Skip to main content
Log in

Liquid crystal polymer (LCP)-based neural prosthetic devices

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Polymers are increasingly being used in implantable biomedical applications owing to their flexibility and compatibility with micro-fabrication processes. A liquid crystal polymer (LCP) is an inert, highly water-resistant polymer that is suitable for the encapsulation of electronic components and as a substrate material for fabricating neural interfaces. Therefore, the monolithic integration of a neural interface and electronics packaging is enabled by the use of an LCP, which has salient benefits in terms of performance and reliability. For these reasons, LCPs have been studied extensively as a base material for neural prosthetic devices. In this paper, we review recently developed enabling technologies, and demonstrate prototype devices and their performance capabilities. Lifetime estimations and technical challenges of LCP-based neural prosthetic devices are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cogan SF. Neural stimulation and recording electrodes. Annu Rev Biomed Eng. 2008; 10: 275–309.

    Article  Google Scholar 

  2. Khanna VK. Implantable medical electronics: prosthetics, drug delivery, and health monitoring. 1st ed. Cham: Springer International Publishing; 2016.

    Book  Google Scholar 

  3. Prochazka A, Mushahwar VK, McCreery DB. Neural prostheses. J Physiol. 2001; 533: 99–109.

    Article  Google Scholar 

  4. Stieglitz T, Schuetter M, Koch KP. Implantable biomedical microsystems for neural prostheses. IEEE Eng Med Biol Mag. 2005; 24(5): 58–65.

    Article  Google Scholar 

  5. Teo AJT, Mishra A, Park I, Kim Y-J, Park W-T, Yoon Y-J. Polymeric biomaterials for medical implants and devices. ACS Biomater Sci Eng. 2016; 2(4): 454–72.

    Article  Google Scholar 

  6. Wise KD, Sodagar AM, Yao Y, Gulari MN, Perlin GE, Najafi K. Microelectrodes, microelectronics, and implantable neural microsystems. P IEEE. 2008; 96(7): 1184–202.

    Article  Google Scholar 

  7. Jiang G, Zhou DD. Technology advances and challenges in hermetic packaging for implantable medical devices. In: Zhou DD, Greenbaum E, editors. Implantable neural prostheses 2. Biological and medical physics, biomedical engineering. London: Springer; 2010. pp. 27–61.

    Google Scholar 

  8. Zhou DD, Greenberg RJ. Microelectronic visual prostheses. In: Greenbaum E, Zhou DD, editors. Implantable neural prostheses 1: Devices and applications. New York: Springer; 2009. pp. 1–42.

    Google Scholar 

  9. Brown KD, Balkany TJ. Benefits of bilateral cochlear implantation: a review. Curr Opin Otolaryngol Head Neck Surg. 2007; 15(5): 315–8.

    Article  Google Scholar 

  10. Gantz BJ, Mccabe BF, Tyler RS. Use of multichannel cochlear implants in obstructed and obliterated cochleas. Otolaryngol Head Neck Surg. 1988; 98(1): 72–81.

    Article  Google Scholar 

  11. Wilson BS, Finley CC, Lawson DT, Wolford RD, Eddington DK, Rabinowitz WM. Better speech recognition with cochlear implants. Nature. 1991; 352(6332): 236–8.

    Article  Google Scholar 

  12. Zeng F-G, Rebscher SJ, Fu Q-J, Chen H, Sun X, Yin L, Ping L, Feng H, Yang S, Gong S, Yang B, Kang HY, Gao N, Chi F. Development and evaluation of the Nurotron 26-electrode cochlear implant system. Hear Res. 2015; 322: 188–99.

    Article  Google Scholar 

  13. Humayun MS, Dorn JD, da Cruz L, Dagnelie G, Sahel J-A, Stanga PE, Cideciyan AV, Duncan JL, Eliott D, Filley E, Ho AC, Santos A, Safran AB, Arditi A, Del Priore LV, Greenberg RJ. Interim results from the international trial of Second Sight’s visual prosthesis. Ophthalmology. 2012; 119(4): 779–88.

