Skip to main content

The complete mitochondrial genome of the verongid sponge Aplysina cauliformis: implications for DNA barcoding in demosponges

  • SPONGE RESEARCH DEVELOPMENTS
  • Chapter
  • First Online:
Ancient Animals, New Challenges

Part of the book series: Developments in Hydrobiology ((DIHY,volume 219))

Abstract

DNA “barcoding,” the determination of taxon-specific genetic variation typically within a fragment of the mitochondrial cytochrome oxidase 1 (cox1) gene, has emerged as a useful complement to morphological studies, and is routinely used by expert taxonomists to identify cryptic species and by non-experts to better identify samples collected during field surveys. The rate of molecular evolution in the mitochondrial genomes (mtDNA) of nonbilaterian animals (sponges, cnidarians, and placozoans) is much slower than in bilaterian animals for which DNA barcoding strategies were developed. If sequence divergence among nonbilaterian mtDNA and specifically cox1 is too slow to generate diagnostic variation, alternative genes for DNA barcoding and species-level phylogenies should be considered. Previous study across the Aplysinidae (Demospongiae, Verongida) family of sponges demonstrated no nucleotide substitutions in the traditional cox1 barcoding fragment among the Caribbean species of Aplysina. As the mitochondrial genome of Aplysina fulva has previously been sequenced, we are now able to make the first comparisons between complete mtDNA of congeneric demosponges to assess whether potentially informative variation exists in genes other than cox1. In this article, we present the complete mitochondrial genome of Aplysina cauliformis, a circular molecule 19620 bp in size. The mitochondrial genome of A. cauliformis is the same length as is A. fulva and shows six confirmed nucleotide differences and an additional 11 potential SNPs. Of the six confirmed SNPs, NADH dehydrogenase subunit 5 (nad5) and nad2 each contain two, and in nad2 both yield amino acid substitutions, suggesting balancing selection may act on this gene. Thus, while the low nucleotide diversity in Caribbean aplysinid cox1 extends to the entire mitochondrial genome, some genes do display variation. If these represent interspecific differences, then they may be useful alternative markers for studies in recently diverged sponge clades.

Guest editors: M. Maldonado, X. Turon, M. A. Becerro & M. J. Uriz / Ancient animals, new challenges: developments in sponge research

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

mtDNA:

Mitochondrial genome

atp6, 8, 9 :

ATP synthase F0 subunit #

cob :

Apocytochrome b

cox1-3 :

Cytochrome c oxidase #

nad1-6, 4L :

NADH dehydrogenase subunit #

rnS :

Small ribosomal RNA

rnL :

Large ribosomal RNA

References

  • Bell, J. J., 2008. The functional roles of marine sponges. Estuarine, Coastal and Shelf Sciences 79: 341–353.

    Article  Google Scholar 

  • Blanquer, A. & M.-J. Uriz, 2007. Cryptic speciation in marine sponges evidenced by mitochondrial and nuclear genes: a phylogenetic approach. Molecular Phylogenetics and Evolution 45: 392–397.

    Article  CAS  Google Scholar 

  • Boore, J. L. & W. M. Brown, 1998. Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. Current Opinions in Genetics and Development 8: 668–674.

    Article  CAS  Google Scholar 

  • Borchiellini, C., C. Chombard, M. Manuel, E. Alivon, J. Vacelet & N. Boury-Esnault, 2004. Molecular phylogeny of Demospongiae: implications for classifications and scenarios of character evolution. Molecular Phylogenetics and Evolution 32: 823–837.

    Article  CAS  Google Scholar 

  • Chen, J. & S. L. Dellaporta, 1994. Urea-based plant DNA miniprep. In Freeling, M. & V. Walbot (eds), The maize handbook. Springer, New York: 526–527.

    Google Scholar 

  • Drabkin, H. J., M. Estrella & U. L. Rajbhandary, 1998. Initiator-elongator discrimination in vertebrate tRNAs for protein synthesis. Molecular and Cellular Biology 18: 1459–1466.

    CAS  Google Scholar 

  • Duran, S., M. Pascual & X. Turon, 2004. Low levels of genetic variation in mtDNA sequences over the western Mediterranean and Atlantic range of the sponge Crambe crambe (Poecilosclerida). Marine Biology 144: 31–35.

    Article  CAS  Google Scholar 

  • Erpenbeck, D., J. N. A. Hooper & G. Wörheide, 2005. CO1 phylogenies in diploblasts and the ‘Barcoding of Life’—are we sequencing a suboptimal partition? Molecular Ecology Notes 6: 550–553.

    Article  Google Scholar 

  • Erwin, P. M. & R. W. Thacker, 2007. Phylogenetic analysis of marine sponges within the order Verongida: a comparison of morphological and molecular data. Invertebrate Biology 126: 220–234.

    Article  Google Scholar 

  • Ewing, B. & P. Green, 1998. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Research 8: 186–194.

    CAS  Google Scholar 

  • Folmer, O., M. Black, W. Hoen, R. Lutz & R. Vrijenhoek, 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299.

    CAS  Google Scholar 

  • Galtier, N., B. Nabholz, S. Glemin & G. D. D. Hurst, 2009. Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Molecular Ecology 18: 4541–4550.

    Article  CAS  Google Scholar 

  • Gordon, D., C. Abajian & P. Green, 1998. Consed: a graphical tool for sequence finishing. Genome Research 8: 195–202.

    CAS  Google Scholar 

  • Haag-Liautard, C., N. Coffey, D. Houle, M. Lynch, B. Charlesworth & P. D. Keightley, 2008. Direct estimation of the mitochondrial DNA mutation rate in Drosophila melanogaster. PLoS Biology 6(8): e204.

    Article  Google Scholar 

  • Hebert, P. D. N., A. Cywinska, S. L. Ball & J. R. Dewaard, 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society London B 270: 313–321.

    Article  CAS  Google Scholar 

  • Heim, I., M. Nickel & F. Brummer, 2007a. Phylogeny of the genus Tethya (Tethyidae: Hadromerida: Porifera): molecular and morphological aspects. Journal of the Marine Biological Association of the United Kingdom 87: 1615–1627.

    Article  CAS  Google Scholar 

  • Heim, I., N. Nickel & F. Brummer, 2007b. Molecular markers for species discrimination in poriferans: a case study on species of the genus Aplysina. Porifera Research 1: 361–371.

    Google Scholar 

  • Huang, D., R. Meier, P. A. Todd & L. M. Chou, 2008. Slow mitochondrial COI sequence evolution at the base of the metazoan tree and its implications for DNA barcoding. Journal of Molecular Evolution 66: 167–174.

    Article  CAS  Google Scholar 

  • Klautau, M., C. A. M. Russo, C. Lazoski, N. Boury-Esnault, J. P. Thorpe & A. M. Sole-Cava, 1999. Does cosmopolitanism result from overconservative systematics? A case study using the marine sponge Chondrilla nucula. Evolution 53:1414–1422.

    Google Scholar 

  • Kloppell, A., A. Putz, M. Pfannkuchen, G. Fritz, A. Jaklin, P. Proksch & F. Brummer, 2009. Depth profile of Aplysina ssp.: morphological, histological and biochemical aspects and their role in species distinction. Marine Biodiversity 39: 121–129.

    Article  Google Scholar 

  • Krzywinski, M., J. Schein, I. Birol, J. Connors, R. Gascoyne, D. Horsman, S. J. Jones & M. A. Marra, 2009. Circos: an information aesthetic for comparative genomics. Genome Research 19: 1639–1645.

    Article  CAS  Google Scholar 

  • Lamarao, F. R. M., E. C. Reis, T. A. Simao, R. M. Albano & G. Lobo-Hadju, 2010. Aplysina (Porifera: Demospongiae) species identification through SSCP-ITS patterns. Journal of the Marine Biological Association of the United Kingdom 90: 845–850.

    Article  CAS  Google Scholar 

  • Lavrov, D. V., 2007. Key transitions in animal evolution: a mitochondrial DNA perspective. Integrative and Comparative Biology 47: 734–743.

    Article  CAS  Google Scholar 

  • Lavrov, D. V., W. M. Brown & J. L. Boore, 2000. A novel type of RNA editing occurs in the mitochondrial tRNAs of the centipede Lithobius forficatus. Proceedings of the National Academy of Sciences of the USA 97: 13738–13742.

    Article  CAS  Google Scholar 

  • Lavrov, D. V., L. Forget, M. Kelly & B. F. Lang, 2005. Mitochondrial genomes of two demosponges provide insights into an early stage of animal evolution. Molecular Biology and Evolution 22: 1231–1239.

    Article  CAS  Google Scholar 

  • Lavrov, D. V., X. Wang & M. Kelly, 2008. Reconstructing ordinal relationships in the Demospongiae using mitochondrial genomic data. Molecular Phylogenetics and Evolution 49: 111–124.

    Article  CAS  Google Scholar 

  • Lis, J. T. & R. Schleif, 1975. Size fractionation of double-stranded DNA by precipitation with polyethylene glycol. Nucleic Acids Research 2: 383–389.

    Article  CAS  Google Scholar 

  • Lowe, T. M. & S. R. Eddy, 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research 25: 955–964.

    CAS  Google Scholar 

  • Maldonado, M., M. C. Carmona, M. J. Uriz & A. Cruzado, 1999. Decline in Mesozoic reef-building sponges explained by silicon limitation. Nature 401: 785–788.

    Article  CAS  Google Scholar 

  • Miller, S. E., 2007. DNA barcoding and the renaissance of taxonomy. Proceedings of the National Academy of Sciences of the USA 12: 4775–4776.

    Article  Google Scholar 

  • Muramatsu, T., K. Nishikawa, F. Nemoto, Y. Kuchino, S. Nishimura, T. Miyazawa & S. Yokoyama, 1998. Codon and amino-acid specificities of a transfer RNA are both converted by a single post-transcriptional modification. Nature 336: 179–181.

    Article  Google Scholar 

  • Nichols, S. A., 2005. An evaluation of support for order-level monophyly and interrelationships within the class Demospongiae using partial data from the large subunit rDNA and cytochrome oxidase subunit I. Molecular Phylogenetics and Evolution 34: 81–96.

    Article  CAS  Google Scholar 

  • Pöppe, J., P. Sutcliffe, J. N. A. Hooper, G. Wörheide & D. Erpenbeck, 2010. COI barcoding reveals new clades and radiation patterns of Indo-Pacific sponges of the family Irciniidae (Demospongiae: Dictyoceratida). PloS One 5: e9950.

    Article  Google Scholar 

  • Rosengarten, R. D., E. A. Sperling, M. A. Moreno, S. P. Leys & S. L. Dellaporta, 2008. The mitochondrial genome of the hexactinellid sponge Aphrocallistes vastus: evidence for programmed translational frameshifting. BMC Genomics 9: 33.

    Article  Google Scholar 

  • Schander, C. & E. Willassen, 2005. What can biological barcoding do for marine biology? Marine Biology Research 1: 79–83.

    Article  Google Scholar 

  • Schmitt, S., U. Hentschel, S. Zea, T. Dandekar & M. Wolf, 2005. ITS-2 and 18S rRNA gene phylogeny of Aplysinidae (Verongida, Demospongiae). Journal of Molecular Evolution 60: 327–336.

    Article  CAS  Google Scholar 

  • Schroder, H. C., S. M. Efremova, V. B. Itskovich, S. Belikov, Y. Masuda, A. Krasko, I. M. Muller & W. E. G. Muller, 2003. Molecular phylogeny of the freshwater sponges in Lake Baikal. Journal of Zoological Systematics and Evolutionary Research 41: 80–86.

    Article  Google Scholar 

  • Shearer, T. L., M. J. H. Van Oppen, S. L. Romano & G. Wörheide, 2002. Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Molecular Ecology 11: 2475–2487.

    Article  CAS  Google Scholar 

  • Sipkema, D., M. C. R. Franssen, R. Osinga, J. Tramper & R. H. Wijffels, 2005. Marine sponges as pharmacy. Marine Biotechnology 7: 142–162.

    Article  CAS  Google Scholar 

  • Sperling, E. A., K. J. Peterson & D. Pisani, 2007. Poriferan paraphyly and its implications for Precambrian palaeobiology. Geological Society, London, Special Publications 286: 355–368.

    Article  Google Scholar 

  • Sperling, E. A., K. J. Peterson & D. Pisani, 2009. Phylogenetic-signal dissection of nuclear housekeeping genes supports the paraphyly of sponges and the monophyly of Eumetazoa. Molecular Biology and Evolution 26: 2261–2274.

    Article  CAS  Google Scholar 

  • Stortchevoi, A., U. Varshney & U. L. Rajbhandary, 2003. Common location of determinants in initiator transfer RNAs for initiator-elongator discrimination in bacteria and in eukaryotes. Journal of Biological Chemistry 278: 17672–17679.

    Article  CAS  Google Scholar 

  • Tatusova, T. A. & T. L. Madden, 1999. BLAST 2 sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiology Letters 174: 247–250.

    Article  CAS  Google Scholar 

  • Thompson, J. D., D. G. Higgins & T. J. Gibson, 1994. Clustal-W—improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680.

    Article  CAS  Google Scholar 

  • Wang, X. & D. V. Lavrov, 2008. Seventeen new complete mtDNA sequences reveal extensive mitochondrial genome evolution within the Demospongiae. PloS One 3: e2723.

    Article  Google Scholar 

  • Weber, F., A. Dietrich, J. H. Weil & L. Marechal-Drouard, 1990. A potato mitochondrial isoleucine tRNA is coded for by a mitochondrial gene possessing a methionine anticodon. Nucleic Acids Research 18: 5027–5030.

    Article  CAS  Google Scholar 

  • Wörheide, G., 2006. Low variation in partial cytochrome oxidase subunit I (COI) mitochondrial sequences in the coralline demosponge Astrosclera willeyana across the Indo-Pacific. Marine Biology 148: 907–912.

    Article  Google Scholar 

  • Wörheide, G. & D. Erpenbeck, 2007. DNA taxonomy of sponges—progress and perspectives. Journal of the Marine Biological Association of the United Kingdom 87: 1629–1633.

    Article  Google Scholar 

  • Wyman, S. K., R. K. Jansen & J. L. Boore, 2004. Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20: 3252–3255.

    Article  CAS  Google Scholar 

  • Xavier, J. R., P. G. Rachello-Dolmen, F. Parra-VElandia, C. H. L. Schonberg, J. A. J. Breeuwer & R. W. M. van Soest, 2010. Molecular evidence of cryptic speciation in the “cosmopolitan” excavating sponge Cliona celata (Porifera, Clionaidae). Molecular Phylogenetics and Evolution 56: 13–20.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen L. Dellaporta .

Editor information

Editors and Affiliations

Electronic supplementary material

Below are the link to the electronic supplementary material.

Supplementary material 1 (PDF 2,992 kb)

Supplementary material 2 (DOC 27 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sperling, E.A., Rosengarten, R.D., Moreno, M.A., Dellaporta, S.L. (2011). The complete mitochondrial genome of the verongid sponge Aplysina cauliformis: implications for DNA barcoding in demosponges. In: Maldonado, M., Turon, X., Becerro, M., Jesús Uriz, M. (eds) Ancient Animals, New Challenges. Developments in Hydrobiology, vol 219. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4688-6_7

Download citation

Publish with us

Policies and ethics