behan, S., Theogarajan, L., Wyatt, J.L., Rizzo 3rd, J.F.: A hermetic wireless subretinal neurostimulator for vision prostheses. IEEE Trans. Biomed. Eng. 58, 3197–3205 (2011)

    Article  Google Scholar 

  112. Kelly, S.K., Shire, D.B., Chen, J.H., Gingerich, M.D., Cogan, S.F., Drohan, W.A., Ellersick, W., Krishnan, A., Behan, S., Wyatt, J.L., Rizzo, J.F.: Developments on the Boston 256-channel retinal implant, presented at the Electronic Proceedings of the 2013 IEEE International Conference on Multimedia and Expo Workshops (2013)

    Google Scholar 

  113. Kelly, S., Rizzo, J.: The Boston retinal implant. In: Gabel, V.P. (ed.) Artificial Vision. Springer (2017)

    Google Scholar 

  114. Jeong, J., Bae, S.H., Min, K.S., Seo, J.M., Chung, H., Kim, S.J.: A miniaturized, eye-conformable, and long-term reliable retinal prosthesis using monolithic fabrication of liquid crystal polymer (LCP). IEEE Trans. Biomed. Eng. 62, 982–989 (2015)

    Article  Google Scholar 

  115. Gwon, T.M., Kim, C., Shin, S., Park, J.H., Kim, J.H., Kim, S.J.: Liquid crystal polymer (LCP)-based neural prosthetic devices. Biomed. Eng. Lett. 6, 148–163 (2016)

    Article  Google Scholar 

  116. Jeong, J., Bae, S.H., Seo, J.M., Chung, H., Kim, S.J.: Long-term evaluation of a liquid crystal polymer (LCP)-based retinal prosthesis. J. Neural Eng. 13, 025004 (2016)

    Article  Google Scholar 

  117. Tamaki, T., Matsuo, T., Hosoya, O., Tsutsui, K.M., Uchida, T., Okamoto, K., Uji, A., Ohtsuki, H.: Glial reaction to photoelectric dye-based retinal prostheses implanted in the subretinal space of rats. J. Artif. Organs. 11, 38–44 (2008)

    Article  Google Scholar 

  118. Uji, A., Matsuo, T., Ishimaru, S., Kajiura, A., Yamashita, T., Shimamura, K., Ohtsuki, H., Dan-oh, Y., Suga, S.: Photoelectric dye-coupled polyethylene film as a prototype of retinal prostheses tested in vitro by chick embryonic retinal tissue. Invest. Ophthalmol. Vis. Sci. 45, U380 (2004)

    Google Scholar 

  119. Matsuo, T., Uchida, T., Sakurai, J., Yamashita, K., Matsuo, C., Araki, T., Yamashita, Y., Kamikawa, K.: Visual evoked potential recovery by subretinal implantation of photoelectric dye-coupled thin film retinal prosthesis in monkey eyes with macular degeneration. Artif. Organs. 42, E186–E203 (2018)

    Article  Google Scholar 

  120. Matsuo, T., Uchida, T., Yamashita, K., Takei, S., Ido, D., Tanaka, M., Oguchi, M., Furukawa, T.: Visual evoked potential in rabbits’ eyes with subretinal implantation by vitrectomy of Okayama university-type retinal prosthesis (OUREP(TM)). J. Vet. Med. Sci. 80, 247–259 (2018)

    Article  Google Scholar 

  121. Matsuo, T., Uchida, T., Nitta, M., Yamashita, K., Takei, S., Ido, D., Tanaka, M., Oguchi, M., Furukawa, T.: Subretinal implantation of Okayama university-type retinal prosthesis (OUREP(TM)) in canine eyes by vitrectomy. J. Vet. Med. Sci. 79, 1939–1946 (2017)

    Article  Google Scholar 

  122. Liu, S., Matsuo, T., Hosoya, O., Uchida, T.: Photoelectric dye used for Okayama university-type retinal prosthesis reduces the apoptosis of photoreceptor cells. J. Ocul. Pharmacol. Ther. 33, 149–160 (2017)

    Article  Google Scholar 

  123. Nano Retina. http://www.nano-retina.com/

  124. Yanovitz, L., Raz-Prag, D., Eden, K., Salni, R., Hanein, Y., Gefen, R.: Retinal responses evoked and recorded with 3d electrodes designated for a novel prosthetic device, presented at the ARVO Annual Meeting (2014)

    Google Scholar 

  125. Raz-Prag, D., Weinberger, D., Gefen, R.: Implantation procedure for retinal prosthesis: Adaptation of extracapsular cataract procedure, presented at the ARVO Annual Meeting (2014)

    Google Scholar 

  126. High-resolution Artificial Retina (HAR-126). http://micronano.siat.ac.cn/en/

  127. Zeng, Q., Zhao, S., Yang, H., Zhang, Y., Wu, T.: Micro/nano technologies for high-density retinal implant. Micromachines. 10, 419 (2019)

    Article  Google Scholar 

  128. Xia, K., Sun, B., Zeng, Q., Wu, T.Z., Humayun, M.S.: Surface modification of neural stimulating/recording microelectrodes with high-performance platinum-pillar coatings, presented at the IEEE International Conference on Nano/Micro Engineered and Molecular Systems (2017)

    Google Scholar 

  129. Fan, L.S.: Flexible Artificial Retina Devices. Iridium Medical Technology Co., Ltd., US 9114004 (2015)

    Google Scholar 

  130. Fan, L.: Toward a high visual-acuity retinal prosthesis, presented at the 17th International Conference on Solid-State Sensors, Actuators and Microsystems. In: Transducers (2013)

    Google Scholar 

  131. Yang, C., Fan, L., Yang, F.: Implantation of high-density, flexible cmos imaging sensor retinal prosthesis in minipig eyes, presented at the ARVO Annual Meeting (2013)

    Google Scholar 

  132. Lowery, A.J., Rosenfeld, J.V., Rosa, M., Brunton, E., Rajan, R., Mann, C., Armstrong, M., Mohan, A., Josh, H., Kleeman, L., Li, W., Pritchard, J.: Monash vision group’s gennaris cortical implant for vision restoration. In: Gabel, V.P. (ed.) Artificial Vision, pp. 215–224. Springer (2017)

    Chapter  Google Scholar 

  133. Lowery, A.J.: Introducing the Monash vision group’s cortical prosthesis. In: 2013 IEEE International Conference on Image Processing, Australia (2013)

    Google Scholar 

  134. Ferlauto, L., Leccardi, M.J.I.A., Chenais, N.A.L., Gillieron, S.C.A., Vagni, P., Bevilacqua, M., Wolfensberger, T.J., Sivula, K., Ghezzi, D.: Design and validation of a foldable and photovoltaic wide-field epiretinal prosthesis. Nat. Commun. 9, 992 (2018)

    Article  Google Scholar 

  135. Ganesan, K., Garrett, D.J., Ahnood, A., Shivdasani, M.N., Tong, W., Turnley, A.M., Fox, K., Meffin, H., Prawer, S.: An all-diamond, hermetic electrical feedthrough array for a retinal prosthesis. Biomaterials. 35, 908–915 (2014)

    Article  Google Scholar 

  136. SIBIONICS. https://www.sibionics.com/en/

  137. Ha, S., Khraiche, M.L., Akinin, A., Jing, Y., Damle, S., Kuang, Y., Bauchner, S., Lo, Y.H., Freeman, W.R., Silva, G.A., Cauwenberghs, G.: Towards high-resolution retinal prostheses with direct optical addressing and inductive telemetry. J. Neural Eng. 13, 056008 (2016)

    Article  Google Scholar 

  138. Yang, Y.T., Lin, P.K., Wan, C., Yang, W.C., Lin, L.J., Wu, C.Y., Chiao, C.C.: Responses of rabbit retinal ganglion cells to subretinal electrical stimulation using a silicon-based microphotodiode array. Invest. Ophthalmol. Vis. Sci. 52, 9353–9361 (2011)

    Article  Google Scholar 

  139. Rizzo 3rd, J.F.: Update on retinal prosthetic research: The Boston retinal implant project. J. Neuroophthalmol. 31, 160–168 (2011)

    Article  Google Scholar 

  140. Wu, K.J., Zhang, C., Huang, W.C., Li, L.M., Ren, Q.S.: Current research of C-sight visual prosthesis for the blind, presented at the Annual International Conference of the IEEE EMBS (2010)

    Google Scholar 

  141. Chai, X.Y., Li, L.M., Wu, K.J., Zhou, C.Q., Cao, P.J., Ren, Q.S.: C-sight visual prostheses for the blind – Optic nerve stimulation with penetrating electrode array, presented at the Annual International Conference of the IEEE EMBS (2008)

    Google Scholar 

  142. Tanaka, T., Sato, K., Komiya, K., Kobayashi, T., Watanabe, T., Fukushima, T., Tomita, H., Kurino, H., Tamai, M., Koyanagi, M.: Fully implantable retinal prosthesis chip with photodetector and stimulus current generator, presented at the IEEE International Electron Devices Meeting (2007)