    Article  Google Scholar 

  14. Rizzo JF, Wyatt J. Review: prospects for a visual prosthesis. Neuroscientist. 1997; 3(4): 251–62.

    Article  Google Scholar 

  15. Schmidt E, Bak M, Hambrecht F, Kufta C, O’rourke D, Vallabhanath P. Feasibility of a visual prosthesis for the blind based on intracortical micro stimulation of the visual cortex. Brain. 1996; 119: 507–22.

    Article  Google Scholar 

  16. Shepherd RK, Shivdasani MN, Nayagam DAX, Williams CE, Blamey PJ. Visual prostheses for the blind. Trends Biotechnol. 2013; 31: 562–71.

    Article  Google Scholar 

  17. Veraart C, Wanet-Defalque M-C, Gérard B, Vanlierde A, Delbeke J. Pattern recognition with the optic nerve visual prosthesis. Artif Organs. 2003; 27(11): 996–1004.

    Article  Google Scholar 

  18. Kern DS, Kumar R. Deep brain stimulation. Neurologist. 2007; 13(5): 237–52.

    Article  Google Scholar 

  19. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH. Deep brain stimulation for treatment-resistant depression. Neuron. 2005; 45(5): 651–60.

    Article  Google Scholar 

  20. Perlmutter JS, Mink JW. Deep brain stimulation. Annu rev neurosci. 2006; 29: 229–57.

    Article  Google Scholar 

  21. Czeisler CA, Duffy JF, Shanahan TL, Brown EN, Mitchell JF, Rimmer DW, Ronda JM, Silva EJ, Allan JS, Emens JS, Dijk DJ, Kronauer RE. Stability, precision, and near-24-hour period of the human circadian pacemaker. Science. 1999; 284(5423): 2177–81.

    Article  Google Scholar 

  22. Di Francesco D, Tortora P. Direct activation of cardiac pacemaker channels by intracellular cyclic AMP. Nature. 1991; 351(6322): 145–7.

    Article  Google Scholar 

  23. An SK, Park S-I, Jun SB, Lee CJ, Byun KM, Sung JH, Wilson BS, Rebscher SJ, Oh SH, Kim SJ. Design for a simplified cochlear implant system. IEEE Trans Biomed Eng. 2007; 54: 973–82.

    Article  Google Scholar 

  24. Testerman RL, Rise MT, Stypulkowski PH. Electrical stimulation as therapy for neurological disorders. IEEE Eng Med Biol. 2006; 25(5): 74–8.

    Article  Google Scholar 

  25. Weiland JD, Liu W, Humayun MS. Retinal prosthesis. Annu Rev Biomed Eng. 2005; 7: 361–401.

    Article  Google Scholar 

  26. Castagnola V, Descamps E, Lecestre A, Dahan L, Remaud J, Nowak LG, Bergaud C. Parylene-based flexible neural probes with PEDOT coated surface for brain stimulation and recording. Biosens Bioelectron. 2015; 67: 450–7.

    Article  Google Scholar 

  27. Cho S-H, Lu HM, Cauller L, Romero-Ortega MI, Lee J-B, Hughes GA. Biocompatible SU-8-based microprobes for recording neural spike signals from regenerated peripheral nerve fibers. IEEE Sens J. 2008; 8(11): 1830–6.

    Article  Google Scholar 

  28. Hassler C, von Metzen RP, Ruther P, Stieglitz T. Characterization of parylene C as an encapsulation material for implanted neural prostheses. J Biomed Mater Res B. 2010; 93(1): 266–74.

    Google Scholar 

  29. Normann RA, Maynard EM, Rousche PJ, Warren DJ. A neural interface for a cortical vision prosthesis. Vision Res. 1999; 39(15): 2577–87.

    Article  Google Scholar 

  30. Rodger DC, Weiland JD, Humayun MS, Tai Y-C. Scalable high lead-count parylene package for retinal prostheses. Sensor Actuat B-Chem. 2006; 117: 107–14.

    Article  Google Scholar 

  31. Rodri FJ, Ceballos D, Schu M, Valero A, Valderrama E, Stieglitz T, Navarro X. Polyimide cuff electrodes for peripheral nerve stimulation. J Neurosci Methods. 2000; 98(2): 105–18.

    Article  Google Scholar 

  32. Rousche PJ, Pellinen DS, Pivin Jr DP, Williams JC, Vetter RJ, Kipke DR. Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Trans Biomed Eng. 2001; 48(3): 361–71.

    Article  Google Scholar 

  33. Weiland JD, Humayun MS, Eckhardt H, Ufer S, Laude L, Basinger B, Tai Y-C. A comparison of retinal prosthesis electrode array substrate materials. Conf Proc IEEE Eng Med Biol Soc. 2009; 4140–3.

    Google Scholar 

  34. Hassler C, Boretius T, Stieglitz T. Polymers for neural implants. J Polym Sci Pol Phys. 2011; 49(1): 18–33.

    Article  Google Scholar 

  35. Kim BJ, Meng E. Review of polymer MEMS micromachining. J Micromech Microeng. 2015; 26(1): 013001.

    Article  Google Scholar 

  36. Kim ET, Seo J-M, Woo S, Zhou J, Chung H, Kim S. Fabrication of pillar shaped electrode arrays for artificial retinal implants. Sensors. 2008; 8(9): 5845–56.

    Article  Google Scholar 

  37. Kim ET, Kim C, Lee SW, Seo J-M, Chung H, Kim SJ. Feasibility of microelectrode array (MEA) based on siliconepolyimide hybrid for retina prosthesis. Invest Ophthalmol Vis Sci. 2009; 50(9): 4337–41.

    Article  Google Scholar 

  38. Loeb GE, Peck RA. Cuff electrodes for chronic stimulation and recording of peripheral nerve activity. J Neurosci Methods. 1996; 64(1): 95–103.

    Article  Google Scholar 

  39. Jeong J, Lee SW, Min KS, Shin S, Jun SB, Kim SJ. Liquid crystal polymer (LCP), an attractive substrate for retinal implant. Sensor Mater. 2012; 24(4): 189–203.

    Google Scholar 

  40. Jeong J, Shin S, Lee GJ, Gwon TM, Park JH, Kim SJ. Advancements in fabrication process of microelectrode array for a retinal prosthesis using liquid crystal polymer (LCP). Conf Proc IEEE Eng Med Biol Soc. 2013; 5295–8.

    Google Scholar 

  41. Lee SW, Min KS, Jeong J, Kim J, Kim SJ. Monolithic encapsulation of implantable neuroprosthetic devices using liquid crystal polymers. IEEE T Biomed Eng. 2011; 58(8): 2255–63.

    Article  Google Scholar 

  42. Jeong J, Bae SH, Min KS, Seo JM, Chung H, Kim SJ. A miniaturized, eye-conformable, and long-term reliable retinal prosthesis using monolithic fabrication of liquid crystal polymer (LCP). IEEE T Biomed Eng. 2015; 62(3): 982–9.

    Article  Google Scholar 

  43. Gwon TM, Min KS, Kim JH, Oh SH, Lee HS, Park M-H, Oh SH, Kim SJ. Fabrication and evaluation of an improved polymer-based cochlear electrode array for atraumatic insertion. Biomed Microdevices. 2015; 17(2): 32.

    Article  Google Scholar 

  44. Lee SE, Jun SB, Lee HJ, Kim J, Lee SW, Im C, Shin H-C, Chang JW, Kim SJ. A flexible depth probe using liquid crystal polymer. IEEE T Biomed Eng. 2012; 59(7): 2085–94.

    Article  Google Scholar 

  45. Min KS, Oh SH, Park M-H, Jeong J, Kim SJ. A polymer-based multichannel cochlear electrode array. Otol Neurotol. 2014; 35(7): 1179–86.

    Google Scholar 

  46. Shin S, Kim J, Jeong Jeong J, Gwon TM, Choi GJ, Lee SE, Kim J, Jun SB, Chang JW, Kim SJ. High charge storage capacity electrodeposited iridium oxide film on liquid crystal polymer-based neural electrodes. Sensor Mater. 2016; 28(3): 243–60.

    Google Scholar 

  47. Wang K, ast, Liu CC, Durand DM. Flexible nerve stimulation electrode with iridium oxide sputtered on liquid crystal polymer. IEEE T Biomed Eng. 2009; 56(1): 6–14.

    Article  Google Scholar 

  48. Min KS, Lee CJ, Jun SB, Kim J, Lee SE, Shin J, Chang JW, Kim SJ. A liquid crystal polymer-based neuromodulation system: an application on animal model of neuropathic pain. Neuromodulation. 2014; 17(2): 160–9.

    Article  Google Scholar 

  49. Na SI, Kim S, Kim T, Lee H, Lee H, Kim S. A 32-channel neural recording system with a liquid-crystal polymer MEA. Conf Proc IEEE Biomed Circuits Syst Conf. 2013; 13–6.

    Google Scholar 

  50. Lee CJ, Oh SJ, Song JK, Kim SJ. Neural signal recording using microelectrode arrays fabricated on liquid crystal polymer material. Mater Sci Eng: C. 2004; 24(1-2): 265–8.

    Article  Google Scholar 

  51. Bae SH, Che J-H, Seo J-M, Jeong J, Kim ET, Lee SW, Koo K, Suaning GJ, Lovell NH, Cho DI, KimSJ, Chung H. In vitro biocompatibility of various polymer-based microelectrode arrays for retinal prosthesis. Investig Ophthalmol Vis Sci. 2012; 53(6): 2653–7.

    Article  Google Scholar 

  52. Gwon TM, Kim JH, Choi GJ, Kim SJ. Mechanical interlocking to improve metal–polymer adhesion in polymerbased neural electrodes and its impact on device reliability. J Mater Sci. 2016; 51(14): 6897–912.

    Article  Google Scholar 

  53. Jeong J, Bae SH, Seo J-M, Chung H, Kim SJ. Long-term evaluation of a liquid crystal polymer (LCP)-based retinal prosthesis. J Neural Eng. 2016; 13:025004.

    Article  Google Scholar 

  54. Hwang G-T, Im D, Lee SE, Lee J, Koo M, Park SY, Kim S, Yang K, Kim SJ, Lee K, Lee KJ. In vivo silicon-based flexible radio frequency integrated circuits monolithically encapsulated with biocompatible liquid crystal polymers. ACS Nano. 2013; 7(5): 4545–53.

    Article  Google Scholar 

  55. Inagaki N. Role of polymer chain end groups in plasma modification for surface metallization of polymeric materials. Polym Int. 2009; 58(6): 585–93.

    Article  Google Scholar 

  56. Qin Y, Howlader MMR, Deen MJ, Haddara YM, Selvaganapathy PR. Polymer integration for packaging of implantable sensors. Sensor Actuat B. 2014; 202: 758–78.

    Article  Google Scholar 

  57. Matweb. http://www.matweb.com/. Accessed 22 June 2016.

  58. Chlebowski AL. Advanced radio frequency materials for packaging of implantable biomedical devices. Master’s thesis; Purdue University; United States of America; 2009.

    Google Scholar 

  59. International Organization for Standardization. ISO 10993-5. In: Biological Evaluation of Medical Devices-Part 5: Tests for In Vitro Cytotoxicity. Geneve: ISO; 2009.

  60. Lee SW, Seo J-M, Ha S, Kim ET, Chung H, Kim SJ. Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers. Invest Ophthalmol Vis Sci. 2009; 50(12): 5859–66.

    Article  Google Scholar 

  61. Chen L, Crnic M, Zonghe L, Johan L. Process development and adhesion behavior of electroless copper on liquid crystal polymer (LCP) for electronic packaging application. IEEE T Electron Pack M. 2002; 25(4): 273–8.

    Article  Google Scholar 

  62. Dean JRN, Weller J, Bozack MJ, Rodekohr CL, Farrell B, Jauniskis L, Ting J, Edell D, Hetke J. Realization of ultra fine pitch traces on LCP substrates. IEEE T Compon Pack T. 2008; 31(2): 315–21.

    Article  Google Scholar 

  63. Howlader MMR, Doyle TE. Low temperature nanointegration for emerging biomedical applications. Microelectron Reliab. 2012; 52: 361–74.

    Article  Google Scholar 

  64. Kim W-S, Yun I-H, Lee J-J, Jung H-T. Evaluation of mechanical interlock effect on adhesion strength of polymer–metal interfaces using micro-patterned surface topography. Int J Adhes Adhes. 2010; 30(6): 408–17.

    Article  Google Scholar 

  65. Min KS. A study on the liquid crystal polymer-based intracochlear electrode array. Doctoral thesis; Seoul National University. 2014.

    Google Scholar 

  66. Jeong J, Lee SW, Min K, Eom K, Bae SH, Kim SJ. Eyesurface conformable telemetric structure for polymer-based retinal prosthesis. Conf Proc IEEE Eng Med Biol Soc. 2011; 1097–100.

    Google Scholar 

  67. Jeong J, Lee SW, Min KS, Kim SJ. A novel multilayered planar coil based on biocompatible liquid crystal polymer for chronic implantation. Sensor Actuat A-Phys. 2013; 197: 38–46.

    Article  Google Scholar 

  68. Cheung K, Gun L, Djupsund K, Yang D, Lee LP. A new neural probe using SOI wafers with topological interlocking mechanisms. Conf Proc Microtechnol Med Biol. 2000; 507–11.

    Google Scholar 

  69. Oh SJ, Song JK, Kim SJ. Neural interface with a silicon neural probe in the advancement of microtechnology. Biotechnol Bioproc E. 2003; 8(4): 252–6.

    Article  Google Scholar 

  70. Peter N, Maria K, Aliette M, Ken Y, Ulrich GH. A 32-site neural recording probe fabricated by DRIE of SOI substrates. J Micromech Microeng. 2002; 12(4): 414–9.

    Article  Google Scholar 

  71. Qing B, Wise KD. Single-unit neural recording with active microelectrode arrays. IEEE T Biomed Eng. 2001; 48(8): 911–20.

    Article  Google Scholar 

  72. Shoji T, Takafumi S, Kunihiko M, Hiroyuki F. 3D flexible multichannel neural probe array. J Micromech Microeng. 2004; 14: 104–7.

    Article  Google Scholar 

  73. Takeuchi S, Yoshida Y, Ziegler D, Mabuchi K, Suzuki T. Parylene flexible neural probe with micro fluidic channel. Conf Proc IEEE Int Conf MEMS. 2004; 208–11.

    Google Scholar 

  74. Farrell B, Jauniskis L, Phely-Bobin T, Streeter R, Edell D, Dean R. A polymer-based chronic nerve interface microelectrode array. Conf Proc Mater Res Soc. 2006; 0926-CC06-03.

    Google Scholar 

  75. Kang K, Choi IS, Nam Y. A biofunctionalization scheme for neural interfaces using polydopamine polymer. Biomaterials. 2011; 32(27): 6374–80.

    Article  Google Scholar 

  76. Ajayi F, Garnham C, O’Donoghue GM. Pediatric experience of the reliability of the nucleus mini 22-channel cochlear implant. Am J Otol. 1997; 18(6):S44–5.

    Google Scholar 

  77. Rebscher SJ, Hetherington A, Bonham B, Wardrop P, Whinney D, Leake PA. Considerations for design of future cochlear implant electrode arrays: electrode array stiffness, size, and depth of insertion. J Rehabil Res Dev. 2008; 45(5): 731–47.

    Article  Google Scholar 

  78. Spelman FA. Cochlear electrode arrays: past, present and future. Audiol Neuro-Otol. 2006; 11(2): 77–85.

    Article  Google Scholar 

  79. Wang J, Wise KD. A hybrid electrode array with built-in position sensors for an implantable MEMS-based cochlear prosthesis. J Microelectromech S. 2008; 17(5): 1187–94.

    Article  Google Scholar 

  80. Wang J, Wise KD. A thin-tilm cochlear electrode array with integrated position sensing. J Microelectromech S. 2009; 18(2): 385–95.

    Article  Google Scholar 

  81. Wise KD, Bhatti PT, Wang JB, Friedrich CR. High-density cochlear implants with position sensing and control. Hearing Res. 2008; 242(1-2): 22–30.

    Article  Google Scholar 

  82. Corbett S, Ketterl J, Johnson T. Polymer-based microelectrode arrays. Conf Proc Mater Res Soc. 2006; 0926-CC06-02.

    Google Scholar 

  83. Kim JH, Min KS, An SK, Jeong JS, Jun SB, Cho MH, Son YD, Cho ZH, Kim SJ. Magnetic resonance imaging compatibility of the polymer-based cochlear implant. Clin Exp Otorhinolaryngol. 2012; 5:S19–S23.

    Article  Google Scholar 

  84. Fujikado T, Kamei M, Sakaguchi H, Kanda H, Morimoto T, Ikuno Y, Nishida K, Kishima H, Maruo T, Konoma K, Ozawa M, Nishida K. Testing of semichronically implanted retinal prosthesis by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2011; 52(7): 4726–33.

    Article  Google Scholar 

  85. Klauke S, Goertz M, Rein S, Hoehl D, Thomas U, Eckhorn R, Bremmer F, Wachtler T. Stimulation with a wireless intraocular epiretinal implant elicits visual percepts in blind humans. Invest Ophthalmol Vis Sci. 2011; 52(1): 449–55.

    Article  Google Scholar 

  86. Stingl K, Bartz-Schmidt KU, Besch D, Braun A, Bruckmann A, Gekeler F, Greppmaier U, Hipp S, Hörtdörfer G, Kernstock C, Koitschev A, Kusnyerik A, Sachs H, Schatz A, Stingl KT, Peters T, Wilhelm B, Zrenner E. Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Conf Proc Roy Soc B-Biol Sci. 2013; 280.

    Google Scholar 

  87. Park JH, Jeong J, Moon H, Kim C, Kim SJ. Feasibility of LCP as an encapsulating material for photodiode-based retinal implants. IEEE Photonics Tech L. 2016; 28(9): 1018–21.

    Google Scholar 

  88. Sundaram V, Sukumaran V, Cato ME, Liu F, Tummala R, Weiland JD, Nasiatka PJ, Tanguay AR. High density electrical interconnections in liquid crystal polymer (LCP) substrates for retinal and neural prosthesis applications. Conf Proc IEEE Electron Compon Tech. 2011; 1308–13.

    Google Scholar 

  89. Calhoun A, Peacock AJ. Polymer chemistry: properties and applications. Munich: Carl Hanser Verlag; 2006.

    Google Scholar 

  90. Greenhouse H, Lowry RK, Romenesko B. Hermeticity of electronic packages. Oxford: Elsevier; 2011.

    Google Scholar 

  91. Pham A-V. Packaging with liquid crystal polymer. IEEE Microw Mag. 2011; 12(5): 83–91.

    Article  Google Scholar 

  92. Costello S, Desmulliez MPY, McCracken S. Review of test methods used for the measurement of hermeticity in packages containing small cavities. IEEE T Compon Pack Tech. 2012; 2: 430–8.

    Google Scholar 

  93. Aihara K, Chen MJ, Chen C, Pham A-VH. Reliability of liquid crystal polymer air cavity packaging. IEEE T Compon Pack Tech. 2012; 2(2): 224–30.

    Google Scholar 

  94. Ordonez JS, Boehler C, Schuettler M, Stieglitz T. Silicone rubber and thin-film polyimide for hybrid neural interfaces—a MEMS-based adhesion promotion technique. Conf Proc IEEE Eng Med Biol Soc Neural Eng. 2013; 872–5.

    Google Scholar 

  95. Ordonez JS, Boehler C, Schuettler M, Stieglitz T. Improved polyimide thin-film electrodes for neural implants. Conf Proc IEEE Eng Med Biol Soc. 2012; 5134–7.

    Google Scholar 

  96. Chang JHC, Yang L, Dongyang K, Yu-Chong T. Reliable packaging for parylene-based flexible retinal implant. Conf Proc Solid-State Sensor Actuat Microsyst. 2013; 2612–5.

    Google Scholar 

  97. von Metzen R, Stieglitz T. The effects of annealing on mechanical, chemical, and physical properties and structural stability of parylene C. Biomed Microdevices. 2013; 15(5): 727–35.

    Article  Google Scholar 

  98. Leng A, Streckel H, Hofmann K, Stratmann M. The delamination of polymeric coatings from steel Part 3: effect of the oxygen partial pressure on the delamination reaction and current distribution at the metal/polymer interface. Corrosion Sci. 1998; 41(3): 599–620.

    Article  Google Scholar 

  99. Leng A, Streckel H, Stratmann M. The delamination of polymeric coatings from steel. Part 2: first stage of delamination, effect of type and concentration of cations on delamination, chemical analysis of the interface. Corrosion Sci. 1998; 41(3): 579–97.

    Google Scholar 

  100. Aihara K, Chen MJ, Pham AV. Development of thin-film liquid-crystal-polymer surface-mount packages for band applications. IEEE T Microw Theory. 2008; 56(9): 2111–7.

    Article  Google Scholar 

  101. Huang W, Wang X, Sheng M, Xu L, Stubhan F, Luo L, Feng T, Wang X, Zhang F, Zou S. Low temperature PECVD SiNx films applied in OLED packaging. Mater Sci Eng-B. 2003; 98(3): 248–54.

    Article  Google Scholar 

  102. Reinke M, Kuzminykh Y, Hoffmann P. Low temperature chemical vapor deposition using atomic layer deposition chemistry. Chem Mater. 2015; 27(5): 1604–11.

    Article  Google Scholar 

  103. Blahak C, Capelle HH, Baezner H, Kinfe TM, Hennerici MG, Krauss JK. Battery lifetime in pallidal deep brain stimulation for dystonia. Eur J Neurol. 2011; 18(6): 872–5.

    Article  Google Scholar 

  104. Rubehn B, Stieglitz T. In vitro evaluation of the long-term stability of polyimide as a material for neural implants. Biomaterials. 2010; 31(13): 3449–58.

    Article  Google Scholar 

  105. Spieth S, Brett O, Seidl K, Aarts AAA, Erismis MA, Herwik S, Trenkle F, Tätzner S, Auber J, Daub M, Neves HP, Puers R, Paul O, Ruther P, Zengerle R. A floating 3D silicon microprobe array for neural drug delivery compatible with electrical recording. J Micromech Microeng. 2011; 21(12): 125001.

    Article  Google Scholar 

  106. Abidian MR, Martin DC. Multifunctional nanobiomaterials for neural interfaces. Adv Funct Mater. 2009; 19(4): 573–85.

    Article  Google Scholar 

  107. Heo DN, Song S-J, Kim H-J, Lee YJ, Ko W-K, Lee SJ, Lee D, Park SJ, Zhang LG, Kang JY, Do SH, Lee SH, Kwon IK. Multifunctional hydrogel coatings on the surface of neural cuff electrode for improving electrode-nerve tissue interfaces. Acta Biomater. 2016; 39: 25–33.

    Article  Google Scholar 

  108. Pellinen DS, Moon T, Vetter RJ, Miriani R, Kipke DR. Multifunctional flexible parylene-based intracortical microelectrodes. Conf Proc IEEE Eng Med Biol Soc. 2005; 5: 5272–5.

    Google Scholar 

  109. Canales A, Jia X, Froriep UP, Koppes RA, Tringides CM, Selvidge J, Lu C, Hou C, Wei L, Fink Y, Anikeeva P. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat Biotechnol. 2015; 33(3): 277–84.

    Article  Google Scholar 

  110. Huang W-C, Lai H-Y, Kuo L-W, Liao C-H, Chang P-H, Liu TC, Chen S-Y, Chen Y-Y. Multifunctional 3D patternable drug-embedded nanocarrier-based interfaces to enhance signal recording and reduce neuron degeneration in neural implantation. Adv Mater. 2015; 27(28): 4186–93.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung June Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gwon, T.M., Kim, C., Shin, S. et al. Liquid crystal polymer (LCP)-based neural prosthetic devices. Biomed. Eng. Lett. 6, 148–163 (2016). https://doi.org/10.1007/s13534-016-0229-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-016-0229-z

Keywords

Navigation