Skip to main content

Metabolomics of Lactic Acid Bacteria

  • Chapter
  • First Online:
Lactic Acid Bacteria

Abstract

Metabonomics/metabolomics, developed in the late 1990s, is a science that deals with the types, quantities, and changes of metabolites (molecular weight <1000) of living organisms after different interferences (such as genetic engineering and changes in growth environment), and it is an important part of systems biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alves LL, Richards NSPS, Mattanna P et al (2013) Cream cheese as a symbiotic food carrier using bifidobacterium animalis Bb-12 and Lactobacillus acidophilus La-5 and inulin. Int J Dairy Technol 66(66):63–69

    Article  CAS  Google Scholar 

  • Antoniewicz MR (2015) Methods and advances in metabolic flux analysis: a mini-review. J Ind Microbiol Biotechnol 42(3):317–325

    Article  CAS  Google Scholar 

  • Blandino A, Al-Aseeri ME, Pandiella SS et al (2003) Cereal-based fermented foods and beverages. Food Res Int 36(6):527–543

    Article  CAS  Google Scholar 

  • Coakley M, Ross RP, Nordgren M et al (2003) Conjugated linoleic acid biosynthesis by human-derived bifidobacterium, species. J Appl Microbiol 94(1):138–145

    Article  CAS  Google Scholar 

  • Del BM, Lattanzi M, Rellini P et al (2009) Comparison of molecular and metabolomic methods as characterization tools of Debaryomyces hansenii cheese isolates. Food Microbiol 26(5):453–459

    Article  Google Scholar 

  • Fenselau C, Demirev PA (2001) Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom Rev 20(4):157–171

    Article  CAS  Google Scholar 

  • Florence ACR, Béal C, Silva RC et al (2012) Fatty acid profile, trans-octadecenoic, α-linolenic and conjugated linoleic acid contents differing in certified organic and conventional probiotic fermented milks. Food Chem 135(4):2207–2214

    Article  CAS  Google Scholar 

  • Hong YS, Ahn YT, Park JC et al (2010) 1H NMR-based metabonomic assessment of probiotic effects in a colitis mouse model. Arch Pharm Res 33(7):1091–1101

    Article  CAS  Google Scholar 

  • Hugenholtz J, Looijesteijn E, Starrenburg M et al (2000) Analysis of sugar metabolism in an EPS producing Lactococcus lactis, by 31P NMR. J Biotechnol 77(1):17–23

    Article  CAS  Google Scholar 

  • Jeong SH, Lee HJ, Jung JY et al (2013) Effects of red pepper powder on microbial communities and metabolites during kimchi fermentation. Int J Food Microbiol 160(3):252–259

    Article  CAS  Google Scholar 

  • Jung JY, Lee SH, Lee HJ et al (2012) Effects of Leuconostoc mesenteroides starter cultures on microbial communities and metabolites during kimchi fermentation. Int J Food Microbiol 153(3):378–387

    Article  CAS  Google Scholar 

  • Kang HJ, Yang HJ, Kim MJ et al (2011) Metabolomic analysis of meju during fermentation by ultra performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF MS). Food Chem 127(3):1056–1064

    Article  CAS  Google Scholar 

  • Kim J, Choi JN, John KMM et al (2012) GC-TOF-MS-and CE–TOF-MS-based metabolic profiling of cheonggukjang (fast-fermented bean paste) during fermentation and its correlation with metabolic pathways. J Agric Food Chem 60(38):9746–9753

    Article  CAS  Google Scholar 

  • Kishino S, Ogawa J, Yokozeki K et al (2009) Metabolic diversity in biohydrogenation of polyunsaturated fatty acids by lactic acid bacteria involving conjugated fatty acid production. Appl Microbiol Biotechnol 84(1):87–97

    Article  CAS  Google Scholar 

  • Lee JE, Hong YS, Lee CH (2009) Characterization of fermentative behaviors of lactic acid bacteria in grape wines through 1H NMR-and GC-based metabolic profiling. J Agric Food Chem 57(11):4810–4817

    Article  CAS  Google Scholar 

  • Lee SY, Lee S, Lee S et al (2014) Primary and secondary metabolite profiling of doenjang, a fermented soybean paste during industrial processing. Food Chem 165(3):157–166

    Article  CAS  Google Scholar 

  • Link H, Buescher JM, Sauer U (2012) Targeted and quantitative metabolomics in bacteria. Sys Biol Bact 39:127–150

    Article  CAS  Google Scholar 

  • Lippert K, Galinski EA (1992) Enzyme stabilization be ectoine-type compatible solutes: protection against heating, freezing and drying. Appl Microbiol Biotechnol 37(1):61–65

    Article  CAS  Google Scholar 

  • Lópezrituerto E, Savorani F, Avenoza A et al (2012) Investigations of La Rioja terroir for wine production using 1H NMR metabolomics. J Agric Food Chem 60(13):3452–3461

    Article  Google Scholar 

  • Martin FPJ, Wang Y, Sprenger N et al (2008) Probiotic modulation of symbiotic gut microbial–host metabolic interactions in a humanized microbiome mouse mode. Mol Syst Biol 4(1):157–157

    Article  Google Scholar 

  • Mashego M, Rumbold K, De Mey M et al (2007) Microbial metabolomics: past, present and future methodologies. Biotechnol Lett 29(1):1–16

    Article  CAS  Google Scholar 

  • Mazzei P, Piccolo A (2012) 1H HRMAS-NMR metabolomic to assess quality and traceability of mozzarella cheese from Campania buffalo milk. Food Chem 132(3):1620–1627

    Article  CAS  Google Scholar 

  • Namgung HJ, Park HJ, Cho IH et al (2010) Metabolite profiling of doenjang, fermented soybean paste, during fermentation. J Sci Food Agric 90(11):1926–1935

    CAS  PubMed  Google Scholar 

  • Nguyen DT, Van HK, Cnockaert M et al (2013) A description of the lactic acid bacteria microbiota associated with the production of traditional fermented vegetables in Vietnam. Int J Food Microbiol 163(1):19–27

    Article  CAS  Google Scholar 

  • Nicholson JK, Holmes E, Wilson ID (2005) Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol 3(5):431–438

    Article  CAS  Google Scholar 

  • Ochi A, Nguyen AH, Bedrosian AS et al (2012) MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells. J Exp Med 209(9):1671–1687

    Article  CAS  Google Scholar 

  • Palomo M, Gutiérrez AM, Pérezconde MC et al (2014) Se metallomics during lactic fermentation of se-enriched yogurt. Food Chem 164(20):371–379

    Article  CAS  Google Scholar 

  • Piras C, Cesare MF, Savorani F et al (2013) A NMR metabolomics study of the ripening process of the Fiore Sardo cheese produced with autochthonous adjunct cultures. Food Chem 141(3):2137–2147

    Article  CAS  Google Scholar 

  • Putri SP, Yamamoto S, Tsugawa H et al (2013) Current metabolomics: technological advances. J Biosci Bioeng 116(1):9–16

    Article  CAS  Google Scholar 

  • Ramos A, Neves AR, Santos H (2002) Metabolism of lactic acid bacteria studied by nuclear magnetic resonance. Anton Leeuw Int J Gen Mol Microbiol 82(1–4):249–261

    Article  CAS  Google Scholar 

  • Rodrigues JCV, Antony LMK (2011) First report of Raoiella indica (Acari: Tenuipalpidae) in Amazonas state, Brazil. Fla Entomol 94(4):1073–1074

    Article  Google Scholar 

  • Settachaimongkon S, Nout MJ, Antunes Fernandes EC et al (2014) Influence of different proteolytic strains of Streptococcus thermophilus in co-culture with Lactobacillus delbrueckii subsp. bulgaricus on the metabolite profile of set-yoghurt. Int J Food Microbiol 177(5):29–36.

    Google Scholar 

  • Settachaimongkon S, van Valenberg HJF, Winata V et al (2015) Effect of sublethal preculturing on the survival of probiotics and metabolite formation in set-yoghurt. Food Microbiol 49:104–115

    Article  CAS  Google Scholar 

  • Settachaimongkon S, van Valenberg HJF, Gazi I et al (2016) Influence of lactobacillus plantarum WCFS1 on post-acidification, metabolite formation and survival of starter bacteria in set-yoghurt. Food Microbiol 59:14–22

    Article  CAS  Google Scholar 

  • Son HS, Hwang GS, Park WM et al (2009) Metabolomic characterization of malolactic fermentation and fermentative behaviors of wine yeasts in grape wine. J Agric Food Chem 57(11):4801–4809

    Article  CAS  Google Scholar 

  • Soro-Yao AA, Schumann P, Thonart P et al (2014) The use of MALDI-TOF mass spectrometry, ribotyping and phenotypic tests to identify lactic acid bacteria from fermented cereal foods in Abidjan (Côte d’Ivoire). Open Microbiol J 8:78–86

    Article  Google Scholar 

  • Weiss RH, Kim KM (2012) Metabolomics in the study of kidney diseases. Nat Rev Nephrol 8(1):22–33

    Article  CAS  Google Scholar 

  • Ye S, Yu T, Yang H et al (2013) Optimal culture conditions for producing conjugated linoleic acid in skim-milk by co-culture of different lactobacillus strains. Ann Microbiol 63(2):707–717

    Article  CAS  Google Scholar 

  • Zhao N, Zhang C, Yang Q et al (2016) Selection of taste markers related to lactic acid bacteria microflora metabolism for Chinese traditional Paocai: a gas chromatography–mass spectrometry-based metabolomics approach. J Agric Food Chem 64(11):2415–2422

    Article  CAS  Google Scholar 

  • Zheng H, Yde CC, Clausen MR et al (2015) Metabolomics investigation to shed light on cheese as a possible piece in the French paradox puzzle. J Agric Food Chem 63(10):2830–2839

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanqiang Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd. and Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, W., Zhao, N. (2019). Metabolomics of Lactic Acid Bacteria. In: Chen, W. (eds) Lactic Acid Bacteria. Springer, Singapore. https://doi.org/10.1007/978-981-13-7832-4_6

Download citation

Publish with us

Policies and ethics