    Google Scholar 

  143. Kaiho, Y., Ohara, Y., Takeshita, H., Kiyoyama, K., Lee, K.W., Tanaka, T., Koyanagi, M.: 3d integration technology for 3d stacked retinal chip, presented at the IEEE International Conference on 3D Systems Integration (2009)

    Google Scholar 

  144. Alamusi, T., Matsuo, O., Hosoya, K., Tsutsui, M., Uchida, T.: Vision maintenance and retinal apoptosis reduction in RCS rats with Okayama university-type retinal prosthesis (OUREP (TM)) implantation. J. Artif. Organs. 18, 264–271 (2015)

    Article  Google Scholar 

  145. Watson, M., Dancause, N., Sawan, M.: Intracortical microstimulation parameters dictate the amplitude and latency of evoked responses. Brain Stimul. 9, 276–284 (2016)

    Article  Google Scholar 

  146. Barriga-Rivera, A., Bareket, L., Goding, J., Aregueta-Robles, U.A., Suaning, G.J.: Visual prosthesis: Interfacing stimulating electrodes with retinal neurons to restore vision. Front. Neurosci. 11, 620 (2017)

    Article  Google Scholar 

  147. Ghezzi, D., Antognazza, M.R., Maccarone, R., Bellani, S., Lanzarini, E., Martino, N., Mete, M., Pertile, G., Bisti, S., Lanzani, G., Benfenati, F.: A polymer optoelectronic interface restores light sensitivity in blind rat retinas. Nat. Photonics. 7, 400–406 (2013)

    Article  Google Scholar 

  148. Gautam, V., Rand, D., Hanein, Y., Narayan, K.S.: A polymer optoelectronic interface provides visual cues to a blind retina. Adv. Mater. 26, 1751–1756 (2014)

    Article  Google Scholar 

  149. Maya-Vetencourt, J.F., Ghezzi, D., Antognazza, M.R., Colombo, E., Mete, M., Feyen, P., Desii, A., Buschiazzo, A., Di Paolo, M., Di Marco, S., Ticconi, F., Emionite, L., Shmal, D., Marini, C., Donelli, I., Freddi, G., Maccarone, R., Bisti, S., Sambuceti, G., Pertile, G., Lanzani, G., Benfenati, F.: A fully organic retinal prosthesis restores vision in a rat model of degenerative blindness. Nat. Mater. 16, 681 (2017)

    Article  Google Scholar 

  150. Antognazza, M.R., Di Paolo, M., Ghezzi, D., Mete, M., Di Marco, S., Maya-Vetencourt, J.F., Maccarone, R., Desii, A., Di Fonzo, F., Bramini, M., Russo, A., Laudato, L., Donelli, I., Cilli, M., Freddi, G., Pertile, G., Lanzani, G., Bisti, S., Benfenati, F.: Characterization of a polymer-based, fully organic prosthesis for implantation into the subretinal space of the rat. Adv. Healthc. Mater. 5, 2271–2282 (2016)

    Article  Google Scholar 

  151. Tang, J., Qin, N., Chong, Y., Diao, Y., Yiliguma, Wang, Z., Xue, T., Jiang, M., Zhang, J., Zheng, G.: Nanowire arrays restore vision in blind mice. Nat. Commun. 9, 786 (2018)

    Article  Google Scholar 

  152. David-Pur, M., Bareket-Keren, L., Beit-Yaakov, G., Raz-Prag, D., Hanein, Y.: All-carbon-nanotube flexible multi-electrode array for neuronal recording and stimulation. Biomed. Microdevices. 16, 43–53 (2014)

    Article  Google Scholar 

  153. Rountree, C.M., Troy, J.B., Saggere, L.: Methodology for biomimetic chemical neuromodulation of rat retinas with the neurotransmitter glutamate in vitro. J. Vis. Exp. 130, p. 56645 (2017)

    Google Scholar 

  154. Rountree, C.M., Troy, J.B., Saggere, L.: Microfluidics-based subretinal chemical neuromodulation of photoreceptor degenerated retinas. Invest. Ophthalmol. Vis. Sci. 59, 418–430 (2018)

    Article  Google Scholar 

  155. Rountree, C.M., Inayat, S., Troy, J.B., Saggere, L.: Differential stimulation of the retina with subretinally injected exogenous neurotransmitter: A biomimetic alternative to electrical stimulation. Sci. Rep. 6, 38505 (2016)

    Article  Google Scholar 

  156. Rountree, C.M., Meng, C., Troy, J.B., Saggere, L.: Mechanical stimulation of the retina: Therapeutic feasibility and cellular mechanism. IEEE Trans. Neural Syst. Rehabil. Eng. 26, 1075–1083 (2018)

    Article  Google Scholar 

  157. Albert, E.S., Bec, J.M., Desmadryl, G., Chekroud, K., Travo, C., Gaboyard, S., Bardin, F., Marc, I., Dumas, M., Lenaers, G., Hamel, C., Muller, A., Chabbert, C.: TRPV4 channels mediate the infrared laser-evoked response in sensory neurons. J. Neurophysiol. 107, 3227–3234 (2012)

    Article  Google Scholar 

  158. Hertzberg, Y., Naor, O., Volovick, A., Shoham, S.: Towards multifocal ultrasonic neural stimulation: Pattern generation algorithms. J. Neural Eng. 7, 056002 (2010)

    Article  Google Scholar 

  159. Naor, O., Hertzberg, Y., Zemel, E., Kimmel, E., Shoham, S.: Towards multifocal ultrasonic neural stimulation II: Design considerations for an acoustic retinal prosthesis. J. Neural Eng. 9, 026006 (2012)

    Article  Google Scholar 

  160. Soltan, A., Barrett, J.M., Maaskant, P., Armstrong, N., Al-Atabany, W., Chaudet, L., Neil, M., Sernagor, E., Degenaar, P.: A head mounted device stimulator for optogenetic retinal prosthesis. J. Neural Eng. 15, 065002 (2018)

    Article  Google Scholar 

  161. Soltan, A., McGovern, B., Drakakis, E., Neil, M., Maaskant, P., Akhter, M., Lee, J.S., Degenaar, P.: High density, high radiance μ led matrix for optogenetic retinal prostheses and planar neural stimulation. IEEE Trans. Biomed. Circuits Syst. 11, 347–359 (2017)

    Article  Google Scholar 

  162. Lee, S.W., Fried, S.I.: Enhanced control of cortical pyramidal neurons with micromagnetic stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 1375–1386 (2017)

    Article  Google Scholar 

  163. Bareket-Keren, L., Hanein, Y.: Carbon nanotube-based multi electrode arrays for neuronal interfacing: Progress and prospects. Front Neural Circuits. 6, 122 (2012)

    Google Scholar 

  164. Gabriel, G., Gomez, R., Bongard, M., Benito, N., Fernandez, E., Villa, R.: Easily made single-walled carbon nanotube surface microelectrodes for neuronal applications. Biosens. Bioelectron. 24, 1942–1948 (2009)

    Article  Google Scholar 

  165. Shoval, A., Adams, C., David-Pur, M., Shein, M., Hanein, Y., Sernagor, E.: Carbon nanotube electrodes for effective interfacing with retinal tissue. Front Neuroeng. 2, 4 (2009)

    Article  Google Scholar 

  166. Bareket, L., Waiskopf, N., Rand, D., Lubin, G., David-Pur, M., Ben-Dov, J., Roy, S., Eleftheriou, C., Sernagor, E., Cheshnovsky, O., Banin, U., Hanein, Y.: Semiconductor nanorod-carbon nanotube biomimetic films for wire-free photostimulation of blind retinas. Nano Lett. 14, 6685–6692 (2014)

    Article  Google Scholar 

  167. Samba, R., Herrmann, T., Zeck, G.: Pedot-cnt coated electrodes stimulate retinal neurons at low voltage amplitudes and low charge densities. J. Neural Eng., 12, 016014 (2015)

    Google Scholar 

  168. Green, R.A., Matteucci, P.B., Hassarati, R.T., Giraud, B., Dodds, C.W., Chen, S., Byrnes-Preston, P.J., Suaning, G.J., Poole-Warren, L.A., Lovell, N.H.: Performance of conducting polymer electrodes for stimulating neuroprosthetics. J. Neural Eng. 10, 016009 (2013)

    Article  Google Scholar 

  169. Wilks, S.J., Richardson-Burns, S.M., Hendricks, J.L., Martin, D.C., Otto, K.J.: Poly(3,4-ethylenedioxythiophene) as a micro-neural interface material for electrostimulation. Front Neuroeng. 2, 7 (2009)

    Article  Google Scholar 

  170. Poole-Warren, L., Lovell, N., Baek, S., Green, R.: Development of bioactive conducting polymers for neural interfaces. Expert Rev. Med. Devices. 7, 35–49 (2010)

    Article  Google Scholar 

  171. Cui, X.T., Zhou, D.D.: Poly (3,4-ethylenedioxythiophene) for chronic neural stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 15, 502–508 (2007)

    Article  Google Scholar 

  172. Jan, E., Hendricks, J.L., Husaini, V., Richardson-Burns, S.M., Sereno, A., Martin, D.C., Kotov, N.A.: Layered carbon nanotube-polyelectrolyte electrodes outperform traditional neural interface materials. Nano Lett. 9, 4012–4018 (2009)

    Article  Google Scholar 

  173. Eleftheriou, C.G., Zimmermann, J.B., Kjeldsen, H.D., David-Pur, M., Hanein, Y., Sernagor, E.: Carbon nanotube electrodes for retinal implants: A study of structural and functional integration over time. Biomaterials. 112, 108–121 (2017)

    Article  Google Scholar 

  174. NASA website: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=7915

  175. Brauchle, C., Hampp, N., Oesterhelt, D.: Optical applications of bacteriorhodopsin and its mutated variants. Adv. Mater. 3, 420–428 (1991)

    Article  Google Scholar 

  176. Saeedi, P., Moosaabadi, J.M., Sebtahmadi, S.S., Mehrabadi, J.F., Behmanesh, M., Mekhilef, S.: Potential applications of bacteriorhodopsin mutants. Bioengineered. 3, 326–328 (2012)

    Article  Google Scholar 

  177. Borman, S.: Photoreceptor based on bacteriorhodopsin. Chem. Eng. News. 70, 5–6 (1992)

    Article  Google Scholar 

  178. Greco, J.A., Wagner, N., Jensen, R., Birge, R.R.: Stimulation of retinal ganglion cells using an ion-mediated, protein-based retinal implant, presented at the ARVO Annual Meeting (2017)

    Google Scholar 

  179. Rodieck, R.W.: The First Steps in Seeing, 1st edn. Sinauer Associates (1998)

    Google Scholar 

  180. Roska, B., Meister, M.: The retina dissects the visual scene into distinct features. In: Werner, J.S., Chalupa, L.M. (eds.) The New Visual Neurosciences. MIT Press, London (2014)

    Google Scholar 

  181. Stronks, H.C., Dagnelie, G.: The functional performance of the Argus II retinal prosthesis. Expert Rev. Med. Devices. 11, 23–30 (2014)

    Article  Google Scholar 

  182. Twyford, P., Cai, C., Fried, S.: Differential responses to high-frequency electrical stimulation in on and off retinal ganglion cells. J. Neural Eng. 11, 025001 (2014)

    Article  Google Scholar 

  183. Im, M., Fried, S.I.: Indirect activation elicits strong correlations between light and electrical responses in on but not off retinal ganglion cells. J. Physiol. 593, 3577–3596 (2015)

    Article  Google Scholar 

  184. Sekhar, S., Jalligampala, A., Zrenner, E., Rathbun, D.: Correspondence between visual and electrical input filters of on and off mouse retinal ganglion cells. J. Neural Eng. 14, 046017 (2017)

    Article  Google Scholar 

  185. Fan, V.H., Grosberg, L.E., Madugula, S.S., Hottowy, P., Dabrowski, W., Sher, A., Litke, A.M., Chichilnisky, E.: Epiretinal stimulation with local returns enhances selectivity at cellular resolution. J. Neural Eng. 16, 025001 (2018)

    Article  Google Scholar 

  186. Guo, T., Yang, C.Y., Tsai, D., Muralidharan, M., Suaning, G.J., Morley, J.W., Dokos, S., Lovell, N.H.: Closed-loop efficient searching of optimal electrical stimulation parameters for preferential excitation of retinal ganglion cells. Front. Neurosci. 12, 168 (2018)

    Article  Google Scholar 

  187. Ho, E., Smith, R., Goetz, G., Lei, X., Galambos, L., Kamins, T.I., Harris, J., Mathieson, K., Palanker, D., Sher, A.: Spatiotemporal characteristics of retinal response to network-mediated photovoltaic stimulation. J. Neurophysiol. 119, 389–400 (2018)

    Article  Google Scholar 

  188. Im, M., Werginz, P., Fried, S.: Electric stimulus duration alters network-mediated responses depending on retinal ganglion cell type. J. Neural Eng. 15, 036010 (2018)

    Article  Google Scholar 

  189. Lee, J.I., Im, M.: Optimal electric stimulus amplitude improves the selectivity between responses of on versus off types of retinal ganglion cells. IEEE Trans. Neural Syst. Rehabil. Eng. 27, 2015–2024 (2019)

    Article  Google Scholar 

  190. Muralidharan, M., Guo, T., Shivdasani, M.N., Tsai, D., Fried, S., Li, L., Dokos, S., Morley, J.W., Lovell, N.H.: Neural activity of functionally different retinal ganglion cells can be robustly modulated by high-rate electrical pulse trains. J. Neural Eng. 17, 045013 (2020)

    Article  Google Scholar 

  191. Yang, C.Y., Tsai, D., Guo, T., Dokos, S., Suaning, G.J., Morley, J.W., Lovell, N.H.: Differential electrical responses in retinal ganglion cell subtypes: Effects of synaptic blockade and stimulating electrode location. J. Neural Eng. 15, 046020 (2018)

    Article  Google Scholar 

  192. Guo, T., Lovell, N.H., Tsai, D., Twyford, P., Fried, S., Morley, J.W., Suaning, G.J., Dokos, S.: Optimizing retinal ganglion cell responses to high-frequency electrical stimulation strategies for preferential neuronal excitation, presented at the International IEEE EMBS Conference on Neural Engineering (2015)

    Google Scholar 

  193. Guo, T., Lovell, N.H., Tsai, D., Twyford, P., Fried, S., Morley, J.W., Suaning, G.J., Dokos, S.: Selective activation of on and off retinal ganglion cells to high-frequency electrical stimulation: A computational modeling study, presented at the Annual International Conference of the IEEE EMBS (2014)

    Google Scholar 

  194. Spencer, M.J., Kameneva, T., Grayden, D.B., Meffin, H., Burkitt, A.N.: Global activity shaping strategies for a retinal implant. J. Neural Eng. 16, 026008 (2019)

    Article  Google Scholar 

  195. Jepson, L.H., Hottowy, P., Mathieson, K., Gunning, D.E., Dabrowski, W., Litke, A.M., Chichilnisky, E.J.: Spatially patterned electrical stimulation to enhance resolution of retinal prostheses. J. Neurosci. 34, 4871–4881 (2014)

    Article  Google Scholar 

  196. Song, X., Guo, T., Shivdasani, M.N., Dokos, S., Lovell, N.H., Li, X., Qiu, S., Li, T., Zheng, S., Li, L.: Creation of virtual channels in the retina using synchronous and asynchronous stimulation – A modelling study. J. Neural Eng. 17, 065001 (2020)

    Article  Google Scholar 

  197. Rathbun, D.L., Shivdasani, M.N., Guo, T., Fried, S., Lovell, N.H., Hessburg, P.: The Eye and the Chip 2019-Conference Report, vol. 17, p. 010401. (2020)

    Google Scholar 

  198. Inayat, S., Rountree, C.M., Troy, J.B., Saggere, L.: Chemical stimulation of rat retinal neurons: Feasibility of an epiretinal neurotransmitter-based prosthesis. J. Neural Eng. 12, 016010 (2015)

    Article  Google Scholar 

  199. Finlayson, P.G., Iezzi, R.: Glutamate stimulation of retinal ganglion cells in normal and s334ter-4 rat retinas: A candidate for a neurotransmitter-based retinal prosthesis. Invest. Ophthalmol. Vis. Sci. 51, 3619–3628 (2010)

    Article  Google Scholar 

  200. Cayce, J.M., Friedman, R.M., Chen, G., Jansen, E.D., Mahadevan-Jansen, A., Roe, A.W.: Infrared neural stimulation of primary visual cortex in non-human primates. NeuroImage. 84, 181–190 (2014)

    Article  Google Scholar 

  201. Lee, W., Kim, H.C., Jung, Y., Chung, Y.A., Song, I.U., Lee, J.H., Yoo, S.S.: Transcranial focused ultrasound stimulation of human primary visual cortex. Sci. Rep. 6, 34026 (2016)

    Article  Google Scholar 

  202. Nirenberg, S., Pandarinath, C.: Retinal prosthetic strategy with the capacity to restore normal vision. Proc. Natl. Acad. Sci. 109, 15012–15017 (2012)

    Article  Google Scholar 

  203. Peterman, M.C., Mehenti, N.Z., Bilbao, K.V., Lee, C.J., Leng, T., Noolandi, J., Bent, S.F., Blumenkranz, M.S., Fishman, H.A.: The artificial synapse chip: A flexible retinal interface based on directed retinal cell growth and neurotransmitter stimulation. Artif. Organs. 27, 975–985 (2003)

    Article  Google Scholar 

  204. Peterman, M.C., Noolandi, J., Blumenkranz, M.S., Fishman, H.A.: Localized chemical release from an artificial synapse chip. Proc. Natl. Acad. Sci. 101, 9951–9954 (2004)

    Article  Google Scholar 

  205. Haq, W., Dietter, J., Bolz, S., Zrenner, E.: Feasibility study for a glutamate driven subretinal prosthesis: Local subretinal application of glutamate on blind retina evoke network-mediated responses in different types of ganglion cells. J. Neural Eng. 15, 045004 (2018)

    Article  Google Scholar 

  206. Grusser, O.J., Hagner, M., Przybyszewski, A.W.: The effect of dark adaptation on the responses of cat retinal ganglion cells to eyeball deformation. Vis. Res. 29, 1059–1068 (1989)

    Article  Google Scholar 

  207. Grusser, O.J., Grusser-Cornehls, U., Kusel, R., Przybyszewski, A.W.: Responses of retinal ganglion cells to eyeball deformation: A neurophysiological basis for “pressure phosphenes”. Vis. Res. 29, 181–194 (1989)

    Article  Google Scholar 

  208. Sappington, R.M., Sidorova, T., Long, D.J., Calkins, D.J.: TRPV1: Contribution to retinal ganglion cell apoptosis and increased intracellular ca2+ with exposure to hydrostatic pressure. Invest. Ophthalmol. Vis. Sci. 50, 717–728 (2009)

    Article  Google Scholar 

  209. Ryskamp, D.A., Witkovsky, P., Barabas, P., Huang, W., Koehler, C., Akimov, N.P., Lee, S.H., Chauhan, S., Xing, W., Renteria, R.C., Liedtke, W., Krizaj, D.: The polymodal ion channel transient receptor potential vanilloid 4 modulates calcium flux, spiking rate, and apoptosis of mouse retinal ganglion cells. J. Neurosci. 31, 7089–7101 (2011)

    Article  Google Scholar 

  210. Tan, J.C.H., Kalapesi, F.B., Coroneo, M.T.: Mechanosensitivity and the eye: Cells coping with the pressure. Br. J. Ophthalmol. 90, 383–388 (2006)

    Article  Google Scholar 

  211. Kaeser, P.S., Regehr, W.G.: Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release. Annu. Rev. Physiol. 76, 333–363 (2014)

    Article  Google Scholar 

  212. Sudhof, T.C.: The presynaptic active zone. Neuron. 75, 11–25 (2012)

    Article  Google Scholar 

  213. Stuart, G.J., Spruston, N.: Dendritic integration: 60 years of progress. Nat. Neurosci. 18, 1713–1721 (2015)

    Article  Google Scholar 

  214. Jones, P.D., Stelzle, M.: Can nanofluidic chemical release enable fast, high resolution neurotransmitter-based neurostimulation? Front. Neurosci. 10, 138 (2016)

    Google Scholar 

  215. Izzo, A.D., Walsh, J.T., Ralph, H., Webb, J., Bendett, M., Wells, J., Richter, C.P.: Laser stimulation of auditory neurons: Effect of shorter pulse duration and penetration depth. Biophys. J. 94, 3159–3166 (2008)

    Article  Google Scholar 

  216. Xie, B., Dai, C., Li, H.: Attenuated infrared neuron stimulation response in cochlea of deaf animals may associate with the degeneration of spiral ganglion neurons. Biomed. Opt. Express. 6, 1990–2005 (2015)

    Article  Google Scholar 

  217. Martino, N., Feyen, P., Porro, M., Bossio, C., Zucchetti, E., Ghezzi, D., Benfenati, F., Lanzani, G., Antognazza, M.R.: Photothermal cellular stimulation in functional bio-polymer interfaces. Sci. Rep. 5, 8911 (2015)

    Article  Google Scholar 

  218. Wells, J., Kao, C., Konrad, P., Milner, T., Kim, J., Mahadevan-Jansen, A., Jansen, E.D.: Biophysical mechanisms of transient optical stimulation of peripheral nerve. Biophys. J. 93, 2567–2580 (2007)

    Article  Google Scholar 

  219. Montell, C.: The TRP superfamily of cation channels. Sci STKE. 2005, re3 (2005)

    Article  Google Scholar 

  220. Menz, M.D., Oralkan, O., Khuri-Yakub, P.T., Baccus, S.A.: Precise neural stimulation in the retina using focused ultrasound. J. Neurosci. 33, 4550–4560 (2013)

    Article  Google Scholar 

  221. Fry, W.J.: Use of intense ultrasound in neurological research. Am. J. Phys. Med. 37, 143–147 (1958)

    Article  Google Scholar 

  222. Krasovitski, B., Frenkel, V., Shoham, S., Kimmel, E.: Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. Proc. Natl. Acad. Sci. 108, 3258–3263 (2011)

    Article  Google Scholar 

  223. Menz, M.D., Ye, P., Firouzi, K., Pauly, K.B., Khuri-Yakub, B.T., Baccus, S.A.: Physical mechanisms of ultrasonic neurostimulation of the retina. bioRxiv, 231449 (2017)

    Google Scholar 

  224. Yizhar, O., Fenno, L.E., Davidson, T.J., Mogri, M., Deisseroth, K.: Optogenetics in neural systems. Neuron. 71, 9–34 (2011)

    Article  Google Scholar 

  225. Pan, Z.H., Lu, Q., Bi, A.D., Dizhoor, A.M., Abrams, G.W.: Optogenetic approaches to restoring vision. Annu. Rev. Vis. Sci. 1, 185–210 (2015)

    Article  Google Scholar 

  226. Bi, A.D., Cui, J.J., Ma, Y.P., Olshevskaya, E., Pu, M.L., Dizhoor, A.M., Pan, Z.H.: Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron. 50, 23–33 (2006)

    Article  Google Scholar 

  227. Klapoetke, N.C., Murata, Y., Kim, S.S., Pulver, S.R., Birdsey-Benson, A., Cho, Y.K., Morimoto, T.K., Chuong, A.S., Carpenter, E.J., Tian, Z.J., Wang, J., Xie, Y.L., Yan, Z.X., Zhang, Y., Chow, B.Y., Surek, B., Melkonian, M., Jayaraman, V., Constantine-Paton, M., Wong, G.K.S., Boyden, E.S.: Independent optical excitation of distinct neural populations. Nat. Methods. 11, 338–346 (2014)

    Article  Google Scholar 

  228. Reutsky-Gefen, I., Golan, L., Farah, N., Schejter, A., Tsur, L., Brosh, I., Shoham, S.: Holographic optogenetic stimulation of patterned neuronal activity for vision restoration. Nat. Commun. 4, 1509 (2013)

    Article  Google Scholar 

  229. Degenaar, P., Grossman, N., Memon, M.A., Burrone, J., Dawson, M., Drakakis, E., Neil, M., Nikolic, K.: Optobionic vision–A new genetically enhanced light on retinal prosthesis. J. Neural Eng. 6, 035007 (2009)

    Article  Google Scholar 

  230. Fattah, N., Laha, S., Sokolov, D., Chester, G., Degenaar, P.: Wireless data and power transfer of an optogenetic implantable visual cortex stimulator, presented at the Annual International Conference of the IEEE EMBS (2015)

    Google Scholar 

  231. Bionic Sight. https://www.bionicsightllc.com/

  232. Bonmassar, G., Lee, S.W., Freeman, D.K., Polasek, M., Fried, S.I., Gale, J.T.: Microscopic magnetic stimulation of neural tissue. Nat. Commun. 3, 921 (2012)

    Article  Google Scholar 

  233. Lee, S.W., Fried, S.I.: Suppression of subthalamic nucleus activity by micromagnetic stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 23, 116–127 (2015)

    Article  Google Scholar 

  234. Schmidt, E.M., Bak, M.J., Hambrecht, F.T., Kufta, C.V., ORourke, D.K., Vallabhanath, P.: Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain. 119, 507–522 (1996)

    Article  Google Scholar 

  235. Colodetti, L., Weiland, J.D., Colodetti, S., Ray, A., Seiler, M.J., Hinton, D.R., Humayun, M.S.: Pathology of damaging electrical stimulation in the retina. Exp. Eye Res. 85, 23–33 (2007)

    Article  Google Scholar 

  236. Fried, S., Ryu, S., Paulk, A., Yang, J., Ganji, M., Dayeh, S., Cash, S., Lee, S.: Micro-coils confine activation to single cortical columns in V1, presented at the ARVO Annual Meeting (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel H. Lovell .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Guo, T., Shivdasani, M.N., Tsai, D., Ayton, L.N., Rathbun, D.L., Lovell, N.H. (2021). Visual Prostheses: Neuroengineering Handbook. In: Thakor, N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-2848-4_31-2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2848-4_31-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2848-4

  • Online ISBN: 978-981-15-2848-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics