Skip to main content

CORTIVIS Approach for an Intracortical Visual Prostheses

  • Chapter
  • First Online:
Artificial Vision

Abstract

Cortical prostheses are a subgroup of visual neuroprostheses capable of evoking visual percepts in profoundly blind people through direct electrical stimulation of the occipital cortex. This approach may be the only treatment available for blindness caused by glaucoma, end-stage retinitis pigmentosa, optic atrophy, trauma to the retinas and/or optic nerves or by diseases of the central visual pathways such as brain injuries or stroke. However the selection of a specific person for a cortical implant is not straightforward and currently there are not strict standardized criteria for accepting or rejecting a candidate. We are now facing the challenge of creating such an intracortical visual neuroprosthesis designed to interface with the occipital visual cortex as a means through which a limited but useful visual sense could be restored to these blind patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Normann RA, et al. Cortical implants for the blind. IEEE Spectrum. 1996;1996:54–9.

    Article  Google Scholar 

  2. Marc RE, et al. Extreme retinal remodeling triggered by light damage: implications for age related macular degeneration. Mol Vis. 2008;14:782–806.

    PubMed  PubMed Central  Google Scholar 

  3. Troyk P, et al. A model for intracortical visual prosthesis research. Artif Organs. 2003;27(11):1005–15.

    Article  PubMed  Google Scholar 

  4. Fernandez E, et al. Development of a cortical visual neuroprosthesis for the blind: the relevance of neuroplasticity. J Neural Eng. 2005;2(4):R1–12.

    Article  CAS  PubMed  Google Scholar 

  5. Normann RA, et al. Toward the development of a cortically based visual neuroprosthesis. J Neural Eng. 2009;6(3):035001.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tehovnik EJ, Slocum WM. Electrical induction of vision. Neurosci Biobehav Rev. 2013;37(5):803–18.

    Article  PubMed  Google Scholar 

  7. Fernandez E, et al. Acute human brain responses to intracortical microelectrode arrays: challenges and future prospects. Front Neuroeng. 2014;7:24.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Foerster O. Beitrage zur pathophysiologie der sehbahn und der spehsphare. J Psychol Neurol. 1929;39:435–63.

    Google Scholar 

  9. Penfield W, Rasmussen T. The cerebral cortex of man. New York: Macmillan; 1950.

    Google Scholar 

  10. Brindley GS, Lewin WS. The sensations produced by electrical stimulation of the visual cortex. J Physiol (Lond). 1968;196:479–93.

    Article  CAS  Google Scholar 

  11. Dobelle WH, et al. 'Braille' reading by a blind volunteer by visual cortex stimulation. Nature. 1976;259:111–2.

    Article  CAS  PubMed  Google Scholar 

  12. Dobelle WH. Artificial vision for the blind by connecting a television camera to the visual cortex. Asaio J. 2000;46(1):3–9.

    Article  CAS  PubMed  Google Scholar 

  13. Schmidt EM, et al. Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain. 1996;119(Pt 2):507–22.

    Article  PubMed  Google Scholar 

  14. Perge JA, et al. Intra-day signal instabilities affect decoding performance in an intracortical neural interface system. J Neural Eng. 2013;10(3):036004.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Homer ML, et al. Sensors and decoding for intracortical brain computer interfaces. Annu Rev Biomed Eng. 2013;15:383–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hochberg LR, et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature. 2006;442(7099):164–71.

    Article  CAS  PubMed  Google Scholar 

  17. Truccolo W, et al. Single-neuron dynamics in human focal epilepsy. Nat Neurosci. 2011;14(5):635–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Morillas CA, et al. A design framework to model retinas. Biosystems. 2007;87(2–3):156–63.

    Article  PubMed  Google Scholar 

  19. Romero S, et al. Reconfigurable retina like preprocessing platform for cortical visual neuroprosthesis. In: Akay M, editor. Handbook of neural engineering. Hoboken: Wiley-IEEE Press; 2007. p. 267–79.

    Google Scholar 

  20. Rush AD, Troyk PR. A power and data link for a wireless-implanted neural recording system. IEEE Trans Biomed Eng. 2012;59(11):3255–62.

    Article  PubMed  Google Scholar 

  21. Bradley DC, et al. Visuotopic mapping through a multichannel stimulating implant in primate V1. J Neurophysiol. 2005;93(3):1659–70.

    Article  CAS  PubMed  Google Scholar 

  22. Kane S, et al. Electrical performance of penetrating microelectrodes chronically implanted in cat cortex. IEEE Trans Biomed Eng. 2013;60:2153–60. doi:10.1109/TBME.2013.2248152.

    Article  PubMed  Google Scholar 

  23. Lewis PM, et al. Restoration of vision in blind individuals using bionic devices: a review with a focus on cortical visual prostheses. Brain Res. 2015;1595:51–73.

    Article  CAS  PubMed  Google Scholar 

  24. Merabet LB, et al. 'Who is the ideal candidate?': decisions and issues relating to visual neuroprosthesis development, patient testing and neuroplasticity. J Neural Eng. 2007;4(1):S130–5.

    Article  PubMed  Google Scholar 

  25. Rousche PJ, Normann RA. A method for pneumatically inserting an array of penetrating electrodes into cortical tissue. Ann Biomed Eng. 1992;20:413–22.

    Article  CAS  PubMed  Google Scholar 

  26. House PA, et al. Acute microelectrode array implantation into human neocortex: preliminary technique and histological considerations. Neurosurg Focus. 2006;20(5):E4.

    Article  PubMed  Google Scholar 

  27. Maynard EM, Fernandez E, Normann RA. A technique to prevent dural adhesions to chronically implanted microelectrode arrays. J Neurosci Methods. 2000;97(2):93–101.

    Article  CAS  PubMed  Google Scholar 

  28. Davis TS, et al. Spatial and temporal characteristics of V1 microstimulation during chronic implantation of a microelectrode array in a behaving macaque. J Neural Eng. 2012;9(6):065003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stacey WC, et al. Potential for unreliable interpretation of EEG recorded with microelectrodes. Epilepsia. 2013;54(8):1391–401.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fernandez E, et al. Perceptions elicited by electrical stimulation of human visual cortex. Invest Opthalmol Vis Sci. 2015;56: ARVO E-Abstract 777.

    Google Scholar 

  31. Dagnelie G, et al. Paragraph text reading using a pixelized prosthetic vision simulator: parameter dependence and task learning in free-viewing conditions. Invest Ophthalmol Vis Sci. 2006;47(3):1241–50.

    Article  PubMed  Google Scholar 

  32. Thompson Jr RW, et al. Facial recognition using simulated prosthetic pixelized vision. Invest Ophthalmol Vis Sci. 2003;44(11):5035–42.

    Article  PubMed  Google Scholar 

  33. Veraart C, et al. Pattern recognition with the optic nerve visual prosthesis. Artif Organs. 2003;27(11):996–1004.

    Article  PubMed  Google Scholar 

  34. Sinha P. Recognizing complex patterns. Nat Neurosci. 2002;5(Suppl):1093–7.

    Article  CAS  PubMed  Google Scholar 

  35. Pascual-Leone A, et al. The plastic human brain cortex. Annu Rev Neurosci. 2005;28:377–401.

    Article  CAS  PubMed  Google Scholar 

  36. Merabet LB, Pascual-Leone A. Neural reorganization following sensory loss: the opportunity of change. Nat Rev Neurosci. 2010;11(1):44–52.

    Article  CAS  PubMed  Google Scholar 

  37. Fernandez E, Merabet LB. Cortical plasticity and reorganization in severe vision loss. In: Dagnelie G, editor. Visual prosthetics, New York. Springer; 2011.

    Google Scholar 

  38. Merabet LB. Building the bionic eye: an emerging reality and opportunity. Prog Brain Res. 2011;192:3–15.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Fernández MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fernández, E., Normann, R.A. (2017). CORTIVIS Approach for an Intracortical Visual Prostheses. In: Gabel, V. (eds) Artificial Vision. Springer, Cham. https://doi.org/10.1007/978-3-319-41876-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41876-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41874-2

  • Online ISBN: 978-3-319-41876-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics