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Preface

Adaptive optics (AO) systems are used in various application areas to enhance the
performance of optical systems, such as imaging systems, laser systems, and free
space optical communication systems. Recent developments in optomechatronic
systems targeted at AO applications cover two main areas, namely, the devel-
opment of novel wavefront correctors and the development of advanced control
algorithms. Adaptive optics (AO) systems make use of active optical elements,
namely, wavefront correctors, to improve the resolution of imaging systems by
compensating for complex optical aberrations. Recently, magnetic fluid deformable
mirrors (MFDM) were proposed as a novel type of wavefront correctors that
offer cost and performance advantages over existing wavefront correctors. These
mirrors are developed by coating the free surface of a magnetic fluid with a thin
reflective film of nanoparticles. The reflective surface of the mirrors can be deformed
using a locally applied magnetic field and thus serves as a wavefront corrector.
MFDMs have been found particularly suitable for ophthalmic imaging systems,
where they can be used to compensate for the complex aberrations in the eye that
blur the images of the internal parts of the eye, or astronomical imaging systems
where an MFDM can be easily deployed and maintained. However, the practical
implementation of MFDMs in real applications is hampered by the lack of effective
methods to control the shape of their deformable surface.

The recent developments reported in this book present solutions to the surface
shape control problem in an MFDM that will make it possible for such devices to
become integral components of adaptive optics (AO) systems. The contents of this
book address the following main objectives:

• Model development. This first objective involves the development of a com-
prehensive model of the MFDM surface shape response to the applied control
magnetic field. The model should accurately capture the dynamics of the surface
shape and should be simple enough to allow for the design of effective surface
shape control algorithms.

• Design and development of an MFDM and AO system. This objective concerns
the design and development of a prototype MFDM to be used in the validation of
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the mirror model and in the evaluation of the designed controllers. It also includes
the design and assembly of an experimental AO setup to test the performance of
the MFDM. The AO setup could be further extended to an ophthalmic imaging
system to compensate for the aberrations in the human eye.

• Controller design. The third objective involves the design of effective MFDM
surface shape controllers such that the mirror could be used in a closed-loop AO
system to cancel the optical aberrations of interest. The design of the proposed
controllers is based on considering various closed-loop AO system performance
specifications. As the aberrations in the human eye and in other applications are
dynamic in nature and are not known a priori, the control problem is cast as a
regulation problem where it is desired for the mirror surface shape to track a
time-varying unknown reference shape.

• Experimental validation and evaluation. The final objective is to experimentally
evaluate the effectiveness of the closed-loop AO system involving the prototype
MFDM and the developed control algorithms. The closed-loop AO system
performance evaluation is based on analyzing the mirror surface shape, tracking
accuracy for given desired mirror surface shapes that are needed to cancel the
optical aberrations.

Based on the aforementioned objectives, several research developments have
been made with respect to the design, modeling, and control of magnetic fluid
deformable mirrors. The first major contribution of this research is the development
of an accurate analytical model of the dynamics of the mirror surface shape.
The model is developed by analytically solving the coupled system of fluid-
electromagnetic equations that govern the dynamics of the surface shape. The model
is presented in state-space form and can be readily used in the development of
surface shape control algorithms. The second major contribution of the research
work is a novel and innovative design of the MFDM. The design change was
prompted by the findings of the analytical work undertaken to develop the model
mentioned above and is aimed at linearizing the response of the mirror surface.
The proposed design also allows for mirror surface deflections that are much larger
than those provided by the conventional MFDM designs. A third contribution of
this book involves the development of control algorithms that allowed the first-
ever use of an MFDM in a closed-loop adaptive optics system. A decentralized
proportional-plus-integral (PI) control algorithm developed based on the DC model
of the wavefront corrector is presented to deal mostly with static or slowly time-
varying aberrations. To improve the stability robustness of the closed-loop AO
system, a decoupled uncertain model of the plant is considered and a decentralized
robust proportional-integral-derivative (PID) controller is developed. To improve
the performance of the closed-loop AO system in dealing with complex dynamic
aberrations, centralized control methods are developed and include a multivariable
PID control approach where a fixed structure controller is designed based on solving
linear matrix inequalities (LMIs) and an optimal control approach based on the
mixed-sensitivity H1 design method. The proposed model prototype MFDM and
control algorithms are experimentally tested and evaluated. The aforementioned
developments are organized into nine chapters as summarized in the following.
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Chapter 1 presents an introduction to the topics discussed in this book. The
advantages of magnetic fluid deformable mirrors over the conventional solid mirrors
are presented, and the major contributions of this book are summarized. Some
preliminaries that help the readers better understand the contents in this book are
also briefly introduced.

In Chap. 2, a brief review of the history on adaptive optics systems and their
applications is presented. The basic concept of a wavefront and the wavefront-
related optical aberrations is introduced. The basic setup of a typical adaptive
optics system is illustrated, and a brief exposition of the ophthalmic technologies
which have benefited from adaptive optics systems is introduced. The motivation for
considering AO systems based on magnetic fluid deformable mirrors is discussed.

In Chap. 3, the brief history of the development of MFDMs is introduced. The
working principle of MFDMs including the description of their main structure and
composition is presented. The advantages of the MFDMs and significant challenges
are discussed. An analysis of the problems impeding the potential utilization of these
mirrors in practical applications is presented.

Chapter 4 introduces an analytical model of the MFDM surface shape dynamics.
The model describes the dynamics of the mirror surface shape in terms of deflections
of the mirror surface driven by an array of electromagnetic coils and is developed in
both the Cartesian and the cylindrical coordinate systems. An innovative method of
linearizing the equations governing the dynamics of the mirror surface is introduced.
The linearization method is also utilized to propose an important modification in the
MFDM design.

The design of the prototype MFDM and of an experimental AO setup is presented
in Chap. 5. The novel conceptual design is prompted by the findings of the analytical
work presented in Chap. 4. The details of the layout of the AO setup for experimental
validation and the corresponding components used in the setup are described. The
prototype mirror and the experimental setup are used to validate the developed
analytical model of the mirror, including the static and dynamic response of the
prototype MFDM, as well as validate the obtained new features of the MFDM
compared with the conventional MFDMs, such as the linearization of the response,
the bidirectional displacements of the mirror surface, and the amplified magnitude
of the surface deflections.

In Chap. 6, a concise review of the different control algorithms that have been
used for the shape control of deformable mirrors in AO systems is presented. The
control problem for magnetic fluid deformable mirrors is then discussed, and the
appropriate configuration of the proposed MFDM control system is presented.

In Chap. 7, two decentralized PID control algorithms are proposed to control
the surface shape of an MFDM in the closed-loop adaptive optics system. First, a
classical decentralized proportional-plus-integral (PI) controller is designed based
on statically decoupling the plant model using the plant DC gain. To overcome
stability robustness issues and minimize the effect of the model uncertainties,
especially in the high frequency range, a decentralized robust proportional-integral-
derivative (PID) controller is then proposed and verified experimentally.
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To improve the control performance with respect to dynamic aberration signals,
two centralized optimal control algorithms are proposed in Chap. 8 to address the
MFDM surface shape control problem. The first control algorithm is associated
with a multivariable PID controller designed based on properly formulated linear
matrix inequalities. Controller designs that yield closed-loop systems with H1
and H2 performance specifications are investigated. A robust mixed-sensitivity
H1 controller design approach is also developed to provide the desired tracking
performance, limit the input currents, and enhance the robustness of the closed-
loop system. The performances of both control algorithms are experimentally
evaluated using the closed-loop adaptive optics system, showing successful tracking
of dynamic wavefront shapes that have a frequency content consistent with that of
the human eye aberrations.

In Chap. 9, the concluding remarks and recommendations for future work are
given. Important aspects of MFDMs that have to be addressed before the latter can
be finally used practically in clinical or astronomical applications are discussed.

This book is primarily intended for researchers and engineers in the adap-
tive optics systems community. The contents of this book are presented in a
self-contained manner. The nine chapters contained in this book exploit several
independent yet related topics in detail. Instead of only giving the controller design
procedure, some concepts behind the control approaches and corresponding details
of the derivations are also presented selectively in this book to outline the design
insights for the reader.

We are very fortunate to have had many helpful suggestions from our colleagues,
friends, and coworkers through many stimulating discussions in relation to the
developments presented in this book. First of all, we would like to express our
sincere gratitude to numerous valuable suggestions and comments from Professor
Ermanno Borra at Laval University. We would also like to express our sincere appre-
ciation to a number of graduate and undergraduate students who have contributed
to the collaborative studies of adaptive optics systems. They are Maurizio Ficocelli,
Jason Li, Devina Dukhu, Geoff Fung, Steve Bristo, and Ryan Li. Special thanks
go to Becky Zhao and Li Shen, Associate Editors of Springer-Verlag, for their
consistent and reliable support and comments in the process of publishing this book.
The research work presented in this book has been supported in part by the Natural
Sciences and Engineering Research Council of Canada, the Canada Foundation for
Innovation, the Provincial Government of Ontario, the National Natural Science
Foundation of China, and Shanghai Pujiang Program.

We are greatly indebted to our families for their encouragement and sacrifices
over the years it took to complete the research work presented in this book. It is our
pleasure to dedicate this book to them for their invaluable support.

Zhizheng Wu
Azhar Iqbal

Foued Ben Amara
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1.1 Introduction

AO systems were initially developed for applications in astronomical imaging
systems using ground-based telescopes for taking images of distant astral bodies
(Babcock 1953). In these applications, AO systems are used to compensate for the
aberrations caused by the atmospheric turbulence, which severely limits the reso-
lution of the images provided by the telescopes. Today’s astronomical AO systems
typically work by deforming solid mirrors with hundreds of actuators to compensate
for the turbulence in the atmosphere (Hart 2010). Adaptive optics systems work
by sensing the wavefront incident on an imaging system and then correcting
the aberrations using a deformable mirror to dynamically cancel the unknown
aberrations, thus appreciably enhancing the image quality, sometimes approaching
diffraction-limited performance. Adaptive optics has been synonymous with the
correction of atmospheric aberrations, but many more applications have emerged in
recent years and could benefit from the aberration corrections provided by adaptive
optics systems. Examples of fairly novel applications include imaging of the
retina, free-space optical communication, confocal microscopy, laser beam delivery,
dispersion compensation in ultrafast lasers, and optical data storage. However, in
order to fully commercialize these new applications, significant progress is needed
especially in reducing the cost of adaptive optics components, such as deformable
mirrors, driver electronics, or wavefront sensors, and in developing more accurate

Z. Wu et al., Modeling and Control of Magnetic Fluid Deformable Mirrors
for Adaptive Optics Systems, DOI 10.1007/978-3-642-32229-7 1,
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and effective control algorithms for these complex systems. Addressing these and
other issues is expected to lead to much more widespread applications of adaptive
optics in the near future. One of the most interesting applications of adaptive optics
systems involves ophthalmic retinal imaging systems.

Ophthalmic imaging has evolved as one of the most effective tools available
for the early detection and diagnosis of physiological disorders in the eye and is
also playing a critical role in the treatment modalities such as retina surgery and
drug delivery. The retina is a light-sensitive tissue lining the inner surface of the
eye. It converts light into neural signals sent to the brain. Ophthalmologists utilize
images of the retina in the human eye for the early detection of ocular diseases
such as macular degeneration and retinopathy. The ability to visually observe the
retina provides the opportunity to noninvasively monitor normal retinal function, the
progression of retinal diseases, and the effectiveness of therapies for these diseases.
Therefore, ophthalmology is one of the fields that will benefit from the opportunities
provided by advanced adaptive optics imaging technologies (Godara et al. 2010;
Bennett and Barry 2009).

The full potential of ophthalmic imaging has not yet been realized due to
performance limitations of the conventional imaging systems, which result from
the presence of aberrations in the eye. These aberrations are caused by naturally
occurring defects in the eye. They affect the optical path length of the light waves
that form the images of the retina, causing blurring or distortion of the resulting
images. The aberrations that limit the resolution of retinal images are actually
the same as those causing the usual loss of visual acuity of the eye. The simpler
ones of these aberrations—commonly categorized as low-order aberrations—can be
routinely compensated for using conventional optical components such as lenses and
mirrors. Regular spectacles are an example of this remedy. However, conventional
optical systems cannot rectify the more complex aberrations known as high-order
aberrations. The high-order aberrations play a less significant role in the visual
acuity of the eye. But they pose a formidable challenge in high-resolution retinal
imaging where they limit the resolution of the images because of the inability of the
conventional optics to compensate for these aberrations. Moreover, the aberrations
in the human eye are dynamic in nature and cannot be corrected using conventional
imaging systems, which provide static correction only.

Adaptive optics systems represent the technological remedy to the problem
of canceling out the effects of high-order time-varying aberrations. Originally
developed to enhance the quality of astronomical observations, adaptive optics
systems make use of adaptive optical elements—wavefront correctors (WFC)—to
compensate for these complex high-order aberrations (Tyson 2011; Hardy 1998).
The wavefront correctors act on the wavefront of the light waves affected by the
aberrations and cancel out the optical path difference caused by these aberrations.
By far, the solid deformable mirrors are the most widely used type of wavefront
correctors. These mirrors are characterized by a deformable reflective thin plate
or membrane surface whose shape can be dynamically controlled by electrostatic
or magnetic actuators underneath. The light waves affected by aberrations are
directed to and then reflected back from this deformable surface. By precisely
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controlling the shape of the surface, the optical path difference caused by the
high-order time-varying aberrations is dynamically compensated. However, the
common drawbacks of these solid thin plate or membrane-based mirrors are the
high cost of per actuator channel and the relatively low stroke deflection, which
may consequently prohibit the widespread AO applications. Notwithstanding the
demonstrated potential of AO in ophthalmic imaging systems, the technology has
been facing significant challenges in making its way to the clinical imaging systems.
The high cost of wavefront correctors has until recently kept AO systems beyond
the reach of clinical applications. The other major requirement of the wavefront
corrector to be used in ophthalmic AO systems is the unusually large stroke
(stroke of a deformable mirror is the magnitude of the maximum deflection of its
deformable surface), as high as ˙12�m or more (Doble and Miller 2006; Doble and
Williams 2004), needed to compensate for the aberrations in the eye, which present
a large peak-to-valley optical path difference and are beyond the stroke ability of
many of the commercially available wavefront correctors.

A few years ago, magnetic fluid deformable mirrors (MFDMs) were proposed
as a promising new type of wavefront correctors by Borra et al. (2009, 2008, 2006)
and Iqbal et al. (2009, 2008, 2007). These mirrors are developed by coating the
free surface of magnetic fluids with a thin film of the reflective materials called
metal liquid-like fluids (MELLFs). Magnetic fluids are suspensions of small (about
10 nm in diameter) ferromagnetic nanoparticles dispersed in a liquid carrier. In the
presence of an external magnetic field, the ferromagnetic particles align with the
field, and the liquid becomes magnetized. The reflective surface can be deformed
with the magnetic fluid using a locally applied magnetic field and thus serves as
a deformable mirror. Magnetic fluid deformable mirrors have the major advantage
over solid ones. These liquids have extremely smooth surfaces that naturally follow
the equipotential surfaces created by magnetic fields. MFDMs can have smooth
deviations from flatness that can be as small as a few nanometers to as large as
several millimeters. The other advantage that MFDMs have with respect to solid
deformable mirrors is their low cost per actuator. They are expected to cost orders
of magnitude less than any of the known types of wavefront correctors (Borra et al.
2009; Laird et al. 2006). Moreover, the deflections of the reflective surface provided
by these mirrors are far larger than those possible with any other known deformable
mirrors (Brousseau et al. 2011, 2010; Laird et al. 2006). MFDMs have been found
potentially suitable for the ophthalmic applications of AO systems, where they
present a solution to the problem of high cost of the existing wavefront correctors
as well to the major challenge requiring large stroke of the wavefront correctors.

The MFDM technology is still in the initial stages of its development. Besides the
promising capabilities offered by these mirrors, initial studies have also identified
some critical difficulties that need to be overcome before the technology is made
available for practical applications in imaging systems (Borra et al. 2008; Brousseau
et al. 2006, 2007; Laird et al. 2003, 2006; Thibault et al. 2006). Firstly, the amplitude
of the deformations produced at the surface of the ferrofluid shows a nonlinear
dependence on the applied magnetic field (or current) produced by the actuators.
Secondly, vectorial behavior of the magnetic field prohibits the use of standard
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control algorithms to predict the surfaces produced by the MFDM. Finally, since
deformations are proportional to the square of the applied magnetic field, only
positive deformations can be produced on the MFDM surface. These difficulties
prohibit the usage of the appropriate standard control methods in the MFDM-based
adaptive optics systems to control the shape of the deformable surface of these
mirrors. Conventionally, the design of a controller for the wavefront corrector is
performed using a DC model (i.e., static gain) of the WFC, which is referred to as
the influence-function matrix. Influence-function-based controllers depend on the
assumption that the wavefront corrector is a linear system. Since the response of
the conventional MFDMs has been found to be nonlinear, the influence-function-
based controllers become ineffective in controlling these mirrors (Seaman et al.
2007; Laird et al. 2006). Due to these difficulties, any future application of these
mirrors is contingent upon the development of effective methods to control their
surface shape in a closed-loop AO system.

The research work presented in this book aims at bridging this critical gap
between the concept of a MFDM and its application in adaptive optics systems
(Iqbal et al. 2010a, b, 2009; Iqbal and Ben Amara 2008, 2007; Wu et al. 2011,
2010a, b), for example, ophthalmic AO imaging, astronomical AO imaging, and
laser beam shaping. The primary goal of the undertaken research work is to provide
the necessary means to control the surface shape of the mirror such that the effects
of the complex high-order aberrations can be canceled out. An accurate model
of the mirror surface shape, which can be used in the development of effective
controllers for the mirror surface shape, is sought. Secondly, to resolve the problem
of nonlinearity in the response of the mirror surface, a novel change in the design
of an MFDM is proposed by superposing a strong and uniform magnetic field to
the magnetic field of the actuators, thereby linearizing the response of the MFDM.
The major advantage of this linearization is that one can use the same proven
control algorithms that are used with solid deformable mirrors. Third, novel control
algorithms designed by explicitly accounting for the dynamics of the MFDM are
used to optimally control the surface shape of the MFDM. The major contributions
presented in this book are summarized as follows:

• Analytical Model of an MFDM. A comprehensive model of the dynamics
of the surface shape of an MFDM is developed. The analytically developed
model describes the dynamics of the surface shape in terms of time-varying
displacements of the surface. The displacements are derived as a function of the
magnetic field applied to control the mirror surface shape. The model is obtained
by solving fundamental equations governing the coupled fluid-electromagnetic
system representing the MFDM, is developed in both Cartesian and cylindrical
coordinate systems, and is presented in its final form as a state-space model.

• Modification of the Conceptual Design of an MFDM. A novel modification in the
conceptual design of an MFDM is presented. The design change was prompted
by the findings of the analytical work undertaken to develop the model of the
mirror. The proposed design involves placing the MFDM inside a Helmholtz
coil where a uniform magnetic field is generated. As opposed to the nonlinear
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character of the response of the existing mirror designs, the proposed design
provides a linear change in the surface shape as a function of the magnetic field
applied to control the surface shape. The proposed design accompanies other
significant benefits such as bidirectional control and manyfold amplification of
the maximum achievable displacements of the mirror surface.

• Control Algorithms. Control algorithms aimed at controlling the surface shape of
the MFDM are developed and implemented. The above-mentioned model is uti-
lized in the development of these control algorithms. The first control algorithm
is a decentralized proportional-plus-integral (PI) controller developed based on
the assumption that the plant can be approximated by its DC model. This type of
control algorithms is commonly used in AO systems and can effectively handle
static aberrations. To improve the stability robustness properties of the closed-
loop AO system, a decentralized robust proportional–integral–derivative (PID)
controller is then proposed. The resulting closed-loop system can effectively
deal with static aberrations and has better stability guarantees than the closed-
loop system based on the PI controller. The above-mentioned algorithms perform
well in canceling static aberrations, but not as well when dynamic aberrations are
present. To handle complex dynamic aberrations, centralized control algorithms
are developed based on the analytic mathematical system model. The multivari-
able controllers consist mainly of a multivariable fixed structure (PID in this case)
controller designed based on different desired optimal performance constraints
and a dynamic output feedback controller structure designed using the mixed
sensitivity H1 design approach. The resulting closed-loop system is capable of
minimizing the effects of both static and dynamic aberrations while keeping the
magnitude of the control signal relatively small.

• Closed-Loop Operation of an MFDM. The performance of MFDM is experi-
mentally tested and evaluated in a closed-loop AO system for the first ever time
using a designed prototype MFDM. It is practically demonstrated that wavefront
aberrations can be corrected with a high level of spatial resolution. Moreover,
the ability of the MFDM to compensate for the high-order dynamic aberrations
is also demonstrated. The experimental results show the high potential offered
by MFDM for applications in ophthalmic adaptive optics imaging systems and
others.

The main advantages of MFDM with respect to solid mirrors are large stroke,
low cost, and scalability. This technology could lead to extreme deformable optics
capable of strokes of hundreds of micrometers and more (Borra et al. 2008, 2006).
Early experiments indicated that MFDMs would be limited to dynamic uses at
frequencies lower than 20 Hz. However, in recent experiments (Parent et al. 2009), it
shows the problematic phase lag at high frequencies can be countered by increasing
the viscosity of the liquid, and the bandwidth of MFDMs can be increased to 900 Hz
by the approach of overdriving the actuators. Therefore, though the initial design of
the prototype MFDM proposed in this book is relatively crude, it still shows the
great advantages over solid optics. The developments described in this book pave
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the way for further enhancements and improvements in the design and development
of AO systems based on MFDMs and their applications in areas such as vision
science, astronomical imaging, optical testing, and laser beam shaping.

1.2 Mathematical Preliminaries

This section introduces the reader to general mathematical tools used in the
following chapters. These tools are essential in the construction of the analytical
model and in the development of the mirror surface shape control algorithms. The
first part of this section is related to the mathematical modeling of the MFDMs
and includes the multiphysics laws governing the dynamics of the mirror and the
corresponding analytic solutions. The underlying physical laws considered here
are the basic conservation laws including conservation of fluid mass and magnetic
field. Equations are generally limited to algebraic equations, ordinary differential
equations, and partial differential equations, where time and distance usually enter
as independent variables, and geometry as either a differential element or an entity
of finite size. The sets of physical laws and expressions provide us with the tools for
establishing a mathematical model.

The second part of this section contains the preliminaries of the system control
theory. These preliminaries form the basic building blocks for the analysis and
design techniques used to control the MFDMs. The treatment is limited to linear
systems mainly because the model obtained for the MFDM has been effectively
linearized and the theory for linear systems is relatively well developed and
easier to implement. Experimental results presented in subsequent chapters will
show that the linear controllers designed using the linear MFDM model provide
satisfactory performance when applied to the MFDM-based adaptive optics system.
The preliminaries also introduce some advanced modern multivariable control
techniques including state-space realization, optimal control, and robust control.
The powerful tool of linear matrix inequalities used in approaching optimal control
problems is also covered briefly.

1.2.1 Basics of Fluid Mechanics and Electromagnetics
Modeling

As mentioned above, an MFDM is based on the deformation of the free surface
of a magnetic fluid under the influence of an externally applied magnetic field.
The deformation of the fluid surface is governed by fundamental laws of fluid
dynamics as well as magnetism. This section presents the basic properties of the
fluid and magnetic fields as well as the laws governing the fields. The readers may
refer to Rosensweig (1997) and Basmadjian and Farnood (2007) for more details in
this area.
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1.2.1.1 Magnetic Field Properties

Pole

When a magnet is dipped into a magnetic fluid, the fluid clings to the ends of
the magnet. These ends are called poles. Like poles repel and unlike poles attract
with a force that is proportional to the product of the pole strengths and inversely
proportional to the square of the distance between them.

Magnetic Field (H)

The magnetic force acting on a unit pole is defined as magnetic field. If there is a
unit north-seeking pole placed in the vicinity of a point pole p, the magnetic field H
of the point pole p acting at the unit pole is

H D pOr
4��0r2

D pr
4��0r3

(1.1)

where r is the position vector directed from p to the location of the unit pole, Or �
r =r is a unit vector having the orientation of r, and �0 is called the permeability of
free space.

Induction Field (B)

An induction field B is defined such that in vacuum, B D �0H. The B field may be
pictured as lines of induction and is also called magnetic flux density. In a uniform
induction field B of unit intensity, one line (or Weber, denoted Wb) is said to cross
each square meter of perpendicular surface. Thus, B has units of Weber per square
meter, also known as Tesla (T). An electric current will be induced in any closed
circuit when the magnetic flux through a surface bounded by the conductor changes.
This applies whether the field itself changes in strength or the conductor is moved
through it.

Intensity of Magnetization (M)

The intensity of magnetization M denotes the state of polarization of magnetized
matter. For nonisothermal but sensibly constant-density materials, the magnetization
thus depends only on the field H and the temperature T, so that M D M(H,T). The
induction field B is related to the intensity of magnetization M and the magnetic
field H by the following constitutive relationship:

B D �H D �o .H C M/ (1.2)
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A linear relation between M and H exists in many materials, that is, diamagnets and
paramagnets, and the relation is usually written as

M D 	H (1.3)

where 	 is called the magnetic susceptibility.

1.2.1.2 Fluid Field Properties

Velocity

Consider the position coordinates x, y, z to locate a fixed point in the fluid volume
comprising the magnetic fluid. The motion of a fluid particle located at this point
is described by its velocity vector. The velocity components vx , vy , vz measured in
the x, y, and z directions, respectively, are functions of the coordinates x, y, z and, in
general, the time t:

vx D vx .x; y; z; t /

vy D vy .x; y; z; t /

vz D vz .x; y; z; t / (1.4)

If V is the velocity vector having components vx , vy , and vz and if r is the position
vector having components x, y, and z, then

V D f .r; t / (1.5)

Because the velocity V is continuously distributed over space, V, like the
magnetic vectors B, H, and M, is a field variable.

Description of Surface Curvature � and Normal Vector On

The geometry of a surface can be conveniently described using Monge represen-
tation, which specifies the value of one of the coordinates in terms of the others.
In the Cartesian coordinate system, for example, the surface can be represented
using z D .x; y/. Accordingly, the expression z�.x; y/ D C represents contours
having the same shape as the surface but displaced by magnitude C, and the gradient
r Œz �  .x; y/� yields a vector normal to the surface. Therefore, the unit normal
vector can be obtained as follows:

On D r Œz �  .x; y/�

jr Œz �  .x; y/�j

D � .@=@x/ Oi � .@=@y/ Oj Cbk
h
.@=@x/2 C .@=@y/2 C 1

i 1
2

(1.6)
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Ignoring the higher-order terms, (1.6) yields

bn D �
�
@

@x

�
bi �

�
@

@y

�
bj Cbk (1.7)

The mean curvature � of a surface can be found using

� D 1
2
r � On (1.8)

Employing the linearized form (1.7) of the unit normal vector, (1.8) simplifies to

� D �1
2

�
@2

@x2
C @2

@y2

�
(1.9)

1.2.1.3 Equations Governing the Dynamics of Magnetic Fluids

Continuity Equation

Application of the law of conservation of mass by requiring the sum of the input
rates minus the output rates to equal the rate of accumulation yields

@�vx
@x

C @�vy
@y

C @�vz

@z
D �@�

@t
(1.10)

where � is the density of the fluid. Or, in vector notation,

@�

@t
C r � .�V/ D 0 (1.11)

which is the continuity equation of fluid mechanics. For an incompressible liquid, �
is constant, and the continuity equation reduces to

r � V D 0 (1.12)

Generalized Bernoulli Equation

The time rate of change of momentum for the constant mass contained in a
deformable element having volume dxdydz is

D

Dt
.�Vdxdydz/ D �dxdydz

DV
Dt

C V
D�dxdydz

Dt
(1.13)
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Because the mass �dxdydz is constant, the last term vanishes and Newton’s law
normalized to unit volume can be written

�
DV
Dt

D
fp

Pressure
force

+ fv

Viscous
force

+ fg
Gravity
force

+ fm
Magnetic

force
(1.14)

whereD =Dt is the substantial derivative defined as the following convention:

D

Dt
D @

@t
C V � r (1.15)

The right side of (1.14) is the sum of the body forces normalized to a unit volume.
The terms familiar from fluid mechanics are the pressure gradient

fp D �rp .�; T /

the viscous force

fv D r � Tv

the gravitational force

fg D �g

and the magnetic force

fm D �r
"

�0

Z H

0

�
@M�

@�

�

H;T

dH

#

C �0MrH

where Tv is the viscous stress tensor and g is the local acceleration due to gravity.
� D ��1 is the volume density. The viscous force density for an incompressible
liquid is given by

fv D �r2V

where � is the viscosity coefficient of the fluid. Substituting the expressions for fv,
fp, fg , and fm into the equation of motion (1.14) gives the following definite form of
the equation of motion for a magnetic fluid:

�
DV
Dt

D �rp .�; T /C �r2V C �g

� r
"

�0

Z H

0

�
@M�

@�

�

H;T

dH

#

C �0MrH (1.16)
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The ferrohydrodynamic Bernoulli equation can be obtained as a general integral of
the equation of motion developed as

�

�
@V
@t

C V � rV
�

D �rp� C �0MrH C �r2V C �g (1.17)

This equation represents a generalization of the Navier–Stokes equation of conven-
tional fluid mechanics such that a magnetic body force �0MrH appears on the
right side and the composite pressure p� is defined as follows:

p� D p.�; T /C �0

Z H

0

�
@M�

@�

�

H;T

dH

D p.�; T /C �0

Z H

0

�
�
@M

@�

�

H;T

dH C �0

Z H

0

M dH

D p C ps C pm

(1.18)

where p is the fluid pressure, ps is the magnetostrictive pressure defined as

ps � �0

Z H

0

�

�
@M

@�

�

H;T

dH (1.19)

and pm is the fluid-magnetic pressure given as

pm � �0

Z H

0

M dH D �0 NMH (1.20)

The field-averaged magnetization NM is defined as

NM D 1

H

Z H

0

M dH (1.21)

From a well-known vector identity, r2V D r .r � V/ � r � .r � V/, where r �
V � � is called the vorticity. For an incompressible liquid, using (1.12), r2V D
�r��. If the fluid is inviscid (� D 0) or the flow is irrotational (� D 0), the viscous
term in the equation of motion (1.17) is identically zero, and it can be written as

�

�
@V
@t

�
C �V � rV D �rp� C �0MrH C �g (1.22)

Using the following vector properties:

V � rV D r
�
1

2
v2
�

� V � .r � V/ (1.23)
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r
Z H

0

M dH D MrH C
Z H

0

@M

@T
rT dH (1.24)

equation (1.22) can be rewritten as

�
@V
@t

� �V �� D �r
�
p� C �

v2

2
C �gh � �0

Z H

0

M dH

�
� �0

Z H

0

@M

@T
rT dH

(1.25)

In going from (1.22), (1.23), (1.24), (1.25), it was assumed that g D jgj is
constant and h is the elevation in the direction opposite to gravity above some
reference level. For irrotational flow, � D 0, so there exists a velocity potential

 such that V D �r
. Then, if rT D 0 or @M =@T D 0, (1.25) can be written as

r
�

��@

@t

C p� C 1

2
�v2 C �gh� �0 NMH

�
D 0 (1.26)

When (1.26) is integrated, the quantity in parentheses can at most equal a
function of time f .t/:

��@

@t

C p� C 1

2
�v2 C �gh � �0 NMH D f .t/ (1.27)

Equation (1.27) is the time-dependent ferrohydrodynamic Bernoulli equation.
For steady-state or time-invariant flow, @
 =@t D 0 and f (t) D constant, so the
generalized Bernoulli equation reduces to

p� C 1

2
�v2 C �gh � �0 NMH D constant (1.28)

Or, equivalently, using the appropriate definition of p�,

p C ps C 1

2
�v2 C �gh D constant (1.29)

Maxwell’s Equations

Maxwell’s equations relate electric and magnetic fields to the charges and currents
which produce them. They consist of four equations and are expressed as follows:

r � E D 4�� (1.30)

r � B D 0 (1.31)
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r � E D � 1

C

@B
@t

(1.32)

r � B D � 1

C

@E
@t

C 4�

C
J (1.33)

where E denotes the electric field, B the magnetic field, � charge density, J the
current density, and C the speed of the light. Maxwell’s equations express the
fact that time-varying magnetic fields produce electric fields, whereas time-varying
electric fields, in turn, produce magnetic fields. In most work to date in magnetic
fluid, the medium is ferromagnetically responsive, and both the free current density
and Maxwell’s displacement current are negligible. Hence, the field equations
of magnetic fluid are usually employed in the magnetostatic limit of Maxwell’s
equations as

r � H D 0 (1.34)

r � B D 0 (1.35)

1.2.1.4 Boundary Conditions

The integral forms of Maxwell’s equations describe the behavior of electromagnetic
field quantities in all geometric configurations. The differential forms of Maxwell’s
equations are only valid in regions where the parameters of the media are constant
or vary smoothly. In order for a differential form to exist, the partial derivatives
must exist, and this requirement breaks down at the boundaries between different
materials. For the special case of points along boundaries, we must derive the
relationship between field quantities immediately on either side of the boundary
from the integral forms. The same case also applies to the ferrohydrodynamic
Bernoulli equation at the boundaries.

Magnetic Field Boundary Conditions

Normal Component of B: The boundary condition for the normal component of the
magnetic field can be obtained by applying Gauss’s flux law:

I

S

B � dS D 0

to a small pillbox. Figure 1.1a shows a small volume of the Gaussian pillbox whose
upper and lower surface are parallel and located on either side of the interface. If we
shrink the side wall of the pillbox to zero, all magnetic flux leaves/enters the pillbox
through the top two surfaces, which results in

I

S

B � dS D .B1n � B2n/ dS D 0
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B2n
B2

2tH

1tH
a

Media 1 

Media 2 b

c d

2H

1BB1n

dS

1H
a

b

Fig. 1.1 The continuous conditions of the normal component of B and tangential component of H
across the boundary between two different media

where B1n and B2n denote the normal component of B1 and B2, respectively. This
result states that the normal component of B is continuous at boundaries. Hence, the
boundary condition for the induced magnetic field B can be expressed as

B1n � B2n D 0 (1.36)

or in vector form as

On � .B1 � B2/ D 0 (1.37)

Tangential Component of H: The boundary condition of the tangential compo-
nent of magnetic field H can be derived by applying Ampere’s law:

I
H � dl D 0

which is valid when there is no current flow. Ampere’s law may be applied to the
contour of a closed loop enclosing the interface as shown in Fig. 1.1b. Since the
sides ac and bd approach zero length, they offer no contribution to the integral. The
Ampere’s law based on the remaining two sides ab and cd yields

I
H � dl D .H1t �H2t /dl D 0

where H1t and H2t denote the tangential component of H1 and H2, respectively.
Thus, the tangential component of magnetic field H is continuous at boundaries.
This may be written

H1t �H2t D 0 (1.38)

or in vector form as

On � .H2 � H1/ D 0 (1.39)
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Fluid Field Boundary Conditions

The governing equations for the velocity and pressure fields are partial differential
equations applicable at every point in a fluid that is being modeled as a continuum.
When they are integrated in discontinuous situation, the additional boundary condi-
tions about the stress, velocity, and possibly its gradient at the natural boundaries of
the flow domain are needed.

Stress continuity: When a fluid forms one of the boundaries of the flow, a boundary
condition connecting the state of stress in each fluid at the interface needs to be
considered. The condition can be written as two separate scalar boundary conditions
as the tangential (shear) stress balance and the normal stress balance. The difference
between the tangential stress vectors at a fluid–fluid interface depends on the
gradient of interfacial tension, which normally is determined by the temperature
and the composition of the interface. If we assume these to be uniform, the gradient
of interfacial tension will vanish everywhere on the interface. This means that
tangential stress is commonly continuous across the interface. For example, if two
fluids meet and form a flow boundary, this boundary condition would require that
the shear stress �s1 in one fluid equal the shear stress �s2 in the other at the boundary

�s1jat the boundary D �s2jat the boundary (1.40)

Thus, for a viscous fluid in contact with an inviscid (zero or very low viscosity
fluid), this means that at the boundary, the shear stress in the viscous fluid is the
same as the shear stress in the inviscid fluid. Since the inviscid fluid can support no
shear stress (zero viscosity), this means that the stress is zero at this interface. The
boundary condition between a fluid such as a magnetic fluid and air, for example,
would be that the shear stress �s in the magnetic fluid at the interface is zero:

�s jat the boundary D 0 (1.41)

This condition is normally represented as that of vanishing shear stress at a
free liquid surface. The normal stress jump boundary condition actually determines
the curvature of the interface at the point in question and therefore the shape of
the entire fluid–fluid interface. This shape is distorted by the flow. In fact, fluid
mechanical problems involving the application of the normal stress balance at a
boundary are complicated and must be solved numerically unless one assumes the
shape distortion to be very small or of a particularly simple form. In such case, if �
denotes the arithmetic mean curvature of the surface, then the surface force density
can be expressed as

pc D 2�� (1.42)

where � is the interfacial tension.pc is normally called the capillary pressure, which
is produced on an interface having curvature and acted upon by interfacial tension or
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forces of surface. Consider the interface between two immiscible fluids, where fluid
1 is taken to be magnetic (M > 0) and fluid 2 is nonmagnetic (M D 0), the magnetic
fluid boundary condition in the absence of viscous forces can then be obtained as
(Rosensweig 1997)

p�
1 C pn D p2 C pc (1.43)

where p�
1 is the composite pressure of fluid 1, p2 is the thermodynamic pressure of

fluid 2, and pn is called the magnetic normal traction, which can be expressed as

pn D 1

2
�0.M � On/2 (1.44)

In terms of the definition of p� in (1.18), the boundary condition can be further
expressed as

p1 C ps C pm C pn D p2 C pc (1.45)

It is familiar that the pressure is continuous across a plane fluid boundary for
ordinary fluids; however, this condition no longer holds for fluids possessing
magnetization, and the magnetic stress will produce a traction force pn shown in
(1.44) at the interface. Note that the generalized Bernoulli equation (1.29) does not
contain the fluid-magnetic pressure term pm; however, pm appears explicitly in the
boundary condition (1.45).

Velocity continuity: It is convenient for the purpose of discussion to identify two
types of velocity boundaries. One of the boundaries is at the interface between a
fluid and a rigid surface. At such a surface, we shall require that the tangential
component of the velocity of the fluid be the same as the tangential component of
the velocity of the surface and similarly the normal component of the velocity of the
fluid be the same as the normal component of the velocity of the surface. The former
is known as the “no-slip” boundary condition and has been found to be successful in
describing most practical situations. If we designate the velocity of the rigid surface
as Vwall and that of the fluid as Vfluid, the no-slip boundary condition can be stated as

Vfluidjat the boundary D Vwall (1.46)

Often, the walls are not moving, so the fluid velocity is zero, that is,

Vfluidjat the boundary D 0 (1.47)

Consider the velocity boundary condition between two fluids; the velocity fields
are continuous across the interface

Vfluid1jat the boundary D Vfluid2jat the boundary (1.48)
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This vector condition can be also viewed in two parts, the continuity of the
tangential component of the two velocities and the continuity of the normal
component of the two velocities, a kinematic consequence when there is no mass
transfer across the interface. Notice that we have two unknown vector fields Vfluid1

and Vfluid2 now and therefore need twice as many boundary conditions compared
with the case of a fluid and a rigid surface interface. Therefore, it is necessary to
consider the stress boundary conditions in each fluid at the interface together.

The deflection of a free fluid surface can be related to the motion of the adjacent
fluid using what is commonly known as the kinematic condition. The condition is
written as follows:

vz D @

@t
(1.49)

The condition (1.49) states that, at any point on the free surface of a fluid, the rate
of deflection of the surface  is equal to the vertical component of the fluid velocity
vz at that point.

1.2.2 Control Systems Theory

In the following, an introduction to some basic control system concepts used in this
book is presented. The proofs of all standard results presented here are omitted for
simplicity. The interested reader could refer to Boyd et al. (1994), Zhou et al. (1995),
Chen and Francis (1996), and Scherer and Weiland (2004) for a more complete
exposure to these results.

1.2.2.1 Control System Presentation and Basic Properties

It is convenient to introduce some basic notations first. Let R denote the real scalar
field and C the complex scalar field. Rn denotes the vector space over R and Cn

the vector space over C. A matrix A is Hermitian if it is square and A D NAT
,

where the bar denotes taking the complex conjugate of each entry in A. If A is real,
then this amounts to saying that A D AT and we call A symmetric. For a given
system †, †.s/ and †.z/ denote, respectively, the continuous and discrete time

transfer functions of the system, and
P W

"
A B

C D

#

refers to a state-space realization

of the system †. In the block diagrams presented in this chapter, any given signal is
represented using the same symbol in the time domain, Laplace domain, and the z
domain.

A control system or plant or process is an interconnection of components to
perform certain tasks and to yield a desired response, that is, to generate desired
signal (the output) when it is driven by a manipulating signal (the input). In
general, there are two categories of control systems, namely, open-loop systems
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and closed-loop systems. In an open-loop system, a reference signal applied to the
controller is used to generate the control signal that drives the plant. The output of
the plant in this case is not fed back to the controller. In contrast, in a closed-loop
control system, both the reference signal and the plant output measurement are used
as inputs to the controller to generate the control signals for the plant, resulting in a
feedback system.

In most cases, the evolution of physical control systems can be approxi-
mately modeled by real ordinary differential equations, that is, the state x.t/ D
Œx1.t/; x2.t/; : : : ; xn.t/�

T of the physical system at time t is the solution of the
coupled first-order ordinary differential equations:

Px D fp .t; x;u/ (1.50)

where Px denotes the derivative of x with respect to the time variable t,

u.t/ D Œu1.t/; u2.t/; : : : ; um.t/�
T

are specified input variables, and the state x passes through the point x .t0/ at time
t D t0. Usually, we associate with (1.50) another equation

y D h .t; x;u/ (1.51)

which defines a q-dimensional output vector y.t/ D �
y1.t/; y2.t/; : : : ; yq.t/

�T
that

comprises variables of particular interest in the analysis of the dynamical system,
like variables which can be physically measured or variables which are required to
behave in a specified manner. We call (1.51) the output equation and normally refer
to Eqs. 1.50 and 1.51 together as the state-space presentation model. In general, the
functions fp and h are nonlinear functions of the state variable x.

In closed-loop, a control law u.t/ D g .x.t/; t/ is selected. Thus, the closed-loop
dynamics can be written as

Px D f .x; t/ D fp .t; x; g .x; t// (1.52)

A special case of (1.52) is when the function f does not depend explicitly on t,
that is,

Px D f .x/ (1.53)

In these cases, the system is said to be autonomous.
A great majority of physical systems are linear within some range of the

variables, though in general, systems ultimately become nonlinear as the variables
are increased without limit. Furthermore, the nonlinearity of many physical systems
can also be linearized approximately based on the assumption of small signal
conditions (Dorf and Bishop 2008). For example, the linearization method of Taylor
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series expansion around the system operating point is commonly utilized. Therefore,
for the sake of simplicity in analyzing (1.50) and (1.51), fp and h are frequently
replaced or approximated by linear functions, hence resulting in a linearized system
G given by

G W
( Px.t/ D Ax.t/C Bu.t/; x .t0/ D x0

y.t/ D Cx.t/C Du.t/
(1.54)

where x.t/ 2 Rn is called the system state variable, x .t0/ is called the initial
condition of the system, u.t/ 2 Rm is called the system input, and y.t/ 2 Rq is
the system output. The A, B, C, and D are appropriately dimensioned real constant
matrices. In this case, we say the system (1.54) is linear time-invariant (LTI). A
dynamical system with single input (m D 1) and single output (q D 1) is called a
single-input and single-output (SISO) system; otherwise, it is called multiple-input
and multiple-output (MIMO) system. The corresponding transfer matrix from u to
y is defined as

Y.s/ D G.s/U.s/ (1.55)

where U.s/ and Y.s/ are the Laplace transform of u.t/ and y.t/ with zero initial
conditions. The system transfer matrix can be obtained directly from (1.54) as

G.s/ D C.sI � A/�1B C D (1.56)

The state-space presentation (1.54) is sometimes written in a more compact
matrix form as

G WD
"
A B

C D

#

The signals in control systems are usually continuous time signals, and the
corresponding performance specifications are formulated in continuous time. How-
ever, with the application of the computer technology in the control systems, the
controllers are frequently implemented using digital technology, which can take the
form of a microcontroller to an ASIC to a standard desktop computer, etc. Normally,
a digital controller samples and quantizes a continuous time signal, such as a
tracking error, using an A/D converter to produce a digital signal, then it processes
this digital signal according to the proper designed control algorithm and finally
converts the resulting digital signal back into a continuous time control signal for the
plant using a D/A converter. Such a control system thus involves both continuous
time and discrete time signals and can be analyzed in a discrete time framework.
Usually, two discretization techniques—zero-order hold transformation and bilinear
transformation—are used to convert the continuous time system to a discrete time
system. Zero-order hold transformation is suitable to discretize the physical plant
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G
u y

H S
Fig. 1.2 Zero-order hold
system

with a zero-order hold as shown in Fig. 1.2, where G is the continuous time plant,
H and S are hold and sampling devices which are implemented using D/A and A/D
converters, respectively. The transfer function of the zero-order hold is

H.s/ D 1 � e�sT

s
(1.57)

where T is the sampling period. The Z transform can then be used directly to convert
the continuous time model with the zero-order hold to the discrete time model as

Gd .z/ D Z .G.s/H.s// (1.58)

where Z denotes the Z transform. The Z transform maps the s plane in continuous
time domain into a z plane in discrete time domain involving the following
conformal relationship:

z D esT (1.59)

Let the state-space representation of Gd be given by

Gd WD
�
Ad Bd

Cd Dd

�

WD
�

x .k C 1/ D Adx.k/C Bdu.k/
y.k/ D Cdx.k/C Ddu.k/

(1.60)

The Z transfer function can be obtained by

Gd .z/ D Cd .zI � Ad /
�1Bd C Dd (1.61)

The above state-space presentation (1.60) can also be converted from (1.54)
directly with

Ad WD eTA; Bd WD
Z T

0

e�Ad�B; Cd WD C; Dd WD D

The bilinear transformation is frequently used to discretize an analog controller
for the purpose of digital implementation. In this case, one might design an analog
controller K based on a continuous time model, then convert from the analog
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controller K to a digital controller Kd. The bilinear transformation is also called
Tustin transformation which converts the continuous time controller to digital
controller with

s D 2 .z � 1/

T .z C 1/
(1.62)

Tustin transformation is actually the Pade approximation of the exponential
function z D esT :

z D esT

D esT=2

e�sT=2

� 1C sT=2

1� sT=2

(1.63)

Based on (1.63), then it is easy to obtain (1.62). The digital controller will achieve
an output which approaches the output of its respective analog controller as the
sampling period is decreased.

A critical issue in control system design is that of system stability. An unstable
system is of no practical value. This is because any control system is vulnerable
to disturbances and noises in a real work environment, and the effect due to
these signals would adversely affect the expected, normal system output in an un-
stable system. Feedback control techniques may reduce the influence generated by
uncertainties and achieve desirable performance. However, an inadequate feedback
controller may lead to an unstable closed-loop system though the original open-
loop system is stable. When a dynamic system is just described by its input/output
relationship such as a transfer function (matrix), the system is stable if it generates
bounded outputs for any bounded inputs. This is called the bounded-input bounded-
output (BIBO) stability. For a linear, time-invariant system modeled by a transfer
function matrix (G.s/ in (1.55)), the BIBO stability is guaranteed if and only if all
the poles of G.s/ are in the open-left-half complex plane, that is, with negative real
parts. When a system is governed by a state-space model such as (1.54), a stability
concept called asymptotic stability can be defined. A system is asymptotically stable
if, for an identically zero input, the system state will converge to zero from any initial
states. For a linear time-invariant continuous time system described by a model of
(1.54), it is asymptotically stable if and only if all the eigenvalues of the state matrix
A are in the open-left-half complex plane, that is, with negative real parts. While for
a linear time-invariant discrete time system (1.60), the stability condition is that all
the eigenvalues of the state matrix Ad are inside the unit circle on the Z plane, that
is, the spectral radius of Ad satisfies � .Ad / < 1. The above stabilities are defined
both for open-loop systems and closed-loop systems. For a closed-loop system, a
controller should be designed properly to make the system stable and satisfy the
desired performance as well. In the following, some important concepts in linear
system theory will be discussed.
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Definition 1.1 The dynamical system described by Eq. 1.54 or the pair .A;B/ is
said to be controllable if, for any initial state x.0/ D x0 and final state x .t1/ D x1,
t1 > 0, there exists an input u .�/ such that the solution of (1.54) satisfies x .t1/ D x1.
Otherwise, the system or the pair .A;B/ is said to be uncontrollable. �

The definition of the controllability of the discrete time system is similar and
will not be repeated here. The controllability of a system can be verified through the
following theorem.

Theorem 1.1 Consider the system (1.54) or (1.60), then .A;B/ or .Ad ;Bd / is
controllable if and only if

(i) The controllability matrix

C D �
B AB A2B : : : An�1B

�

or

Cd D �
Bd AdBd A2

dBd : : : An�1
d Bd

�

has full row rank.
(ii) The matrix ŒA � �I;B� or ŒAd � �I;Bd � has full row rank for all � in C.

(iii) The eigenvalues of A C BF or Ad C BdF can be freely assigned (with the
restriction that complex eigenvalues are in conjugate pairs) by a suitable
choice of F. �

The dynamic system (1.54) or (1.60) is said to be stabilizable if there exists
a state feedback u D Fx such that the closed-loop system is stable, that is,
Re� .A C BF/ < 0 or � .Ad C BdF/ < 1.

Definition 1.2 The dynamical system described by the Eq. 1.54 or by the pair
.C;A/ is said to be observable if, for any t1 > 0, the initial state x.0/ D x0 can
be determined from the time history of the input u.t/ and the output y.t/ in the
interval of Œ0; t1�. Otherwise, the system or .C;A/ is said to be unobservable. �

The definition of observability of discrete time systems follows along the same
lines. The observability of a system can be verified through the following theorem.

Theorem 1.2 Consider the system (1.54) or (1.60), then .C;A/ or .Cd ;Ad / is
observable if and only if

(i) The observability matrix

O D

2

6
6
66
6
4

C
CA
CA2

:::

CAn�1

3

7
7
77
7
5

or Od D

2

6
6
66
6
4

Cd

CdAd

CdA2
d

:::

CdAn�1
d

3

7
7
77
7
5

has full column rank.
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(ii) The matrix

	
A � �I

C



or

	
Ad � �I

Cd



has full column rank for all � in C.

(iii) The eigenvalues of A C LC or Ad C LCd can be freely assigned (with the
restriction that complex eigenvalues are in conjugate pairs) by a suitable
choice of L. �

Then, the dynamic system (1.54) or (1.60) is said to be detectable if there exists
L such that the ACLC is stable, that is, Re� .A C LC/ < 0, or Ad CLCd is stable,
that is, � .Ad C LCd / < 1.

Testing stability, controllability, and observability of a system is very important
in linear system analysis and synthesis. However, these tests often have to be done
indirectly. In this respect, the Lyapunov theory is sometimes useful. Consider the
following Lyapunov equation for continuous time case:

ATP C PA C Q D 0 (1.64)

where A, P, Q are all square matrices, say, n�n, with Q symmetric. The Lyapunov
equation has a unique solution if and only if A has the property that no two of its
eigenvalues add to zero, that is, �i .A/ C N�j .A/ ¤ 0, 8i; j . The following result
presents the relationships between the stability of A and the solution of P.

Theorem 1.3 Consider the Lyapunov Eq. 1.64, we have

(i) Suppose A is stable, then we have the following statements:

(a) The unique solution is P D R1
0 eATtQeAtdt .

(b) If Q 	 0, then .Q;A/ is observable if and only if P > 0.

(ii) Suppose A, Q, P satisfy the Lyapunov equation, .Q;A/ is detectable, and Q
and P are positive semi-definite, then A is stable. �

Based on the above result, it is not difficult to obtain that, given a stable matrix
A, a pair .C;A/ is observable if and only if the solution to the following Lyapunov
equation is positive definite:

ATL0 C L0A C CTC D 0 (1.65)

The solution L0 is called the observability Gramian. Similarly, a pair .A;B/ is
controllable if and only if the solution to the following Lyapunov equation is positive
definite:

ALc C LcAT C BBT D 0 (1.66)

The solution Lc is called the controllability Gramian.
Similarly, for the discrete time system, we define the following Lyapunov

function:

AdXAT
d � X C Q D 0 (1.67)
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where Ad , X, Q are all square matrices, say, n � n, with Q symmetric. The
Lyapunov equation has a unique solution if and only if Ad has the property that
�i .Ad / �j

�
AT
d

� ¤ 1, 8i; j . The following result presents the relationships between
the stability of Ad and the solution of X.

Theorem 1.4 Consider the Lyapunov equation (1.67), we have

(i) Suppose Ad is stable, then we have the following statements:

(a) The unique solution is X D P1
iD0 Ai

dQ
�
AT
d

�i
, and X 	 0 if Q 	 0.

(b) If Q 	 0, then .Q;Ad / is observable if and only if X > 0.

(ii) Suppose Ad , X, Q satisfy the Lyapunov equation, .Q;Ad / is detectable, and Q
and X are positive semi-definite, then Ad is stable. �

Correspondingly, we denote Mc and Mo the controllability and observability
Gramians with

AdMcAT
d � Mc C BdBT

d D 0 (1.68)

AT
dMoAd � Mo C CT

dCd D 0 (1.69)

Besides the aforementioned properties we need to consider for the control
system, the optimal performance of the closed-loop system is another important
consideration in the design of a control system. In optimal control, the performance
of a control system is represented by a performance index. The controller is
designed in such a way that the closed-loop system performance index is minimized,
resulting in an optimal control system. Optimal control systems should possess good
performance specifications, such as good regulation against disturbances, desirable
responses to commands, actuator signals that stay within a prespecified range, and
good robustness against uncertainties in the system model. One way to describe
the performance specifications of a control system is in terms of the size of certain
signals of interest. In the following, several norms for signals and induced norms of
systems are presented.

1.2.2.2 Performance Specifications

Norms for Signals and Systems

First, consider the continuous or piecewise continuous time scalar-valued signals
x.t/, t 2 .�1;1/, then l2 and l1 norm of x.t/ are defined as

kxk2 D
�Z 1

�1
jx.t/j2

�1=2

kxk1 D sup
t2.�1;1/

jx.t/j
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When x.t/ are continuous or piecewise continuous vector-valued functions of the
form x.t/ D Œx1.t/; x2.t/; : : : xn.t/�

T, t 2 .�1;1/, we have

kxk2 D
�Z 1

�1

Xn

iD1 jxi .t/j2
�1=2

kxk1 D sup
t2.�1;1/

�
max
1�i�n jxi .t/j

�

The norms for discrete time signals v D fv.0/; v.1/; : : :g can be defined in a
similar way

kvk2 D
h
v.0/2 C v.1/2 C � � �

i1=2

kvk1 D sup
k

jv.k/j

The normed spaces, consisting of signals with finite norm as defined correspond-
ingly, are called l2 .R/ and l1 .R/, respectively, as

l2 .R/ WD fx .�/ W kxk2 < 1g

l1 .R/ WD fx .�/ W kxk1 < 1g

From a signal point of view, the square of the 2-norm, kxk22, is often called the
energy of the signal x .�/. The 1-norm, kxk1, is the amplitude or peak value of the
signal, and the signal is bounded in magnitude if x .�/ 2 l1 .R/.

System norms are actually the input–output gains of the system. Suppose that
G is a linear and bounded system that maps the input signal u .�/ into the output
signal y .�/, denote k
kU and k
kY are the corresponding norms of the input signal
and output signal, respectively. Then, the norm, maximum system gain, of G is
defined as

kGk WD sup
u¤0

kGukY
kukU

kGk is called the induced norm of G with regard to the signal norms k
kU
and k
kY . In this book, we are particularly interested in the so-called H2 norm
and H1 norm of a system. The fact is that H2 norm of a system is related to the
average l2 norm of the output when impulses are applied at the input channels and
H1 of a system is related to the maximum l2 norm of the output overall inputs of
unit norm.
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Computation of the Induced System Norms

For continuous time system G, H2 norm and H1 norm can be calculated in the
frequency domain as

kGk2 WD
s

1

2�

Z 1

�1
Trace fG� .j!/G .j!/g d!

and

kGk1 WD ess sup
!

N� fG .j!/g

For discrete time system Gd , H2 norm andH1 norm can then be calculated as

kGdk2 WD
s

1

2�

Z 2�

0

Trace
˚
G�
d

�
ej�
�

Gd

�
ej�
��

d�

and

kGdk1 WD ess sup
�

N� ˚Gd

�
ej�
��

It is useful and convenient to compute theH2 norm andH1 norm by state-space
methods, which are presented in the following two lemmas.

Lemma 1.1 Consider transfer matrices

G.s/ D
 
A B

C 0

!

; Gd .z/ D
 
Ad Bd

Cd Dd

!

with A and Ad stable. Then we have

kGk22 D trace
�
BTLoB

� D trace
�
CLcCT

�

kGdk22 D trace
�
DT
dDd C BT

dM0Bd
� D trace

�
DdDT

d C CdMcCT
d

�

where Lc, Mc and Lo, Mo are controllability and observability Gramians which can
be obtained from the following Lyapunov equation, respectively:

ALc C LcA C BBT D 0

ATLo C LoA C CTC D 0

AdMcAT
d � Mc C BdBT

d D 0

AT
dMoAd � Mo C CT

dCd D 0

�
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Lemma 1.2 Consider a transfer matrix

G.s/ D
 
A B

C D

!

; Gd .z/ D
 
Ad Bd

Cd Dd

!

with A and Ad stable. Let � > 0, then kGk1 < � if and only if N� .D/ < � and H
has no eigenvalues on the imaginary axis where

H WD
2

4
A C B

�
�2I � DTD

��1
DTC B

�
�2I � DTD

��1
BT

�CT
�

I C D
�
�2I � DTD

��1
DT


C �
�

A C B
�
�2I � DTD

��1
DTC

T

3

5

(1.70)

Let � > 0, then kGdk1 < � if and only if N� .D/ < � and S has no eigenvalues
on the unit circle, where S denotes the symplectic pair

S WD
0

@
"

Ad C BdDT
d

�
�2I � DdDT

d

�
�1

Cd 0

��CT
d

�
�2I � DdDT

d

�
�1

Cd I

#

;

2

4
I ��Bd

�
�2I � DdDT

d

�
�1

BT
d

0
h
Ad C BdDT

d

�
�2I � DdDT

d

�
�1

Cd

iT

3

5

1

A

(1.71)

�
It should be noted that Lemma 1.2 does not provide a closed-form expression

for the H1. Typically, a bisection algorithm based on Lemma 1.2 is used to search
an approximation value of the H1 norm with the following steps (continuous time
case):

(1) Select an upper bound �u and a lower bound �l such that �l � kGk1 � �u.
(2) If .�u � �l/ =�l � ", " a predefined tolerance, stop, and we have kGk1 �

.�u C �l/ =2 . Otherwise, go to next step:
(3) Set � D .�l C �u/ =2 .
(4) Test if kGk1 < � by calculating the eigenvalues of H in (1.70) for a given � .
(5) If H has an eigenvalue on the imaginary axis, then set �l D � ; otherwise, set

�u D � , then go back to step 2.

The same procedure can also be applied to discrete time systems.

Optimal Performance Consideration

The design of a controller for the closed-loop control system should in general
satisfy three basic requirements:

(1) Closed-loop Stability
(2) Performance: The controller is typically designed so that the resulting closed-

loop system meets certain performance specifications, such as an upper bound
on the H2 norm orH1 norm of the closed-loop system, the steady-state error.

(3) Robustness: The closed-loop controller has to remain stable and yield accept-
able performance despite uncertainties in the description of the plant model.
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The control design requirements are usually best expressed in the form of an
optimization criterion subject to some constraints, for example, terminal constraints
or practical constraints on plant variables. Control design optimization criteria were
initially based on the idea of linear quadratic Gaussian (LQG) control which was
later generalized to the idea ofH2 controller design. The development of small-gain
theory laid the foundations of robust H1 control. For linear systems with suitable
optimization criteria, such as LQG, H2 and H1 performances, the solution to the
optimization problem is readily found by solving Riccati equations.

Linear quadratic Gaussian (LQG) control problem is one of the most fundamental
optimal control problems in the control theory. It concerns linear systems disturbed
by additive white Gaussian noise, having incomplete state information (i.e., not
all the state variables are measured and available for feedback) and undergoing
control subject to quadratic costs. The LQG controller is simply the combination
of a linear quadratic regulator (LQR) with a Kalman filter, that is, a linear quadratic
estimator (LQE). The separation principle guarantees that these can be designed
and computed independently. The LQG method has been successfully applied in
astronomical adaptive optics systems to cancel the aberrations caused by stochastic
atmosphere turbulence. However, the LQG problem can be cast into a standard
H2 optimal control problem presented in the next subsection. For simplicity, let’s
consider the LQR problem for continuous time systems. Given a plant model

Px D Ax C Bu C Qw (1.72)

where Qw is a zero mean white noise, find a control input u that minimizes the cost
functional

J .u/ D lim
t!1 E

�
xT.t/Qx.t/C uT.t/Ru.t/

�
(1.73)

where E denoted the expected value. Assume Q 	 0, R 	 0, .A;B/ stabilizable, and
.Q;A/ detectable. Then we have the well-known established result to solve (1.73)
with the unique optimal control u D Fx, where F D �R�1BTX and X satisfies the
following Riccati equation:

ATX C XA � XBR�1BTX C Q D 0 (1.74)

The achieved minimization of the cost function J is Jmin D trace .X/.
The LQG problem assumes that the system state variable x is not available,

then the overall optimal controller needs to combine the linear quadratic regulator
(LQR) with a linear quadratic estimator (LQE). The LQR and LQE controller can
be designed separately based on the well-known separation principle.

Standard Feedback System Configuration

The main objective behind the design of a controller for a feedback control system
is to stabilize the closed-loop system and at the same time meet certain performance
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zw

u

Fig. 1.3 General feedback
system configuration

specification such as bounds on the H2 or H1 norm of the closed-loop system.
A standard feedback system configuration used in formulating controller synthesis
problems is the linear-fractional transformation (LFT) configuration shown in
Fig. 1.3, where P is the generalized plant with two sets of inputs: the exogenous
inputs w, which include disturbances and commands, and control inputs u. The
plant P also has two sets of outputs: the measured outputs y and the performance
outputs z. A control problem in this setup is to design a feedback controller K
such that the closed-loop system is stable in some appropriate sense and satisfies
some performance requirements. For example, the overall control objective can be
searching a controller K to minimize the H1 norm of the closed-loop transfer
function from w to z. The plant transfer function matrix P in Fig. 1.3 can be
partitioned as

P D
	

P11 P12
P21 P22




The performance variable can then be expressed as

z D
h
P11 C P12K.I � P22K/

�1P21
i

w (1.75)

Let

F .P;K/ D P11 C P12K.I � P22K/
�1P21 (1.76)

F .P;K/ is called a linear-fractional transformation(LFT) of P and K.
The example in Fig. 1.4 shows a standard single-loop feedback system with a

plant G, controller K, and feedback sensor F. There are two exogenous inputs: a
disturbance d and a noise signal n corrupting the plant output. Also shown are two
filters, W1 and W2, generating a filtered control signal, Qu, and a filtered plant output,
Qy. It is desired to set the closed-loop system performance specification in terms of
the signals Qu and Qy. To convert the control system in Fig. 1.4 to the standard setup,
define
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Fig. 1.4 A feedback system with weighted performance variable

w D
	

d
n



; z D

	 Qy
Qu



Then we have

P D
	

P11 P12
P21 P22




D
2

4

	
W2G 0

0 0


 	
W2G
W1




� �FG �F
� �FG

3

5

where the input and output of P are partitioned as

	
w
u



and

	
z
y



. Let the state-space

presentation of P be given as

P WD
0

@
A B1 B2
C1 D11 D12

C2 D21 D22

1

A

If D22 D 0, then the plant transfer matrix from u to y is strictly proper.
As an illustration of formulating a controller design problem using the standard

feedback system configuration, consider the LQG controller design problem for the
system † given by

† W
( Px D Ax C Bu C wx

y D Cx C wy

(1.77)

where the process noise wx and measurement noise wy are independent and have
constant power spectral density matrices QWx and QWy , respectively. The LQG cost
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function is the sum of the steady-state mean square weighted state x and the
steady-state mean square weighted actuator signal u as

J D lim
t!1 E

�
x.t/TQx.t/C u.t/TRu.t/

�
(1.78)

where Q and R are positive semi-definite weight matrices. We can express this cost
in the standard framework by forming the regulated output signal

z D
"

R
1
2 u

Q
1
2 x

#

The exogenous input consists of the process and measurement noises, which can
be represented as

"
wx

wy

#

D
2

4
� QWx

� 1
2

� QWy

� 1
2

3

5 Qw

where Qw a white noise signal. The state-space description of the augmented plant P
for the LQG problem is thus

A D A; B1 D
h � QWx

� 1
2 0

i
; B2 D B

C1 D
"

0
Q

1
2

#

; C2 D C; D11 D
	

0 0
0 0




D12 D
"

R
1
2

0

#

; D21 D
h

0
� QWy

� 1
2

i
; D22 D 0

The optimal controller K takes the form of (Boyd and Barratt 1991)

K W
� POx D .A � BLf � KfC/ Ox C Kfy

u D �Lf Ox

where Kf and Lf are the Kalman gain and state feedback gain to be designed,
respectively.

Robustness Specifications

A control system is robust if it remains stable and meets certain performance
objectives in the presence of uncertainties in the plant model. TheH1 optimization
approach and its related approaches have been shown to be effective and efficient
robust design methods for linear, time-invariant control systems. In the following,
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Fig. 1.6 Feedback system with additive perturbation in the plant

the small-gain theorem, which plays an important role in the H1 robust controller
design methods, will be introduced. Consider the feedback configuration in Fig. 1.5,
where G1.s/ and G2.s/ are the transfer function matrices of linear time-invariant
systems. We then have the following theorem.

Theorem 1.5 (Zhou et al. 1995) If G1.s/ and G2.s/ are stable, then the closed-loop
system is stable if and only if

kG1G2k1 < 1

and

kG2G1k1 < 1

�

A closed-loop system of the plantG and controller K is robustly stable if it
remains stable for some level of uncertainty in the plant model. Consider, for
example, the case of an additive perturbation as depicted in Fig. 1.6, where �.s/

is the perturbation, presented using a stable unknown matrix transfer function. Then
the transfer function from the signal v to u is Tuv D �K.I C GK/�1. It is obvious
that the controller K should stabilize the nominal plant G first, which means Tuv

is stable. Then, based on the small-gain theorem, we have the following robustness
result for the closed-loop system.

Theorem 1.6 For stable �.s/, the closed-loop system is robustly stable if K.s/
stabilizes the nominal plant and the following holds:

�
���K .I C GK/�1

�
��1 < 1 (1.79)
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and
�
�
�K.I C GK/�1�

�
�
�1 < 1 (1.80)

�
Based on (1.79) and (1.80), the following sufficient condition guarantees the

robust stability of the closed-loop system:

�
�
�K.I C GK/�1

�
�
�1 <

1

k�k1
(1.81)

In many cases, we may have a priori knowledge of an upper bound on the norm
of the perturbation, such as, for example, an upper bound on the maximum singular
value of the perturbation

N� .� .j!// � N� .W� .j!// for all ! 2 R

where N� .
/ denoted the maximum singular value and W�.s/ is a known weight
function. Consequently, the robust stabilization condition in this case is satisfied if

�
��W�K.I C GK/�1

�
��1 < 1 (1.82)

The reader can refer to Zhou et al. (1995) and Skogestad and Postlethwaite (2005)
for more detailed discussions on robustness issues.

1.2.2.3 Linear Matrix Inequalities

Linear matrix inequalities (LMIs) and LMI techniques have emerged as powerful
design tools in control engineering, where many optimal control problems can
be stated in terms of linear matrix inequalities. Linear matrix inequalities are
matrix inequalities which are linear (or affine) in a set of matrix variables. The
equivalence between the Riccati equation and LMI formulations of the control
problem was found at an early point in the 1970s. However, only during the past
10–15 years has the development of sophisticated numerical routines, that is, semi-
definite programming, made it possible to solve LMIs in a reasonably efficient
manner. From a control engineering perspective, one of the main attractions of
LMIs is that they can be used to solve problems which involve several matrix
variables, and, moreover, different structures can be imposed on these matrix
variables. Another attractive feature of LMI methods is that they are flexible, so
it is often relatively straightforward to pose a variety of problems as LMI problems
amenable to LMI methods. Furthermore, in many cases the use of LMIs can remove
restrictions associated with conventional methods and aid their extension to more
general scenarios. While most problems with multiple constraints or objectives lack
analytical solutions in terms of matrix equations, they often remain tractable in
the LMI framework. Therefore, LMI methods can be applied in instances where
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conventional methods either fail or struggle to find a solution. In actual fact, the
flexibility of LMIs has created a much wider scope for controller design. They
allow the efficient consideration of H2 and H1 performance constraints and of
robustness requirements. The control approaches developed in this book are heavily
based on the LMI techniques; therefore, a brief LMI background is introduced in
the following.

Fundamental LMI Properties

A notion central to the understanding of matrix inequalities is definiteness. In
particular, a matrix P is defined to be positive definite if

�TP� > 0; 8� ¤ 0

Likewise, P is said to be positive semi-definite if

�TP� 	 0; 8� ¤ 0

It is common practice to write P > 0 (P 	 0) to indicate that it is positive (semi)
definite. In particular, the positive-definite matrices P is square and symmetric, that
is, P D PT. Because all eigenvalues of a real symmetric matrix are real, P > 0 is
equivalent to saying that all eigenvalues � .P/ are positive real or that the minimum
eigenvalue �min .P/ > 0. A positive semi-definite matrix shares the first attribute,
but the last is relaxed to the requirement that all of its eigenvalues are positive real or
zero. A matrix Q D �P is said to be negative (semi) definite if P is positive (semi)
definite. To indicate negative (semi) definiteness, we write Q < 0 (Q � 0). In fact,
once the notation P > 0 (P 	 0) or Q < 0 (Q � 0) is used, we implicitly require P
and Q to be symmetric. A linear matrix inequality is an expression of the form

F .x/ WD F0 C x1F1 C � � � C xnFn < 0 (1.83)

where x D .x1; : : : ; xn/ 2 Rn is a vector of n real numbers called the decision
variables. F0; : : : ;Fn are real symmetric matrices, that is, Fj D FT

j , for j D 0; : : : n:

The basic LMI problem—the feasibility problem—is to find x such that inequality
(1.83) holds.

Note that F .x/ > 0 describes an affine relationship in terms of the vector x.
Normally, the variable x to be determined is a vector obtained by stacking up the
columns of a number of matrices. That is,

F .x/ D F .X1;X2; : : :Xm/ (1.84)

where Xi 2 Rqi�pi , i D 1; : : : ; m, are matrices to be determined,
Pm

iD1 qi � pi D
n, and the columns of all the Xi matrices are stacked up to form a single vector
variable x. When F .x/ is an affine function of the matrices Xi 2 Rqi�pi , i D
1; :::; m, (1.84) takes the form of
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F .X1;X2; : : : ;Xm/ D F0 C G1X1H1 C � � � C GmXmHm

D F0 C
Xm

iD1 GiXiHi

where F0, Gi , Hi are given matrices and Xi , i D 1; : : : ; m, are the matrix variables
to be determined. It is worth noting that the linear matrix inequality (1.83) defines a
convex constraint on x, which means the set

= WD fxjF .x/ < 0g

of solutions of the LMI F .x/ < 0 is convex, that is, if x1; x2 2 = and ˛ 2 .0; 1/,
then we have

F .˛x1 C .1 � ˛/ x2/ D ˛F .x1/C .1 � ˛/ F .x2/ < 0

The inequality follows from the fact that F is affine and that ˛ > 0 and
.1 � ˛/ > 0: The convex problem can be solved with efficient numerical tools.
Some of the numerical tools are based on the ellipsoid algorithm which is
simple, numerically robust, and easy to implement but may be slow for larger
optimization problems. A major breakthrough in convex optimization lies in the
introduction of interior point methods. Interior point methods (also referred to as
barrier methods) are a certain class of algorithms to solve linear and nonlinear
convex optimization problems. These algorithms have been inspired by Karmarkar’s
algorithm, developed by Narendra Karmarkar in 1984 for linear programming, and
are significantly faster than classical convex optimization algorithms. The LMI
solvers based on interior point algorithm can be found in many available commercial
and noncommercial software products such as the Matlab LMI toolbox.

Many control problems can be solved using properly formulated LMIs. For
example, consider the Lyapunov matrix inequality, that is,

ATP C PA < 0; P > 0

where P 2 Rn�n is variable and A 2 Rn�n is given. Lyapunov theory showed that
this LMI is feasible if and only if the matrix A is stable, that is, all trajectories of
the system Px D Ax converge to zero as t ! 1 or equivalently, all eigenvalues
of A must have negative real part. This particular problem can be easily solved
using numerical algorithms; however, it can also be solved in an analytic way. To
solve this LMI problem, we pick any Q > 0 and solve the Lyapunov equation
ATP C PA D �Q, which is nothing but a set of n .nC 1/ =2 linear equations for
the n .nC 1/ =2 scalar variables in P. This set of linear equations will be solvable
and result in P > 0 if and only if the LMI is feasible. In fact, this procedure not only
finds a solution when the LMI is feasible but also parameterizes all solutions as Q
varies over the positive-definite cone.
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Systems of LMIs

In general, we are frequently faced with LMI constraints of the form

F1 .x/ < 0; : : : ; Fp .x/ < 0 (1.85)

which is called a system of linear matrix inequalities. It is easily seen that the
intersection of the feasible sets of each of the inequalities (1.85) is convex, and
this set can be represented as the feasibility set of another large LMI. Indeed,
F1 .x/ < 0; : : : ; Fp .x/ < 0 if and only if

F .x/ WD

2

6
66
6
4

F1 .x/ 0 � � � 0

0 F2 .x/ 0
:::

::: 0
: : : 0

0 � � � 0 Fp .x/

3

7
77
7
5
< 0 (1.86)

F .x/ is also symmetric for any x, and the set of eigenvalues of F .x/ is simply
the union of the eigenvalues of F1 .x/ ; : : : ; Fp .x/. Any x satisfies F .x/ < 0

also satisfies the system of LMIs (1.85) and vice versa. Therefore, multiple LMI
constraints can always be converted to a single LMI constraint.

Congruence Transformation

For a given positive-definite matrix P > 0 2 Rn�n, and given a real matrix T 2 Rn�n
such that rank .T/ D n, the following inequality holds (Herrmann et al. 2007):

TPTT > 0 (1.87)

In other words, definiteness of a matrix is invariant under pre- and post-
multiplication by a full rank real matrix and its transpose, respectively. The process
of transforming P > 0 into Eq. 1.87 using a real full rank matrix is called
a congruence transformation. The congruence transformation is very useful for
removing bilinear terms in matrix inequalities and is often used, in conjunction with
a change of variables, to transform a bilinear matrix inequality into an LMI. Often,
T is chosen to have a diagonal structure. For example, consider a bilinear matrix
inequality

Q D
	

ATP C PA PBF C CTV
FTBTP C VC �V



< 0 (1.88)

where the matrices P 2 Rn�n > 0, V 2 Rm�m > 0, and F 2 Rp�m are the unknown
matrix variables and the remaining matrices are the known constants with proper
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dimensions. Notice that this inequality is bilinear in the variables P and F which
occur in the (1,2) and (2,1) elements of the matrix Q 2 R

.nCm/�.nCm/. If we choose
a nonsingular matrix

T D
	

P�1 0
0 V�1




which is full rank with rank .T/ D nCm, then calculating TQTT gives

TQTT D
	

P�1AT C AP�1 BFV�1 C P�1CT

V�1FTBT C CP�1 �V�1


< 0

Define the new variables X D P�1, U D V�1
, and L D FV�1, then the bilinear

matrix inequality (1.88) is transformed into a linear matrix inequality

TQTT D
	

XAT C AX BL C XCT

LTBT C CX �U



< 0 (1.89)

with unknown matrices X 2 Rn�n > 0, U 2 Rm�m > 0, and L 2 Rp�m. Notice
that the original variables can be recovered by inverting X and U and computing
F D LU�1.

Schur Complement

The main use of the Schur complement is to transform quadratic matrix inequalities
into linear matrix inequalities, as indicated in the following Theorem.

Theorem 1.7 (Boyd et al. 1994) Let F .x/ be a symmetric and affine function in x,
which is partitioned according to

F .x/ D
	
F11 .x/ F12 .x/
F T
12 .x/ F22 .x/




where F11 .x/ is square. Then F .x/ < 0 if and only if

�
F11 .x/ < 0

F22 .x/� F T
12 .x/ ŒF11 .x/�

�1F12 .x/ < 0
(1.90)

if and only if

�
F22 .x/ < 0

F11 .x/� F12 .x/ ŒF22 .x/�
�1F T

12 .x/ < 0
(1.91)

�
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The Schur complement result can also be generalized to nonstrict inequalities.
For symmetric matrix F .x/, the condition F .x/ � 0 is equivalent to

F22 .x/ � 0

F11 .x/� F12 .x/ F �
22 .x/ F

T
12 .x/ � 0

F12 .x/
�

I � F22 .x/ F
�
22 .x/


D 0

where F �
22 .x/ denotes the Moore–Penrose inverse of F22 .x/.

The second inequalities in (1.90) and (1.91) are nonlinear constraints in x. Using
this result, it follows that nonlinear matrix inequalities of the form (1.90) and (1.91)
can be converted to linear matrix inequalities. For example, based on the Schur
complement, the (maximum singular value) matrix norm constraint kZ .x/k < 1,
where Z .x/ 2 Rp�q and depends affinely on x, can be represented as the LMI

	
I Z .x/

Z.x/T I



> 0

since kZ .x/k < 1 is equivalent to I �Z .x/Z.x/T > 0. Similarly, the constraint

c.x/TP.x/�1c .x/ < 1; P .x/ > 0

where c .x/ 2 Rn and P .x/ 2 Rn�n depend affinely on x, can be expressed as the
LMI

	
P .x/ c .x/
c.x/T 1



> 0

Generalized Eigenvalue Problems

The generalized eigenvalue problem (GEVP) is to minimize the maximum general-
ized eigenvalue of a pair of matrices that depend affinely on a variable, subject to an
LMI constraint. The general form of a GEVP is

minimize �

subject to F1 .x/C �F2 .x/ > 0

F2 .x/ > 0

F3 .x/ > 0
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where F1, F2, and F3 are symmetric matrices that are affine functions of x. We can
express this as

minimize �max .F1 .x/ ; F2 .x//

subject to F2 .x/ > 0

F3 .x/ > 0

where �max .X;Y/ denotes the largest generalized eigenvalue of the pencil �Y C X
with Y > 0. This GEVP is a quasiconvex optimization problem since the constraint
is convex and the objective, �max .F1 .x/ ; F2 .x//, is quasiconvex. Note that when
the matrices are all diagonal and F1 .x/ and F2 .x/ are scalar, this problem reduces
to the general linear-fractional programming problem, that is, minimizing a linear-
fractional function subject to a set of linear inequalities. In addition, many nonlinear
quasiconvex optimization problems can be represented in the form of GEVPs with
appropriately defined F1, F2, and F3. As an example of a GEVP, consider the
problem

maximize ˛

subject to ATP C AP C ˛P < 0;P > 0

where the matrix A is given and the optimization variables are the symmetric matrix
P and the scalar ˛. (This problem arises in Sect. 7.3.)

1.3 Summary

In this chapter, an introduction to adaptive optics systems and their applications
is presented. Special focus is placed on the emerging area of ophthalmic imaging
where advanced adaptive optics system technology can be used to cancel the
high-order aberrations in the eye and obtain high-resolution retinal images of the
retina. The latter allow the early detection of ocular diseases. The shortcomings of
existing adaptive optics systems are discussed. Magnetic fluid deformable mirrors
are introduced, and the advantages they offer over conventional solid mirrors are
outlined. These advantages include low cost, large stroke of the wavefront corrector
deformable surface, the extremely smooth surface of the mirror, and the ease of
fabrication. The major contributions of this book, which is aimed at bridging the
critical gap between the concept of an MFDM and its application in adaptive optics
systems, for example, ophthalmic adaptive optics imaging systems, are summarized.
Background information related to MFDM system modeling is presented and
consists mainly of mathematical tools used in the derivation of MFDM analytic
model. A review of elementary concepts in linear control systems theory as well
as advanced modern multivariable control techniques used in this book, including

http://dx.doi.org/10.1007/978-3-642-32229-7_7
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optimal control and robust control techniques, is briefly summarized. The powerful
tool of linear matrix inequalities for approaching optimal control problems is also
covered briefly.
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Adaptive Optics Systems
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2.1 Introduction to Adaptive Optics Systems

The quality of images provided by an imaging system is affected by imperfections
in the optical path of light traveling from the object being imaged to the location
of the image. These imperfections could be represented by a nonuniformity in the
properties of the medium through which light travels or by imperfections in the
geometry of the optical components. The effects of these imperfections on the
light rays or waves, and consequently on the resulting image, are referred to as
aberrations. Some of these aberrations can be corrected using conventional optical
components. For example, lenses and mirrors have been used for centuries to correct
the static aberrations (Rubin 1986). However, more advanced solutions are needed
for the complex types of aberrations. Adaptive optics is one of these advanced
solutions, which utilizes adaptive optical elements called wavefront correctors to
compensate for the complex and dynamic aberrations (Tyson 2011; Hardy 1998;
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Roggemann and Welsh 1996). Adaptive optics systems have been successfully used
in astronomical seeing and free space laser communication systems to remove the
effects of atmospheric distortions and in retinal imaging systems to reduce the
impact of ocular optical aberrations.

AO was first envisioned by Horace W. Babcock in 1953 as a way to correct
for the effects of atmospheric turbulence in astronomical imaging (Babcock 1953),
but it did not come into common usage until advances in computer technology
during the 1990s made the technique practical. In outer space, spherical waves
emitted by the source (star) are essentially plane waves when they arrive at the
Earth’s atmosphere. The waves are then randomly distorted by turbulence in the
atmosphere. The turbulence is mainly caused by spatial and temporal variations
in the density of the atmosphere, aerosol scattering, and atmospheric temperature
fluctuations which induce the wind velocity changes, eddies, etc. Images produced
by any telescope larger than a few meters are blurred by these distortions. The
idea of compensating these distortions for astronomical telescopes using adaptive
optics systems was first introduced by Babcock, who proposed that the problem of
astronomical seeing could be solved by incorporating a mirror that provided the
possibility of canceling the distortions in the light waves collected for imaging
distant astral bodies. Interestingly, the type of wavefront corrector proposed by
Babcock was a liquid mirror formed by depositing a thin film of oil on the surface of
a mirror. Though this wavefront corrector called Eidophor controlled the wavefront
shape by changing the refractive properties of the film and hence is comparable to
the modern day spatial light modulators, it is remarkable that the first proposed AO
system was based on the concept of liquid mirrors. Babcock’s idea was not directly
put into practice, but it still remains the first published work on adaptive optics
systems.

The works of Fried (1966) and Greenwood (1977) are considered to be seminal
in defining the spatial and temporal requirements of AO systems. It was only in 1977
that the first AO system was realized for an astronomical application (Hardy et al.
1977). While the bulk of the research work published since then remains focused
on applications in astronomy, a parallel stream of research has been going on in
the field of high-energy lasers (HEL) intended for defense applications. The AO
systems used in HEL were aimed at reducing the effects of atmospheric turbulence
on the laser energy directed at long-range strategic targets. Due to the nature of
the HEL applications, significant research effort in this area has gone into the
concept of guide star (Happer et al. 1994; Feinleib 1982). A guide star is a source
of light which can be used as a reference for measurement of the aberrations to
be corrected using an adaptive optics system. In the early 1990s, a large part of
the research work conducted in the defense sector was made public (Tyson 2000).
The availability of this work triggered a surge in the astronomical applications
of AO systems. Almost all major astronomical telescopes were either retrofitted
with AO systems or provided with integrated AO systems in their design (Hart
2010; Roddier 1999; Paschall and Anderson 1993). As the technology matured, it
found applications in other areas. Adaptive optics has been successfully applied to
flood-illumination retinal imaging to produce images of single cones in the living
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Fig. 2.1 Illustration of a wavefront. (a) Circular wavefront; (b) planar wavefront

human eye (Roorda and Williams 2002; Hofer et al. 2001b). Combined with optical
coherence tomography and scanning laser ophthalmoscope systems, adaptive optics
has enabled the three-dimensional imaging of living cone and rod photoreceptors
(Zawadzki et al. 2011; Kocaoglu et al. 2011; Dubra et al. 2011; Ferguson et al. 2010;
Torti et al. 2009; Fernandez et al. 2008). Besides its use in improving astronomical
imaging and retinal imaging, adaptive optics technology has also been used in other
applications. Adaptive optics is used for solar astronomy at observatories such as the
German 1.5-m GREGOR solar telescope (Berkefeld et al. 2010) and the Swedish 1-
m solar telescope (Scharmer et al. 2002). It is also expected to play a military role by
allowing ground-based and airborne laser weapons to reach and destroy targets at
a distance including satellites in orbit. Adaptive optics has been used to enhance
the performance of free space optical communication systems (Vorontsov et al.
2010). Development of an Adaptive Scanning Optical Microscope (ASOM) using
the adaptive optics technology was announced by Thorlabs in April 2007 (Potsaid
and Wen 2008). In the future, it is believed that more and more new applications will
be found, which could benefit the engineering science in a diversified perspective.

Before expanding on the details of these AO systems, a brief description of the
concept of a wavefront and how the wavefront is related to optical aberrations is
presented in the following.

2.1.1 The Basic Concept of a Wavefront

For light waves originating from a point source and having the same wavelength,
a wavefront is defined as an imaginary surface that connects the points featuring
the same phase. Figure 2.1 illustrates the concept of a wavefront. As depicted in
Fig. 2.1a, the wavefront of the waves traveling unobstructed in a two-dimensional
plane is circular in shape. When allowed to diverge in all three dimensions, the
waves form perfect spherical wavefronts. If the point source of light is moved to
infinity, the waves become collimated and present a planar wavefront, as shown in
Fig. 2.1b. The waves with the planar wavefronts are called plane waves (Saleh and
Teich 2007).
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Fig. 2.2 Idealized
illustration of a deformed
wavefront

Ideally an imaging system should be able to project each point on the object being
imaged to a corresponding point in the image plane. However, none of the real-life
imaging systems are ideal. Even an optically perfect imaging system produces a
dispersed image of a point object where the dispersion pattern is called Airy disk,
and the system is termed as a diffraction-limited system (Born and Wolf 1997).
As the name suggests, such a perfect system is limited only by the phenomenon
of diffraction of light and is considered to have the theoretically best possible
resolution.

Besides diffraction, the resolution of an imaging system is affected by optical
aberrations introduced by the intervening medium between the object and the image
plane. These aberrations produce a blurred image of a point object and result in
a degradation of the resolution of images provided by the imaging system. The
concept of a wavefront as illustrated below provides a convenient tool that can be
used to know how the aberrations affect the resolution of the images provided by
the system.

The optical aberrations are caused by imperfections in the optical path of light
waves traveling between the object and the imaging plane. The imperfections affect
the optical path length (OPL) of the waves and result in the deformation of the
wavefront. The effect of aberrations on the wavefront of a plane wave is illustrated
in Fig. 2.2. As shown, the optical path difference results in a wavefront shape that
deviates from its planar shape.

The effect of optical aberrations on the resolution of the images provided by
an imaging system is directly related to their effect on the wavefront shape of
light waves traveling through the system. This phenomenon offers a black-box
approach to the imaging problem: if we know how the wavefront of a plane wave
is deformed by the imaging system, then we can fully predict how the image
will be formed (Roorda 2002). The deformation of the wavefront accounts for the
cumulative effect of all aberrations in the optical path. This approach not only
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provides a comprehensive method of describing the optical aberrations but also
offers an insight into the methods that can be used to rectify the effects of these
aberrations.

Aberrations can be defined as the departure from the idealized conditions of
Gaussian optics (Hetch 2002). Within this description aberrations fall into two
classes: monochromatic aberrations and chromatic aberrations. Monochromatic
aberrations are aberrations that occur because of the nature of the medium through
which light travels. For example, in the human eye the main types of monochromatic
aberrations include astigmatism, spherical, coma, and Petzval field curvature and
distortion. Chromatic aberrations arise when different colors of light propagate at
different speeds in a medium, a behavior that is due to the fact that the refractive
index is wavelength dependent. The classical treatment of Gaussian optics is based
on the assumption that rays of light proceeding from any object point unite in an
image point and therefore an object space is reproduced in an image space. This
permits the determination of the image of any object for any system. The Gaussian
theory, however, is only true as long as the angles ' made by all rays with the
optical axis (the axis of symmetry of the optical components such a lenses) are
infinitely small, namely, that the approximation sin ' � ' is satisfied, which is
usually called Gaussian theory or first-order theory. Similarly high-order theory uses
the approximation

sin ' D ' � '3

3Š
C '5

5Š
� '7

7Š
C � � � (2.1)

For example, if the first two terms in the expansion are retained as an approxima-
tion sin ' � ' � .'3=3Š/, we have then what is called third-order theory. In practice
these conditions are seldom realized, since rays from the periphery of a lens are
included in the formation of an image. The images then projected in uncorrected
systems are ill defined and often blurred by these aberrations. Departures from the
Gaussian theory (or first-order theory) result in the five primary aberrations (also
known as Seidel aberrations). These aberrations are known as spherical aberration,
coma, astigmatism, field curvature, and distortion. In addition to the first term, the
series in (2.1) contains many more, smaller, terms. The inclusion of such higher-
order terms results in additional higher-order aberrations, which are smaller than
the primary aberrations but must still be dealt with. For the static and low-order
aberrations, it is more direct and convenient to use geometric and paraxial theory,
and the readers can refer to Hetch (2002) for the details. However, for dynamic and
high-order aberrations, it is more convenient to describe them using wave optics
theory with basis functions.

2.1.2 Representation of Aberrations with Basis Functions

The aberrations can be analyzed using physical optics or wave optics, which studies
interference, diffraction, polarization, and other phenomena for which the ray
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approximation of geometrical optics is difficult or not valid. In adaptive optics, it is
convenient to study the wavefront aberrations, especially the high-order aberrations,
using electromagnetic wave theory. An electromagnetic wave can be mathematically
described by a complex function

u .r; t / D <
n
A .r/ ei'.r/ei2�f t

o
(2.2)

where u .r; t/ represents each component of the electric as well as magnetic field
vectors, < f
g denotes the real part of the complex function, r is a position vector
and is represented by .r; �/, f is the frequency, A(r) is the amplitude, and ' .r/ is
the phase of the wave. Equation (2.2) may be written as

u .r; t/ D < ˚
P .r/ ei2�f t

�
(2.3)

where P.r/ D A .r/ ei'.r/ is called complex amplitude of the wave. The time
dependence of the complex wave function (2.2) is related to the complex amplitude
P(r) by Helmholtz equation (see Saleh and Teich 2007 for details) and is therefore
considered to be known a priori. Consequently, the complex amplitude P(r) offers
an adequate description of a wave. At any given position r, the complex amplitude
P(r) is a complex variable whose magnitude is jP .r/j D A .r/, and the phase is the
argument ' .r/. A wavefront is defined as a surface where all the points have the
same phase ' .r/. The phase of the wave is related to its wavefront by

' .r/ D 2�

�
W .r/ (2.4)

where W(r) is a spatial function that expresses the shape of the wavefront and � is
the wavelength of the wave. For imaging systems, which transfer light waves from
an object to an imaging plane, the wavefront function W(r) is typically considered
as a two-dimensional spatial function measured in the exit pupil plane, as illustrated
in Fig. 2.3a. Exit pupil is the image of the aperture of an optical system formed
in the image space by rays emanating from a point on the optical axis in the
object space (Hecht 2002). Since most of the imaging systems have circular pupil,
polar coordinates have been chosen for the illustration and will be used in all
subsequent references to the wavefront function. Figure 2.3a shows the wavefront
of an aberrated wave comparing it to the wavefront of an ideal wave. Function
W(r,�) represents the wavefront shape of the wave as measured with reference to the
wavefront of the ideal wave. It is easier to visualize the wavefront function W(r,�)
in a pupil where the ideal wavefront shape is planar, as shown in Fig. 2.3b. Note
that the lines drawn perpendicular to the wavefronts can be considered as rays,
which determine the direction in which the segment of the wave is traveling and
the position where the image will be formed. For the ideal wavefront shown in
Fig. 2.3b, the image will be formed at infinity. The ideal spherical wavefront, as
shown in Fig. 2.3a, forms a point image at its center of curvature. The aberrated
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Fig. 2.3 Wavefront function of a distant point object

wavefront, on the other hand, results in the rays not converging to the ideal point
in the image plane and hence results in an aberrated image. The wavefront function
W(r,�) as measured in the exit pupil represents the cumulative effect of all optical
aberrations that may be present in the imaging system.

In vision science, it is customary to describe the optical aberrations in terms
of simpler forms of aberrations such as defocus, astigmatism, and coma. These
aberrations actually represent the various wavefront shapes, and the cumulative
effect of all aberrations in an imaging system can be described as a linear
combination of these simpler shapes. Mathematically, it amounts to writing the
wavefront function W(r,�) as a linear combination of simpler basis functions (also
called shape functions) representing different types of optical aberrations. Various
series of two-dimensional basis functions have been used to represent the wavefront
shapes. Seidel series, Taylor series, and Zernike polynomials are some of the popular
sets of basis functions. A generalized method of representing the wavefront shape
and two of the specific series of basis functions are described in the following
paragraphs.

2.1.2.1 Generalized Basis Functions

Analytically, the wavefront function W(r,�) may be written as a linear combination
of spatial basis functions Fi, i D 0, 1, 2, : : : , as

W .r; �/ D
1X

iD0
ciFi .r; �/ (2.5)

where ci is the expansion coefficient corresponding to the ith basis function. If the
set of basis functions Fi is complete (Kreyszig 1993), any two-dimensional surface
shape may be fully represented by an infinite series of these functions. However, it
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is a common practice to use a linear combination of only a finite number of basis
functions to represent a wavefront surface. For practical reasons, the chosen set of
basis functions often consists of orthonormal functions.

2.1.2.2 Seidel Series

Classically, optical aberrations are described in terms of primary aberrations
first studied systematically by Seidel (1856). The Seidel aberrations, as they are
generally referred to, are described by the following functions:

Si .r; �/ D Smn .r; �/ D rncosm� (2.6)

where i D 0; 1; 2; : : : ; is the order of the Seidel function and n D 0; 1; 2; : : : and
m D 0; 1; 2; : : : are termed the radial degree and azimuthal frequency, respectively.
The indices n and m must satisfy m 6 n, and n�m must be even. The single-index
i and the double-index n and m are related by

i D int

"�
n2 C 2nC 1

�

4

#

C int
hm
2

i
(2.7)

where int Œx� stands for the largest integer smaller than x and, the conversion from
the single-index to the double-index is given by

n D int
hp
4i C 1 � 1

i

m D 2i � int

	
n .nC 2/

2C 1



C 1

(2.8)

Important Seidel aberrations are illustrated in Fig. 2.4 and are described as
follows:

• Distortion. Distortion results from a variation of the magnification due to off-axis
field positions, that is, different parts of the object have different magnification.
This type of aberrations does not cause any blur in the image.

• Field curvature or defocus. This type of aberration causes the image to focus on
a curved plane. While defocus exists for both on-axis and off-axis positions, field
curvature is defined as an on-axis aberration. The aberration may be eliminated
by using a curved imaging surface or, more practically, using a spherical lens.

• Astigmatism. Astigmatism occurs when the tangential and sagittal foci of the
optical system do not coincide. Astigmatism is extremely important in vision
science and eye care, since the human eye often exhibits this aberration due to
imperfections in the shape of the cornea or the lens.

• Coma. When rays entering different off-axis parts of the pupil focus at different
points, the result is called coma. Coma causes a tear-like image for a point object.
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Fig. 2.4 Seidel aberrations. (a) Distortion; (b) Field curvature; (c) Astigmatism; (d) Coma; (e)
Primary spherical aberrations

Coma can be an inherent property of telescopes using parabolic mirrors due to
the off-center light source, where the different parts of the mirror do not reflect
the light to the same point.

• Spherical aberrations. Spherical aberration occurs when rays from periphery of
the pupil focus at a point different from the axis. In lens systems, the effect can
be minimized using special combinations of convex and concave lenses, as well
as using aspheric lenses.

2.1.2.3 Zernike Polynomials

The Zernike polynomials are a sequence of polynomials that are orthogonal on the
unit disk. Named after Frits Zernike, they play an important role in beam optics and
have been accepted in vision science as the standard for reporting of aberrations
(Thibos et al. 2000). The wavefront function W(r,�) of a wave with a pupil radius R
can be expressed fully in terms of Zernike polynomialsZi .�; �/ as

W .r; �/ D W .R�; �/ D
1X

iD0
ciZi .�; �/ (2.9)
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where � D .r=R/ is the normalized pupil radius and ci is the ith Zernike coefficient.
The Zernike polynomialsZi .�; �/ can be written as (Dai 2008)

Zi.�; �/ D Zm
n .�; �/ D <jmj

n .�/‚m .�/ (2.10)

where n D 0; 1; 2; : : : ; andm D 0;˙1;˙2; : : : ; are the radial degree and azimuthal
frequency, respectively. The indices n and m must satisfy m 6 n, and n � m must
be even. The radial polynomials <jmj

n .�/ are defined as

<jmj
n .�/ D

.n�jmj/=2X

sD0

.�1/s .n � s/Š�n�2s

sŠ Œ.nCm/=2 � s �Š Œ.n�m/=2 � s �Š (2.11)

and the triangular functions are defined as

‚m .�/ D
8
<

:

p
2 cos jmj � .m > 0/

1 .m D 0/p
2 sin jmj � .m < 0/

(2.12)

The first few nonzero radial polynomials are

<0
0 .�/ D 1

<1
1 .�/ D �

<0
2 .�/ D 2�2 � 1

<2
2 .�/ D �2

<1
3 .�/ D 3�3 � 2�

<3
3 .�/ D �3

<0
4 .�/ D 6�4 � 6�2 C 1

<2
4 .�/ D 4�4 � 3�2

<4
4 .�/ D �4

Figure 2.5 shows the wavefront shapes represented by the first ten Zernike
polynomials.

2.1.3 Optical Metrics of Aberrations

In the following, the important question of how different wavefront aberrations
affect the performance of an imaging system is addressed. There are various
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Fig. 2.5 Zernike polynomials. (a) Piston; (b) y-tilt; (c) x-tilt; (d) y-astigmatism; (e) defocus; (f)
x-astigmatism; (g) y-trefoil; (h) y-coma; (i) x-coma; (j) x-trefoil

methods that can be used to express the effect of a known wavefront aberration on
the quality of the resulting image. Some of these methods are based on the wavefront
function W(r,�) as measured in the pupil plane, while other methods are based on
calculations done in the image plane.

2.1.3.1 Pupil Plane Metrics

The wavefront aberrations can be most conveniently measured in the exit pupil plane
using a wavefront sensor or an aberrometer which samples the wavefront at discrete
locations in the pupil. The discrete measurements can be used to interpolate the
wavefront anywhere in the pupil by fitting the data using any of the series of basis
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functions discussed earlier. When the wavefront function W(r,�) is represented by
one of these series of basis functions, the diameter of the pupil and the coefficients of
the basis functions are the only quantities required to fully express the aberrations.

Root Mean Square Error

The most commonly used performance metric in the pupil plane is the root mean
square (RMS) of the wavefront function W(r,�). If the piston term (i.e., Z0

0 ) is
ignored, the RMS is the same as the standard deviation of the wavefront function
W(r,�). When the wavefront function W(r,�) is decomposed into Zernike polyno-
mials, the RMS of the function can be measured in terms of the coefficients ci as

� D
vu
u
t

JX

iD1
c2i (2.13)

where ci is the coefficient of the ith Zernike polynomial and J is the total number
of Zernike polynomials considered for the reconstruction of the wavefront. Similar
expressions can be found for the other basis function series types mentioned above.

Wavefront Refraction

This is an approximate measure of wavefront error and considers low-order
aberrations only. Wavefront refraction can be simply defined as the radial curvature
of aberration, the details of which can be found in Dai (2008).

2.1.3.2 Image Plane Metrics

Though hard to measure directly, the image plane metrics offer a more detailed
prediction of the performance of an imaging system. The following are the most
commonly used metrics which are defined in the image plane:

Point Spread Function

The point spread function (PSF) describes the response of an imaging system to a
point source or a point object. It can be expressed in terms of the distribution of the
irradiance that results from a single point source in the object space. As shown in
Fig. 2.6a, for a diffraction-limited optical system, the PSF can be visualized simply
as the diameter of the Airy disk pattern which is the resulting image of a point
source. The PSF of a typically aberrated system is shown in Fig. 2.6b. Sometimes,
it is more convenient to represent the PSF as a two-dimensional cross-sectional plot
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Fig. 2.6 Point spread function of (a) diffraction-limited wavefront versus (b) typically aberrated
wavefront

Fig. 2.7 Illustration of a 2D point spread function, Strehl ratio, and full-width-at-half maximum
(FWHM)

of the irradiance distribution function. Figure 2.7 shows the cross-sectional view the
PSF of a typically aberrated wavefront versus that of a diffraction-limited wavefront.
Analytically, the PSF of an optical system can be computed using Fraunhofer
approximation as follows (Goodman 2004):

PSF .r; �/ D K � j= .P .r; �//j2 (2.14)

where = .
/ represents the Fourier transform operator and K is a constant.
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Strehl Ratio

It is defined as the ratio of the maximum irradiance of an optical system over that of
a diffraction-limited optical system with the same pupil size and can be written as

S D imax

Imax
(2.15)

where imax is the maximum irradiance of the optical system and Imax is the maximum
irradiance of a diffraction-limited optical system with the same pupil size. Strehl
ratio can also be expressed as the ratio of maximum PSF value of an aberrated
system to that of a diffraction-limited system, as shown in Fig. 2.7. However, this
description makes sense only if the PSF of the aberrated system is not too badly
distorted. The higher the Strehl ratio, the better is the quality of image. The best
image quality is provided by a diffraction-limited system which has a Strehl ratio of
unity.

Full-Width-At-Half Maximum

The full-width-at-half maximum (FWHM) intensity of the PSF of an optical system
is another measure of its performance. FWHM is an expression of the extent of a
function, given by the difference between the two extreme values of the independent
variable at which the dependent variable is equal to half of its maximum value. The
metric is illustrated in Fig. 2.7. Generally, the smaller the FWHM, the better is the
quality of the resulting image.

Optical and Modulation Transfer Functions

These are measures of how much information is preserved, or modulated, from the
object space into the image space. Analytically, the optical transfer function (OTF)
of an imaging system can be computed using the Fourier transform of its PSF, the
details of which can be found in Goodman (2004). The modulation transfer function
(MTF) is the modulus of the OTF. For illustration purposes, MTF computed on the
same point spread functions, as presented in Fig. 2.6, is shown in Fig. 2.8.

2.1.3.3 Order of Aberrations

The simple aberrations such as defocus and astigmatism are categorized as the
low-order aberrations, while the more complex ones are known as high-order
aberrations. The exact definition of the order of aberrations depends on the series of
basis functions selected to describe the wavefront.
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Fig. 2.8 Illustration of the modulation transfer function of a diffraction-limited wavefront com-
pared to a typically aberrated wavefront. (a) Vertical. (b) Horizontal

The low-order aberrations are the main contributors to the overall loss of vision
or, in the case of imaging systems, to the degradation of the quality of images
provided by the systems. Though to a lesser extent, spherical aberrations, coma,
and other higher-order aberrations also contribute significantly to the loss of vision
or image quality.

In conventional optical systems, the low-order aberrations remain the major
focus of the corrective actions taken to improve the vision or image quality. Due to
relatively fewer performance benefits and higher complexity, correction of higher-
order aberrations has been limited only to advanced applications, for example, in
astronomy. However, with the significant developments in the imaging technology
and the associated systems, the correction of higher-order aberrations has now
become a viable—in many cases a necessary—feature.

2.1.4 Wavefront Aberration Correction

Having explained what a wavefront is, how it can be represented, and how it can be
used to measure the quality of an imaging system, we now turn to how the wavefront
aberrations can be corrected and how the correction enhances the quality of the
aberrated images. Central to the idea of wavefront correction is the concept of phase
conjugation as explained below (Dai 2008).

2.1.4.1 Phase Conjugation

The complex conjugate of the complex amplitude function P .r; �/ D
A .r; �/ ei'.r;�/ is A .r; �/ e�i'.r;�/, where .r; �/ represents position vector r as given
in (2.2). Analytically, if we multiply the complex amplitude functionA .r; �/ ei'.r;�/
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a

b

c

d

Fig. 2.9 Phase conjugation. Effect of (a) flat mirror on plane wave, (b) flat mirror on aberrated
wave, (c) deformed mirror on aberrated wave, and (d) refractive medium on aberrated wave. The
dotted lines in (a) to (c) represent the reflected wavefront

with the phase component of its complex conjugate (i.e., with e�i'.r;�/), the
phase of the complex amplitude function is canceled out. Since the phase of
the complex amplitude function represents the optical aberrations in the system,
the multiplication operation amounts to the cancelation of the aberrations, which
is the primary concern of the adaptive optics systems.

The concept is physically implemented by adding, to the original aberrated
wave, an optical aberration which has an equal but opposite phase, as illustrated
in Fig. 2.9. For a plane wave propagating toward a flat mirror, as shown in
Fig. 2.9a, the reflected wavefront is the same as the incident wavefront. In this
configuration, the mirror does not affect the phase of the wave but only reverses
the direction of propagation. Similarly, an aberrated wavefront becomes inverted
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due to the reflection from the mirror but otherwise maintains the same shape, as
shown in Fig. 2.9b. However, when the flat mirror is replaced by a deformed mirror
with a deformation half the magnitude of the incident wavefront, the reflected
wavefront becomes flat (Fig. 2.9c). A similar effect can be obtained by allowing
the aberrated wavefront to pass through a refractive medium which introduces a
wavefront aberration with the same phase but opposite sign as that of the incident
wavefront (Fig. 2.9d).

As described earlier, the aberrations in the wavefront result in an aberrated image.
Therefore, the possibility of canceling out the aberrations in the wavefront using the
principle of phase conjugation provides a direct means of improving the quality
of images provided by an imaging system. The systems that utilize the concept
of phase conjugation to compensate for the aberrations are called adaptive optics
systems. The idea of phase conjugation is not new and has been used for centuries in
the form of spectacles. The low-order aberrations in imaging systems are routinely
compensated for using conventional optical devices such as lenses and mirrors—a
manifestation of phase conjugation. However, the conventional optical components
are static components that do not have the capability to correct for the higher-
order aberrations. AO systems, on the other hand, make use of dynamic optical
components to compensate for high-order time-varying aberrations.

2.2 Operating Principle of an Adaptive Optics System

The basic setup of a typical AO system is shown in Fig. 2.10. The main compo-
nents of the system include a wavefront sensor, a wavefront corrector—usually a
deformable mirror (DM)—and a controller. As shown in Fig. 2.10, the aberrated

Fig. 2.10 A typical adaptive optics system
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light from the source or the object to be imaged is collected and is directed to
the wavefront sensor via the wavefront corrector. The wavefront sensor measures
the deformations in the wavefront of the incident light. The wavefront deformation
information is fed to a control system. The control system analyzes the information
and computes the necessary actuator commands. When these commands are applied
to the wavefront corrector, the wavefront corrector adjusts the shape of the mirror
surface to cancel out the aberrations in the incident wavefront. Normally the process
of measurement of wavefronts and application of commands to the wavefront
corrector are iterative in nature. When a specified degree of correction has been
achieved, the imaging system is activated to obtain images with enhanced quality.

In what follows, a brief description of the three basic components of an AO
system is presented.

2.2.1 Wavefront Sensors

Over the years, various wavefront sensing technologies such as interferometric
sensors, curvature sensors, and Shack–Hartman wavefront sensors have been used
(Tyson 2011; Hardy 1998). These wavefront sensors are described in the following:

2.2.1.1 Interferometric Wavefront Sensors

This type of wavefront sensors works on the principle of interferometry. The
wavefront measurement data is given in the form of an interferogram generated by
the interference of two wavefronts: a reference wavefront and the wavefront to be
measured. The shape and the magnitude of the latter are determined by reading the
fringe pattern resulting from the interference of the two wavefronts. A description of
the various types of interferometric wavefront sensors can be found in Tyson (2011).

2.2.1.2 Wavefront Curvature Sensors

A wavefront curvature sensor uses an array of small lenslets to focus the wavefront
into an array of spots (Kellerer 2010). The local phase curvature of the wavefront
is determined by measuring the relative intensities at two different places along the
axis of the beam—one before the focal plane and the other after the focal plane. The
curvature information is then utilized to obtain the wavefront shape.

2.2.1.3 Shack–Hartmann Wavefront Sensors

Recently, Shack–Hartmann wavefront sensor (SHWS) has emerged as the most
commonly used type of wavefront sensors, particularly in vision science. This
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a

b

Fig. 2.11 Working principle of a Shack–Hartmann wavefront sensor. (a) Perfect wavefront; (b)
aberrated wavefront

device samples the wavefront through an array of tiny lenslets. Each lenslet creates
a focused spot, which is captured by a CCD camera. The array of spots, when
sampling a planar wavefront, would form a uniform grid pattern, as shown in
Fig. 2.11a. On the other hand, if the wavefront is aberrated, the spots will not focus
on-axis in the focal plane of their corresponding lenslets but will deviate according
to the local slope of the wavefront, as illustrated in Fig. 2.11b. The displacement of
the spots from their on-axis position measures the local slope of the wave. Using this
displacement data, the complete wavefront shape can be reconstructed. Generally,
the data is fit on one of the series of two-dimensional spatial functions, as described
in Sect. 2.1.2. A detailed description of how the SHWS data is used to reconstruct
wavefront shape is given in Appendix C.

http://dx.doi.org/10.1007/978-3-642-32229-7_BM
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2.2.2 Wavefront Correctors

A wavefront corrector is the principal component of an AO system, which works
on the incident aberrated wavefront and cancels out the aberrations. There are two
basic types of wavefront correctors:

2.2.2.1 Spatial Light Modulators

This type of wavefront correctors uses arrays of liquid crystal micro-lenses (Huang
et al. 2011; Love et al. 2010; Mu et al. 2010; Fernández et al. 2009; Prieto et al.
2004). The phase of the light passing through the array can be controlled by
electronically or optically manipulating the refractive index of the individual micro-
lenses. The phase modulation provides the necessary means to control the wavefront
shape. The spatial light modulators (SLMs) are available in both reflective as well as
transparent modes. This type of wavefront correctors has the advantage of very high
spatial resolution provided by the extremely small liquid crystals. Since they are
based on the existing LCD technology, they also have a significant cost advantage
over the other types of wavefront correctors. SLMs are limited by the relatively
small magnitude of correction that they can provide. Another limitation is the
requirement of linearly polarized light since the liquid crystals can modulate only
light polarized along their axis.

2.2.2.2 Deformable Mirrors

Deformable mirrors (DM) have evolved as the most widely used wavefront cor-
rection elements in adaptive optics systems. These mirrors are characterized by a
reflective surface which can be locally deformed, hence providing a means to change
the wavefront shape of the reflected light. The main advantage of these mirrors is
their reflective nature that allows for a low loss of radiant energy and hence makes
them particularly suitable for applications where the intensity of light is, or needs to
be, low. Based on the type of reflective surface, DMs may be classified as segmented
or continuous type.

Segmented mirrors feature an array of mirror segments, each of which can be
individually controlled (Manzanera et al. 2011; Devaney et al. 2008; Helmbrecht
and Juneau 2007). Figure 2.12 shows a typical segmented mirror. Some of these
devices are piston only where each segment can be moved perpendicular to the
mirror plane typically using a single actuator. Others can be tipped and tilted and
are generally supported by three actuators per segment. Thanks to micromachining
technology, these mirrors can be fabricated with a very high density of segments. For
example, Boston Micromachines offers segmented mirrors named Multi-DM with
140 segments in 4.9-mm-diameter aperture and a stroke of 5.5 �m (Fig. 2.13). Most
segmented mirrors have relatively small stroke lengths. However, the segmented
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A A

View A-A

Fig. 2.12 Schematic of a
segmented deformable mirror

Fig. 2.13 140-actuator
segmented mirror (Photo
courtesy of Boston
Micromachines)

mirrors are known to have better operating speeds. The percentage of the surface
area of a segmented mirror covered by reflective segments is known as the fill
factor. Segmented mirrors with low fill factor are not preferred due to the loss
of energy at the discontinuities in their surface. The segments can be square or
hexagonal in shape. As each segment can be adjusted independently, these mirrors
are considered to be more suitable for correcting wavefront aberrations with higher
spatial frequencies (Hampson 2008).

Continuous mirrors are characterized by a flexible, continuous reflecting sur-
face which can be locally deformed using an appropriate actuation mechanism
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Fig. 2.14 Types of continuous surface mirrors

Fig. 2.15 Piezoelectric
deformable mirror (Photo
courtesy of OKO
Technologies)

(Zawadzki et al. 2011; Ödlund et al. 2010; Guzmán et al. 2010; Correia et al. 2010b;
Devaney et al. 2008; Vdovin et al. 2008). Typically when an actuator in a continuous
DM is activated, the surface deflection is not restricted to the area directly above that
actuator but extends to the whole mirror. Continuous mirrors remain the wavefront
corrector of choice for many applications because of the low loss of energy. Based
on the actuation mechanism, these mirrors may be further categorized into four
types, as shown in Fig. 2.14.

– Unimorph deformable mirrors: Fig. 2.14a shows a type of continuous surface
unimorph deformable mirrors which utilize piezoelectric actuators that expand
when a voltage is applied (Verpoort and Wittrock 2010). Example of this type of
mirrors is a 37-actuator mirror from OKO Technologies with 6-�m full surface
stroke (Fig. 2.15).

– Bimorph deformable mirrors: They consist of layers of piezoelectric materials,
as shown in Fig. 2.14b. By controlling the voltage applied to an electrode, the
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Fig. 2.16 37-actuator
membrane mirror (Photo
courtesy of OKO
Technologies)

curvature of the mirror surface can be changed, which serves the purpose of
a deformable mirror (Verpoort and Wittrock 2010; Rodrigues et al. 2009). A
35-actuator mirror with 15-mm diameter and 16-�m total stroke produced by
AOptix is the typical example of this category of deformable mirrors (Devaney
et al. 2008).

– Electrostatically actuated deformable mirrors: Fig. 2.14c shows an example of
membrane mirrors that utilize electrostatic forces to deform the mirror surface
coated on a flexible membrane. Electrostatic-driven deformable mirrors usually
do not have large strokes. OKO Technologies’ mirror with 37-actuators and
15-mm-diameter pupil is an example of this type of mirrors (Fig. 2.16). The
membrane clamped at its edges can provide up to 9-�m of peak-to-valley surface
deflections.

– Electromagnetically actuated deformable mirrors: Fig. 2.14d shows another
membrane-type mirror that utilizes electromagnetic force between small per-
manent magnets attached to the membrane and electromagnetic coils placed
underneath the magnets. A 52-actuator mirror with 15-mm-diameter pupil
offered by Imagine Eyes is an example of this type of mirrors (Fig. 2.17). The
mirrors are reported to have up to 50-�m surface deflections (Ödlund et al. 2010).

The different types of mirrors mentioned above have their trade-offs, some of
which have been investigated and reported in studies (Guzmán et al. 2010; Devaney
et al. 2008; Dalimier and Dainty 2005). The common drawbacks of these solid
thin plate or membrane-based mirrors are the high cost of per actuator channel
and the relatively low stroke deflection. Recently, a new type of liquid deformable
mirrors that uses magnetic liquids (ferrofluids) has been suggested by Borra et al.
(2009, 2008), Brousseau et al. (2010, 2006), and Iqbal et al. (2010, 2009), Iqbal and
Ben Amara (2008, 2007). Magnetic fluid deformable mirrors (MFDMs) have some
major advantages over solid ones, such as their extremely smooth surfaces, low cost
per actuator, large strokes, and ease of scalability compared to solid deformable
mirrors.
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Fig. 2.17 52-actuator
magnetic deformable mirror
(Photo courtesy of Imagine
Eyes)

2.2.3 Controllers

A controller is the vital link between the wavefront sensor and the wavefront
corrector in an AO system. Its function is to generate, based on wavefront aberration
measurements made by the wavefront sensor, a set of actuator commands that
are applied to the wavefront corrector to cancel the wavefront aberrations. Since
the wavefront correctors act on the wavefront shape of the incident wave, the
wavefront corrector control problem faced in AO can be generalized as a shape
control problem. Within the context of the DMs, the objective of the shape control
is to obtain a shape for the mirror that best tracks the shape required to cancel the
aberrations.

A wide range of controllers for AO systems have been reported in the literature.
The controllers used in AO systems can be broadly grouped as proportional–
integral–derivative (PID) type controllers, optimal controllers, and adaptive con-
trollers. A brief review of these controllers is presented as follows:

2.2.3.1 PID Controllers

Most AO systems make use of proportional–integral–derivative (PID) feedback
compensators (Stein and Gorinevsky 2005; Huang et al. 1995b; Downie and
Goodman 1989). The objective of these systems is to drive the residual wavefront
error to zero. Traditionally, single-input single-output (SISO) integral or PID
controllers are developed for a single actuator. The controller is then duplicated for
each actuator in the wavefront corrector. The design of these controllers used in AO
systems is typically based on DC model (static gain) of the wavefront corrector. The
DC model is experimentally obtained by measuring the wavefront shape resulting
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from applying a constant input to each of the actuators. The resulting input–output
map is usually referred to as the influence function of the wavefront corrector and
is employed to determine the necessary control input for the wavefront corrector.
Traditionally, either proportional or proportional-plus-integral structure is employed
to provide updates of the inputs when using the influence-function-based controllers
(Tyson 2011; Hardy 1998).

2.2.3.2 Optimal Controllers

Optimal controllers employ mathematical optimization methods to obtain the
controller parameters that provide a specified performance objective such as the
minimization of the wavefront shape error. A number of control algorithms used
in AO systems employ linear quadratic Gaussian (LQG) criterion which seeks
to minimize a quadratic cost function and, thus, determine the controller that
minimizes the error between the actual shape and the desired shape of the wavefront
corrector (Raynaud et al. 2011; Correia et al. 2010a; Petit et al. 2009; Looze 2009;
Kulcsár et al. 2006; Wiberg et al. 2004a, b). H2 and H1 based optimal controllers
that seek to optimize the desired system norms of the overall system have also been
reported in the literature (Hinnen et al. 2008, 2007; Baudouin et al. 2008; Voulgaris
et al. 2003).

2.2.3.3 Adaptive Control

Due to the dynamic nature of the aberrations in most of the applications of AO
systems, the shape control problem addressed in AO is the tracking of an unknown
and time-varying shape for the wavefront corrector (i.e., desired shape of the
mirror). Since the desired shape of the wavefront corrector is unknown and time
varying, the controller must be tuned online to converge to the controller needed to
achieve the desired control objective. This type of controllers whose parameters can
be tuned online is called adaptive controllers. They are a relatively recent addition
to the list of controllers used in AO systems and are expected to improve the
performance and play an important role in the future AO applications (Ficocelli
and Ben Amara 2012; Monirabbasi and Gibson 2010; Liu and Gibson 2007).

Using the above-mentioned methods, the controller design is usually imple-
mented with one of the three control architectures: decentralized, centralized, and
distributed.

2.2.3.4 Decentralized Control

In decentralized controllers, an array of single-input single-output controllers is
used. Each controller is driven by the residual wavefront error corresponding to a
single spatial location on the wavefront. The output of the controller is used to drive
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only one actuator. Decentralized controllers are easy to implement. However, their
performance is limited since each individual controller makes use of only partial
residual wavefront error information.

2.2.3.5 Centralized Control

A centralized controller uses all the measurement data from the sensor to simulta-
neously compute the control inputs to all the actuators in the wavefront corrector.
The controller is typically designed based on an optimal performance criterion
such as LQG, H2, or H1 design criteria. Centralized controllers achieve the best
performance results but are computationally expensive. The implementation of the
centralized controller may not be feasible for systems with a large number of
actuators.

2.2.3.6 Distributed Control

Distributed control is sometimes referred to as localized control (Fraanje et al.
2010; Ellenbroek et al. 2006). With the increase in the number of actuator used
in deformable mirrors, such as those used in the extremely large telescope system
with a diameter more than 30 m, the computational requirements of centralized
optimal control laws may be excessive. If the deformable mirror has a spatially
invariant dynamics, then the system model can be decomposed into a number of
identical subsystems. A distributed control strategy can then be used to control each
subsystem with less computation cost. A localized controller only uses information
from several neighboring sensors to generate commands to a given actuator, and the
complexity of the localized control algorithm does not increase with the size of the
mirror.

A more detailed overview of the control approaches for adaptive optics systems
is presented in Chap. 6.

2.3 Retinal Imaging Adaptive Optics Systems

One of the most interesting applications of adaptive optics systems involves oph-
thalmic retinal imaging systems. The introduction of AO systems into ophthalmic
imaging systems started more than two decades ago (Dreher et al. 1989). Research
studies conducted since then have shown that the quality of images provided
by ophthalmic imaging systems can be significantly improved by augmenting
them with AO systems. Some of these initial studies have resulted in important
breakthroughs in vision science (Zawadzki et al. 2011; Kocaoglu et al. 2011;
Ferguson et al. 2010; Chen et al. 2007; Artal et al. 2004).

http://dx.doi.org/10.1007/978-3-642-32229-7_6


2.3 Retinal Imaging Adaptive Optics Systems 69

Fig. 2.18 Potential benefit of correcting the higher-order aberrations in the eye (Liang and
Williams 1997)

The eye is an imaging system that forms one of the primary faculties of
the human sensory system. It has long been known that the normal human eye
suffers from many different aberrations that affect the vision of the individual.
The most common aberrations in the human eye are defocus and astigmatism.
The normal eyes are also known to suffer from additional aberrations such as
spherical aberrations, coma-like aberrations, and a host of irregular aberrations. The
uncorrected aberrations in the eye not only affect what it can see but also determine
the smallest internal structures that can be observed when looking into the eye. The
various imaging technologies, which are used to examine the internal parts of the
eye, are affected by this phenomenon. Specifically, the naturally existing aberrations
in the eye degrade the quality of the retinal images obtained by the various available
technologies such as funduscopy, scanning laser ophthalmoscopy (SLO), and optical
coherence tomography (OCT) (Godara et al. 2010; Hampson 2008).

Figure 2.18 shows the margin of improvement in the image quality that can be
achieved by correcting higher-order aberrations (Liang and Williams 1997). Shown
in the figure is the best MTF of the eye averaged over 14 eyes with 3-mm pupil
with an optimal correction of defocus and astigmatism. This represents the best
image quality that can be achieved by rectifying the low-order aberrations only.
Now compare it to the ideal MTF of the eye with an 8-mm pupil blurred only
by diffraction, which represents the best image quality with all the aberrations—
including the high-order aberrations—compensated for. The figure shows that finer



70 2 Adaptive Optics Systems

spatial details can be observed in a diffraction-limited eye with a dilated pupil as
compared to an aberrated eye with a regular pupil size. The shaded area between the
two plots shows the range of image contrasts and spatial frequencies (resolution)
that are available for imaging of the retina only if the high-order aberrations are
corrected. This clearly shows the need of a system that can be used to compensate
for the high-order aberrations in the eye and has been the driving force behind
research efforts made over the years to incorporate AO systems in ophthalmic
imaging systems.

2.3.1 Correction of the Aberrations in the Eye Using AO
Systems

It is established that the correction of high-order aberrations in the eye carries
significant visual and image quality benefits. This has been the driving force
behind a number of research efforts undertaken during the last decade in order to
integrate AO in systems ranging from funduscopes to laser surgery systems. A brief
exposition of the ophthalmic technologies which have benefited from AO systems
is presented in the following.

2.3.1.1 Retinal Imaging

The most extensively used application of AO in the eye is retinal imaging, which
provides high-resolution images of the living retina. The ability to examine in vivo
the minute details of the retina tissue allows for the early detection and regular
monitoring of retinal diseases. There are three main imaging modalities which have
thus far been utilizing AO systems (Godara et al. 2010; Hampson 2008).

Flood-Illumination Ophthalmoscopy

This is the most commonly used and straightforward imaging technique that
combines AO with direct imaging of the retina. It employs a low-coherence source
of light which illuminates a localized patch of retina. A CCD camera placed in
conjugation with the retinal plane is used to collect the light reflected from the
retina and take the image of the illuminated patch. Figure 2.19 shows the layout
of a basic retinal imaging system augmented with AO. A light beam with a planar
wavefront originating from a light source—usually a laser or a super-luminescent
diode (SLD)—is directed to the retina of the eye. The light reflects from the retina
and exits the eye as a beam having an aberrated wavefront—the aberrations being
induced by the sources mentioned earlier. The beam is directed to the DM, and the
reflection from the mirror is detected by the wavefront sensor. The wavefront sensor
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Fig. 2.19 A typical retinal imaging adaptive optics system

measures the magnitude of the aberrations over the whole pupil. The measurements
are fed to a control system which computes the appropriate command signals for the
DM. The signals, when applied to the DM, deform the shape of the mirror surface
such that the aberrations in the wavefront of incident beam are iteratively canceled
out. When a desired level of cancelation or correction is achieved, an illumination
source such as a flash lamp is turned on. The light from this source floods the retina
of the eye and is reflected back following the same path as that of the laser/SLD
light. A dichroic mirror reflects the light to the imaging system which collects the
image of the retina. Note that the flood light reflected from the retina still carries the
aberration as it exits the eye. Before reaching the camera, however, the aberrations
are canceled out by the DM which now is appropriately deformed to do so.

Scanning Laser Ophthalmoscopy

It may be noted that the ophthalmoscope described above provides no depth
resolution on the retinal tissue and AO augmentation enhances only the transverse
resolution of the images. Scanning laser ophthalmoscopy (SLO), on the other hand,
is an imaging technique which also offers axial resolution, that is, the layers beneath
the surface of the photoreceptor cells can be distinctly imaged. SLO utilizes a laser
beam which is scanned across the retina, and the image is built up point by point.
As shown in Fig. 2.20, the reflected light is made to pass through a small aperture
called confocal pinhole, which is placed in conjugation with the retinal plane. This
arrangement increases the contrast level of focused axial location by preventing
light reflected from other layers of the retinal tissue from passing through and hence
offers the desired depth resolution. An SLO can be augmented with an AO system
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Fig. 2.20 The working principle of a scanning laser ophthalmoscope

by introducing a wavefront sensor and a wavefront corrector in the optical path. The
wavefront sensor utilizes the same light as used for the basic SLO. The wavefront
corrector is inserted into the optical system such that the wavefront aberrations
introduced by the eye are canceled out before the reflected laser light passes through
the pinhole and is detected by the image detector.

Optical Coherence Tomography

Optical coherence tomography (OCT) is a technique for obtaining subsurface
images of translucent or opaque materials at a resolution equivalent to a low-power
microscope. By effectively filtering the scattered light using optical coherence
technology, cross-sectional images are obtained using the coherence light reflected
from 1 to 2 mm below the surface in biological tissue. OCT systems offer submicron
imaging resolution in both the transverse and axial directions of the retinal images,
mostly performing better than SLO. An OCT system is based on interferometric
principle and uses a Michelson interferometer in conjunction with a low-coherence
light source (Zhang et al. 2005). OCT systems have been devised in two different
types: time-domain OCT and spectral OCT.

2.3.2 History of Ophthalmic Adaptive Optics Systems

Shortly after Babcock (1953) introduced the concept of AO in astronomy, Smirnov
(1961) suggested the idea of correcting the high-order aberrations in the eye,
probably independently from the existing ideas in astronomy. However, it was not
until late 1980s that this idea could be put into practice. Dreher et al. (1989) were
the first to use a deformable mirror to improve the quality of images provided
by scanning laser ophthalmoscope, though they corrected static astigmatism
only. Artal and Navarro (1989) achieved measurement of inter-center distance
between photoreceptor cones using speckle interferometry, a method well known
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in astronomy. Miller et al. (1996) were the first to obtain direct images of the
retina using a high-resolution fundus camera. Though they corrected defocus and
astigmatism only, they were able to obtain up to 3.5-�m resolution. The real
breakthrough came when Liang et al. (1994) demonstrated that the Shack–Hartman
wavefront sensor could be used to measure the ocular aberrations. This prompted a
number of studies that sought to provide wavefront correction promising diffraction-
limited images of the retina.

Liang et al. (1997a, b) incorporated the Shack–Hartman wavefront sensor
in an AO system and obtained images with unprecedented high resolution. By
correcting the higher-order aberrations, they were able to obtain images with enough
photometric accuracy to identify microscopic structures as small as the single cone
cell. They reported up to 3.2-fold improvement in the transverse resolution over
that of a 2.5-mm pupil. Significant enhancements in the contrast sensitivity of the
eye were also reported. Hofer et al. (2001a, b) were the first to study and correct
temporal variations in the ocular aberrations using closed-loop AO systems. They
reported threefold improvements in Strehl ratio and up to 33% increase in contrast
of the images of the cone photoreceptors. They reported dynamic compensation of
up to fifth-order Zernike polynomials with frequency up to 0.8 Hz.

The newfound capability of measuring and correcting the high-order aberra-
tions in the eye has facilitated developments such as the identification of the
arrangement of the three classes of photoreceptor cells (Roorda and Williams
1999), psychological testing of the functioning of vision at the neural level (Artal
et al. 2004), and finding alternate causes of color blindness (Carroll et al. 2004).
Beside direct retinal imaging, OCT and SLO too have benefited from AO. Optical
coherence tomography remains one of the most promising applications of AO
systems (Kocaoglu et al. 2011; Mujat et al. 2010; Torti et al. 2009; Zhang et al.
2005). Moreover, when incorporated into a scanning laser ophthalmoscope (SLO),
AO systems have significantly improved the lateral resolution of this type of
ophthalmoscopy (Dubra et al. 2011; Ferguson et al. 2010; Mujat et al. 2009; Zhang
et al. 2006).

2.3.3 Challenges to Ophthalmic Adaptive Optics Systems

Despite the demonstrated potential of the ophthalmic AO systems, the use of these
systems has been limited only to research studies, and they are still not available
for the widespread clinical imaging applications. Some of the relevant problems
impeding the accessibility of these systems are as follows:

• High Stroke Requirement. A set of generalized requirements for ophthalmic
applications of wavefront correctors is presented in Doble and Miller (2006).
One of the most significant requirements of the wavefront correctors is the
unusually high stroke needed to compensate for the large magnitude (peak-
to-valley path length difference) of the wavefront aberrations in the eye. For
a deformable mirror with the proposed size of 10-mm diameter, Doble and
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Williams (2004) suggest a minimum of ˙12 �m of surface deflection as needed
to compensate for the typical aberrations in the eye. For specific applications,
Doble and Miller (2006) report a requirement of deformable mirror strokes as
high as 53 �m. A survey of the wavefront correctors being used in ophthalmic
AO systems is presented in Zawadzki et al. (2011) and Devaney et al. (2008).
Few of the surveyed wavefront correctors meet the requirements of ophthalmic
AO systems, as mentioned above. Only recently magnetic deformable mirrors
with sufficient stroke have been reported (Zawadzki et al. 2011). Currently, a
number of strategies are being used to work around the requirement of a large
stroke. Some of these strategies include use of optical components, such as Badal
optometer (Chen et al. 2006) and Alvarez lens pairs (Evans et al. 2009; Alvarez
et al. 1967), to separately compensate the low-order aberrations, cascading of
two deformable mirrors (Zou et al. 2011; Li et al. 2010; Zawadzki et al. 2009),
and double incidence of the aberrated wave on the deformable mirror (Webb
et al. 2004). All these strategies add to the complexity, size, and cost of the AO
system. Therefore, a wavefront corrector that could provide a large peak-to-valley
wavefront correction is needed.

• High cost of the current AO systems is another major impediment to the
widespread accessibility of these systems in ophthalmic imaging systems. For
wavefront correctors to be available for the routine ophthalmic imaging, Doble
and Miller (2006) and Doble and Williams (2004) suggest an average cost of $10
or lower per actuator is expected for the deformable mirrors. With the relatively
high cost of current wavefront correctors, only a significant cost reduction will
render these systems viable for wide applications in ophthalmic imaging systems.

Both of the above-mentioned problems that impede the widespread adoption
of AO systems in ophthalmic imaging systems may be addressed using the
recently developed magnetic fluid deformable mirrors that are discussed in detail
in the following chapters.

2.4 Summary

A review of the literature on adaptive optics systems and their applications in
ophthalmic imaging systems has been presented in this chapter. The fundamental
motivation of adaptive optics systems is presented, and a brief history of adaptive
optics systems is reviewed. In order to better understand the details of adaptive
optics systems, the basic concept of a wavefront and how the wavefront is related
to the optical aberrations are discussed in the framework of physical optics. The
representation of wavefront aberrations using electromagnetic wave theory and the
expression of the aberrations using orthonormal basis functions are introduced. The
standard optical metrics that can be used to express the effect of a known wavefront
aberration on the quality of the resulting image is presented. The operating principle
of adaptive optics systems is briefly described. The basic setup of a typical adaptive
optics system is illustrated, where the three main components of the systems,
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namely, the wavefront sensor, the wavefront corrector, and the controller, are
outlined in detail. A brief exposition of the ophthalmic technologies which have
benefited from adaptive optics systems is also presented. The nature of optical
aberrations in the eye is summarized, and the role and challenges associated with
the use of AO in ophthalmic imaging systems are reviewed to provide one example
of the motivations for considering AO systems based on magnetic fluid deformable
mirrors.
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3.1 Brief History of the Development of MFDMs

The continuing improvements in optical mirror technology have resulted in sig-
nificant progress in the astronomical imaging in the past few decades. Telescopes
with mirrors up to 60 m in diameter are currently being planned. Most of the new
generation of telescopes would use solid primary mirrors. However, the cost to
produce such large solid mirrors is very high. It is therefore worthwhile to explore
alternative technologies to produce different mirrors at a reduced cost. Liquid
mirrors have been proposed as an alternative to conventional solid mirrors. The idea
of using a liquid mirror is more than a century old (Wood 1909). However, it was
only in the late 1980s that the concept was put into practical use. The exceptionally
good surface qualities of liquids led NASA to use liquid-mirror telescopes (LMTs)
for several astronomical applications (Cabanac and Borra 1998; Hickson and
Mulrooney 1997; Wuerker 1997). Liquid mirrors take advantage of the fact that
liquid surfaces are very smooth that need not to be polished, and that the support
system is just a simple container, which results in inexpensive perfect optical quality
surfaces. For example, a rotating liquid takes the parabolic shapes that could give
inexpensive high-quality parabolic mirrors. Most liquid-mirror telescopes on Earth
have used mercury. Mercury remains molten at room temperature, and it reflects
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Fig. 3.1 A 6-m mercury-based liquid mirror for the Large Zenith Telescope at the University of
British Columbia (P. Hickson, University of British Columbia)

about 75% of incoming light, almost as good as silver. The NASA Orbital Debris
Observatory was the first to operate a liquid-mirror telescope with a 3-m diameter
for an extended period of time to observe space debris. It operated continuously for
8 years and yielded useful astronomical research results. The biggest liquid-mirror
telescope on Earth, the Large Zenith Telescope operated by the University of British
Columbia in Canada (Fig. 3.1), is 6 m across—a diameter 20% larger than the
famous 200-in. mirror of the Hale telescope at Palomar Observatory in California.
When completed in 2005, the liquid-mirror telescope cost less than $1 million
to build—only a few percent the cost of a solid-mirror telescope with the same
diameter. However, the rotating liquid mirrors can only produce parabolic shapes
and will also be limited by winds generated by the rotation of the mirror itself.

The other progress of LMTs led to the idea of deforming liquid mirrors to obtain
mirror shapes other than a parabola. Shutter and Whitehead (1994) proposed to
use magnets to reshape the classical mercury-based parabolic mirror into a sphere.
They used an amalgam of iron and mercury to influence the liquid bulk by applying
a magnetic field. Ragazzoni and Marchetti (1994) proposed the first adaptive liquid
mirror that used an electrically conducting metallic reflective liquid that could carry
a current and was shaped by a number of current-carrying coils. However, mercury
suffers from serious limitations when subjected to a magnetic field to deform its
surface shape. First, it is very difficult to obtain a stable mercury-based ferrofluid
due to its chemistry properties (Rosensweig 1997). Second, the high density of
mercury necessitates very large electromagnetic force to achieve even minimum
required surface deflections. This requirement of large force means prohibitively
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large currents running through the electromagnetic coils used to generate the
magnetic field. Attempts to deform mercury by running currents through the liquid
suffered from yet another drawback, that is, joule heating of the liquid (Borra 2009).

Confronted with these limitations of mercury, researchers came up with an
innovative new technology that utilized the concept of ferrofluid deformation shaped
with magnetic fields. Though the idea of these magnetic fluid deformable mirrors
is quite recent, they have been appraised by a number of preliminary studies as
a promising future technology (Brousseau et al. 2011, 2010; Parent and Thibault
2011; Parent et al. 2009; Iqbal et al. 2010a, b, 2009; Iqbal and Ben Amara 2008;
Borra et al. 2008). Borra et al. (2008) have experimented with adaptive ferrofluidic
mirrors coated with colloidal silver particles and shaped with magnetic actuators.
Ferrofluids are ordinary liquids such as water or oil. Ferromagnetic nanoparticles
coated with a chemical agent that prevents coalescence are then added into the liquid
carry, which is thus rendered ferromagnetic so that its surface can be shaped by an
externally applied magnetic field. The low density of carrier fluids such as water
and oils offered a great advantage over mercury since the current requirements
for the deformation of these liquids are orders of magnitude lower than those for
mercury. Compared to mercury, a ferrofluid has a relatively poor reflective surface;
however, this can be improved by spreading nanoengineered reflective colloidal
films based on interfacial films of silver particles known as metal liquid-like films
(MELLFs) on the surface of the liquid (Borra et al. 2008; Gingras et al. 2006).
MELLFs combine the properties of metals and liquids, thus can be deformed
and well adapted to applications in the field of liquid optics. These developments
prompted a number of studies that explored the possibility of using the MFDMs
in applications ranging from extremely large LMTs to ophthalmic AO systems.
Their main advantages are that they are inexpensive and can produce very large
deformations. The initial studies reported thus far show that these mirrors can easily
provide tens of micrometers of surface deflection (Iqbal et al. 2009; Borra et al.
2008; Laird et al. 2006). It can be foreseen that ferrofluids could be used to make
cost-competitive MFDMs with scalable dimensions and thousands of actuators
capable of strokes ranging from nanometers to hundreds of microns. However,
despite the initial success and promising future prospects, MFDMs have yet to see
a practical application owing to some critical impediments as discussed in Sect. 3.3,
which mainly motivated the research work presented in this book.

3.2 Principle of Operation

The free surface of a liquid follows an equipotential surface to a very high degree
of precision. This characteristic of liquids can be exploited to deform their surface
to any desired shape. The process of shaping the free surface may be controlled by
varying one or more of the force fields that contribute toward the potential level.
Magnetic fluids are a class of liquids which respond to variations in magnetic field,
and hence their surface shape can be controlled by controlling the magnetic field
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Fig. 3.2 The basic principle
of a magnetic fluid
deformable mirror

Fig. 3.3 Schematic diagram of a magnetic fluid deformable mirror

that they are exposed to. If a beam of light incident on the free surface of a magnetic
fluid can be adequately reflected, the surface of the fluid can be utilized to control
the shape of the wavefront of the reflected light, that is, the magnetic fluid surface
can be used as a deformable mirror.

Figure 3.2 shows the working principle of an MFDM in its simplest form. The
device comprises a thin layer of a magnetic fluid which, under the effect of gravity
alone, features a planar free surface. When exposed to a magnetic field, such as the
one created by a small magnet, the surface deforms to a new equipotential surface
now supported by both gravity and the magnetic field. A more practical device is
obtained by using electromagnetic coils to generate the magnetic field, which can be
locally varied by controlling the currents applied to the individual coils. The varying
magnetic field in turn affects the equipotential surface, thus providing a means to
control the shape of the magnetic fluid surface. The schematic diagram of one such
device is shown in Fig. 3.3. The deformation of a ferrofluid in a static magnetic field
is determined by the equilibrium between gravity and the force on the liquid arising
from the applied magnetic field B. The deformation amplitude can be approximated
by (Brousseau et al. 2006)

h D .�r � 1/
2�r�0�g

�
jB � Onj2 C �r jB � Onj2



where � and �r are the density and the relative permeability of the ferrofluid, On
is a unit vector normal to the surface of the liquid. The source of the external
magnetic field B can come from permanent magnets or current-carrying wires and
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Fig. 3.4 MELLF-coated ferrofluid produced by Laval University. (a) Ferrofluid without a mag-
netic field. (b) Ferrofluid deformed by the magnetic field of a permanent magnet located underneath
the container (Borra et al. 2009)

is the sum of all the individual magnetic fields produced by the actuators. It can be
seen that the above equation is nonlinear with respect to the external magnetic field
and depends on the vectorial addition of each magnetic field component produced
by the corresponding actuators. This means that linear control algorithms used in
conventional AO systems are not suitable to use with MFDMs due to the nonlinear
response of the MFDM surface shape to the applied magnetic field. Furthermore, the
equation shows that the surface deformations are proportional to the square of the
applied magnetic field; therefore, only unidirectional deformations can be produced
on the mirror surface, which means the actuators can only push not pull the mirror
surface.

Typically, magnetic fluids have poor reflectivity and hence cannot be used as a
functioning mirror. This limitation can be successfully overcome by using films
of reflective particles thin enough that they pose no significant challenge to the
deformation of the fluid but greatly enhance the reflectance of the deformable
surface. Figure 3.4 shows an MELLF-coated magnetic fluid produced by Borra
et al. (2009) in Laval University. The figure compares the magnetic fluid without
a magnetic field to the same surface after it was deformed by several millimeters
through the application of magnetic field from a permanent magnet located under
the container. The relevant aspects of the magnetic fluids used in MFDMs and the
reflective films are described in the following paragraphs.

3.2.1 Magnetic Fluids

3.2.1.1 Description

Magnetic fluids—also called ferrofluids—were originally discovered in the 1960s
at the NASA Research Center, where scientists were investigating different possible
methods of controlling liquids in space as the basis for a spacecraft’s attitude control



86 3 Magnetic Fluid Deformable Mirrors

Fig. 3.5 Schematic representation of magnetic particles coated with surfactants

system. The benefits of using a magnetic fluid arise from the fact that the location of
the fluid could be precisely controlled through the application of a magnetic field,
and by varying the strength of the field, the fluid could be forced to flow, thus change
the angular momentum and influence the rotation of the spacecraft. Magnetic fluids
are stable colloidal suspensions of nano-sized, single-domain ferri-/ferromagnetic
particles. When subjected to a magnetic field, the suspended particles affect the
flow properties of the carrier fluid. As mentioned earlier, one of these effects is
the variation of the fluid free surface shape, which has been exploited to develop
deformable mirrors.

Depending on the type of the carrier fluid used, the magnetic fluids can be
broadly categorized as water-based and oil-based systems. In most technological
applications of magnetic fluids, the magnetic particles are obtained from one of a
number of different ferrites. Researchers have prepared ferrofluids containing small
particles of ferromagnetic metals, such as cobalt and iron, as well as magnetic
compounds, such as manganese zinc ferrite. But by far, the most commonly used
ferrites are magnetite (Fe3O4) and maghemite (”-Fe2O3). The typical size of these
particles is 10 nm in diameter. This is small enough for thermal agitation to disperse
them evenly within a carrier fluid and for them to contribute to the overall magnetic
response of the fluid.

Since the individual magnetic particles are in a permanent state of saturation
magnetization, there exists a strong magnetostatic attraction between the particles
and, as a result, the particles tend to agglomerate in the carrier fluid. To avoid the
agglomeration, the magnetic particles are coated with surfactants (Fig. 3.5), which
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introduce an entropic repulsion between the particles resulting in stable suspensions
of the particles. The magnetic attraction of nanoparticles is weak enough that the
surfactant’s van der Waals force is sufficient to prevent magnetic clumping or
agglomeration. Ferrofluids usually do not retain magnetization in the absence of
an externally applied field and thus are often classified as superparamagnets. In
some applications, the repulsive mechanism is achieved by charging the surface of
the particles, which produces an electrostatic repulsion. Ideal ferrofluids are stable,
which means that the magnetic particles do not agglomerate or could separate
even in extremely strong magnetic fields. However, the surfactant tends to break
down over years; therefore, the magnetic particles may eventually agglomerate and
separate out, and the fluid will no longer respond to the applied magnetic field.

3.2.1.2 Properties

There exists a vast selection of fluids which may be utilized as carriers in the
magnetic fluids. Similarly, a considerable degree of freedom may be exercised
when choosing the magnetic particles and surfactant material properties. The choice
of materials allows for a very wide range of properties that can be built into a
desired magnetic fluid. Density, viscosity, surface tension, magnetic permeability,
and saturation magnetization are some of the properties of a magnetic fluid that can
be varied according to the requirements of an intended application. The response
of an MFDM depends on the properties of the magnetic fluid selected for the
application. The surface deflection resulting from applying a given magnetic field is
a function of the fluid properties such as density, magnetic permeability, and surface
tension.

Owing to the incompressible nature of the commonly used carrier fluids, most
of the magnetic fluids can be characterized as incompressible. However, when
exposed to a high enough magnetic field, they exhibit a unique behavior showing
compression of the bulk fluid. This phenomenon is called magnetostriction which
is a property of ferromagnetic materials that causes them to change their shape or
dimensions during the process of magnetization.

When exposed to a uniform, vertical magnetic field, the magnetic fluids show
no response at low magnetic flux densities. However, if the field strength exceeds
a certain value (17 mT) (Gollwitzer et al. 2007), a well-known instability results
in patterns of spontaneous protrusions of the free surface of the fluid and forms
a regular pattern of peaks and valleys. This phenomenon is called Rosensweig
instability (Cowley and Rosensweig 1967). The instability is driven by the magnetic
field and can be explained by considering the potential energy of the system
(Maxwell et al. 2008). It is well known that the shape of the fluid minimizes the
total energy of the system. From the point of view of magnetic energy, the magnetic
field is concentrated in the peaks; therefore, the magnetic field lines prefer to run
through the fluid, and they try to ride the spikes of fluid out into space as far as
possible. Meanwhile, the formation of peaks and valleys is resisted by gravity and
surface tension. It costs energy to move fluid out of the valleys and up into the
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Fig. 3.6 A ferrofluid showing Rosensweig instability in a magnetic field produced by a magnet
beneath the container (Maxwell et al. 2008)

spikes to increase the surface area of the fluid. When the magnetic field is strong
enough, the protrusions of the fluid surface will form under the critical magnetic
field strength, where the reduction in magnetic energy outweighs the increase in
surface and gravitation energy terms. A more detailed mathematical analysis of
the ferrohydrodynamic instability of magnetic fluids can be found in Rosensweig
(1997). Figure 3.6 shows a magnetic fluid with spikes on the free surface caused
by the Rosensweig instability in a strong magnetic field produced by a magnet
beneath the container. The field strength at which the Rosensweig instability appears
depends on the physical parameters of the ferrofluid and the geometry of the
magnetic field. For typical magnetic fluids, the Rosensweig instability occurs around
80G (17 mT) when the applied magnetic vector is perpendicular to the fluid surface.

3.2.1.3 Synthesis

The magnetic fluids can be synthesized using a number of different methods.
The earlier approach was to grind micro-sized magnetite particles in a ball mill
in the presence of a surfactant material and a carrier fluid until the particle reaches
the desired nanometer range size (Papal 1965). However, this process usually takes
a very long time. Magnetic fluids are now produced more conveniently by chemical
methods involving the coprecipitation of metal salts in aqueous solution using a
base. A typical chemical process employed in the synthesis of magnetic fluids is as
follows:

2Fe3C C Fe2C C 8OH� D FeOFe2O3 C 4H2O
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For example, ferrofluids containing magnetite can be prepared by combining the
appropriate amounts of an Fe(II) salt and an Fe(III) salt in basic solution, a combi-
nation that causes the mixed valence oxide, Fe3O4, to precipitate from solution:

2FeCl3 C FeCl2 C 8NH3 C 4H2O ! Fe3O4 C 8NH4Cl

Besides the coprecipitation method, numerous other methods can be used to
obtain both ferrite- and metal-based magnetic fluids (Charles 2002).

The particles of magnetite must remain small in order to remain evenly sus-
pended in the liquid medium. However, for the small nanoparticles, magnetic and
van der Waals interactions will cause them to agglomerate, and some approaches
should be used to prevent the particles from agglomerating. Though thermal
motion of magnetite particles smaller than 10 nm in diameter is sufficient to
prevent agglomeration due to magnetic interactions, the van der Waals attraction
between two particles becomes strongest when the particles approach each other
at close distances. Therefore, the efficient method to prevent magnetite particles
agglomerating due to van der Waals and magnetic forces is necessary by keeping
the particles well separated. This separation can be accomplished by adding a
surfactant to the liquid medium. The surfactants can generate either steric or
electrostatic repulsions between the magnetic particles. The surfactants used to
coat the nanoparticles include oleic acid, tetramethylammonium hydroxide, citric
acid, and soy lecithin. These surfactants prevent the nanoparticles from clumping
together, ensuring that the particles do not form aggregation that become too heavy
to be held in suspension by Brownian motion. In this case, the magnetic particles
in the ferrofluid do not settle out, even when exposed to a strong magnetic or
gravitational field. For example, oleic acid can be used for oil-based ferrofluids
as a surfactant that produces steric repulsions. The oleic acid surfactant is a long-
chain hydrocarbon with a polar head that is attracted to the surface of the magnetite
particle; thus, a surfactant coating is formed on the surface. The long chains of the
tails act as a repellent cushion and prevent the close approach of other magnetite
particles. Tetramethylammonium hydroxide can also be used as a surfactant that
produces electrostatic repulsion in an aqueous medium. The hydroxide ions are
attracted to the surface of each magnetite particle, forming a negatively charged
layer at the magnetite surface. The tetramethylammonium cations are attracted to
the negatively charged layer, forming a positive layer. When magnetite particles
approach each other, the repulsions between their positively charged layers keep
them from getting too close.

Surfactants are useful in prolonging the settling rate in ferrofluids; they also
effect the fluid’s magnetic properties, specifically the fluid’s magnetic saturation.
The addition of surfactants decreases the packing density of the ferroparticles while
in its activated state, thus decreasing the fluids’ on-state viscosity. Since the on-
state viscosity is a primary fluid property for the majority of their commercial
and industrial applications, a compromise must be met when considering on-
state viscosity versus the settling rate of a ferrofluid by properly choosing and
synthesizing the surfactants in the ferrofluid.
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3.2.1.4 Applications of Magnetic Fluids

Since their introduction in the early 1960s, magnetic fluids have seen applications
ranging from sink-float systems to drug delivery systems. Some of the well-known
applications include liquid seals, dampers for audio speakers, and heat-transfer
agents. A ferrofluid can behave as a liquid O-ring where a rotating shaft enters
either a low- or high-pressure chamber. The ferrofluid is held in place by permanent
magnets and forms a tight seal, eliminating most of the friction produced in a
traditional mechanical seal. Ferrofluid seals are also used in high-speed computer
disk drives to eliminate harmful dust particles or other impurities that can cause
the data reading heads to crash into the disks. In a loudspeaker, the magnetic
field induced by the electric energy causes the coil to vibrate and thus produces
sound and heat. Bathing the electric coil in a ferrofluid, which is held in place
by circular permanent magnets, dampens unwanted resonances and also provides
a mechanism to dissipate heat from excess energy supplied to the coil, thus leads to
an overall improved sound quality. Recently, ferrofluids are also being investigated
for applications in biomedical applications, MEMS, and nanotechnology (Nakano
et al. 2008; Zahn 2001). Their use as MFDMs, particularly in ophthalmic AO
systems, remains one of the most advanced emerging optical applications. Besides
ophthalmology, their potential use in extremely large telescopes is also widely
anticipated (Borra et al. 2009, 2006).

3.2.2 MELLFs

Magnetic fluids typically show low reflectance to light. The reflectivity of EFH1
produced by Ferrotec Corporation, for instance, is only 4% (Brousseau et al.
2006). Due to this limitation, they cannot be used directly as mirrors. Compounds
commonly known as metal liquid-like films (MELLFs) present a solution. MELLFs
are homogeneous films of nanoparticles that exhibit reflective properties like liquid
metals but are thin enough not to have any significant effect on the deformation of
the substrate magnetic fluid. Typically, the nanoparticles used as MELLFs are silver,
gold, and aluminum.

MELLFs were first reported by Yogev and Efrima (1988). They developed
MELLFs by drop-wise addition of a reducing agent to a two-phase solution of a
chlorinated organic solvent and an aqueous solution of ammonium silver nitrate,
anisic acid, and an appropriate surfactant. The metallic silver particles are produced
in the aqueous phase and eventually settle to the interface of the two phases forming
a reflective film. These films are characterized as having an approximate thickness
of 25 nm and show a reflectivity comparable to liquid mercury.

Since the inception of MELLFs in 1988, various other synthesis methods have
been reported in the literature. Gorden et al. (1989) presented an alternative method
which used an aqueous silver colloid to which an appropriate ligand is added
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resulting in extraction of the reflective nanoparticles to the interface. Though having
similar optical and physical properties, these films are chemically different from
those presented in Yogev and Efrima (1988).

Over the years, several improvements to the MELLFs described above have been
reported. However, these basic MELLFs also suffer from certain critical limitations.
They are compatible with water-based magnetic fluids but not with the oil-based
ones. Unfortunately, the water-based magnetic fluids have shortcomings of their
own; they evaporate over time, and thus the properties of the fluid keep changing,
eventually drying up altogether. Recently, magnetic fluids with glycol as carrier fluid
have been developed by Dery et al. (2008), and this new type of magnetic fluids has
been reported to be fully compatible with MELLFs they produced. The preparation
of metal liquid-like films of silver nanoparticles is stabilized by thiolate surface
ligands. These surface films, composed of particles with diameters of about 100 nm,
are highly reflective and are employed in the fabrication of liquid mirrors. A number
of different thiols could be considered as stabilizing ligands, including alkanethiols,
aromatic thiols, and dithiols. Under identical preparation conditions, they lead to
the spontaneous formation of reflective surface silver films which have a very high
percentage of light reflectivity. Stable ferrofluids composed of positively charged
magnetic iron oxide nanoparticles coated with 2-[2-(2-methoxyethoxy) ethoxy]
acetic acid (MOEEAA) are prepared in ethylene glycol. Nanoparticles coated with
MOEEAA and dispersed in ethylene glycol remained stable in the presence of a
magnetic field. It is reported that these MOEEAA-stabilized new ferrofluids exhibit
a magnetic response that is equivalent to that found for corresponding citrate-
stabilized particles and is fully compatible with the deposition of surface films of
silver nanoparticles, and thus allows for the practical preparation of magnetically
deformable liquid mirrors.

3.3 Current State of Research and Challenges

Since the introduction of the idea of an MFDM as an alternative to the existing
wavefront correctors (Laird et al. 2003), a number of studies characterizing various
features of the mirrors have been reported. An overview of the literature reveals
promising capabilities as well as significant challenges facing this new technology.
An exposition describing these capabilities and challenges is presented below.
An analysis of the problems impeding the potential utilization of these mirrors
in practical applications leads to the identification of research goals presented in
this book. Keeping in view the intended immediate application of these mirrors
in ophthalmic AO systems, the application-specific requirements that these mirrors
should meet are also stated in the following.

Important features of the MFDMs found by the studies conducted thus far are as
follows:

• Stroke. The most promising aspect of the MFDMs is their ability to provide
large deflections of their deformable surface. They are reported to have surface
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deflections easily exceeding 20 �m (Brousseau et al. 2006). Recently, MFDM
offering hundreds of microns of surface deflections have been discussed for their
application in large astronomical telescopes (Borra et al. 2008). The feature—
referred to as stroke in conventional deformable mirrors—shows an unparalleled
advantage over the conventional micro-machined deformable mirrors which
feature stroke lengths of a few microns.

• Cost. The simple design and expendable nature of MFDMs render them re-
markably more economical than any other known type of wavefront correctors.
Based on similar components used in the electronic industry, Laird et al. (2006)
projected a cost only per channel of $2–$5. For large mirror telescope, it is
estimated that for a given diameter, the cost of the magnetic liquid mirror is only
about two orders of magnitude smaller than a solid glass mirror.

• Speed. Initial studies reported the magnetic fluid wavefront correction speeds
between 10 and 50 Hz only and show the main disadvantage of their significantly
lower bandwidth compared to solid deformable mirrors (Brousseau et al. 2007;
Laird et al. 2006). However, recently Parent et al. (2009) have disclosed some
unintuitive features, which allow the correction speed to be enhanced beyond
900 Hz. By increasing the viscosity of the magnetic fluids, along with an
overdrive technique, the response time of magnetic fluid deformable mirror can
be improved dramatically. Experiments have shown a bandwidth of the order of
1 kHz with a 494-cP-viscosity ferrofluid. However, the current results are limited
to small amplitudes of the order of a few microns and need to be further improved
for large amplitudes. On the other hand, the main application in ophthalmology
may require a low bandwidth with respect to the property of dynamic wavefront
aberrations in the eyes.

• Vibrations. The susceptibility of the magnetic fluid volume to mechanical vibra-
tions is one of the most obvious concerns associated with the use of MFDMs. For
applications that require the AO setup to be positioned on a moving platform, the
mechanical vibrations as well as the strict requirement of keeping the MFDM
surface horizontal remain the prohibiting factors. However, for applications such
as ophthalmic AO systems which can afford static installation of the mirror,
the effects of mechanical vibrations can be minimized. Firstly, like any other
precision system, the optical setup should be mounted on vibration isolators. It
has been found that the amplitudes of disturbances are less than 1/10 of a wave
when a low-viscosity magnetic fluid layer (about 6 cP) with thickness of 2 mm
is put on an optical table. Beyond that, Borra et al. (1992) assert that the effect
of mechanical vibrations on a fluid mirror is minimal if the thickness of the fluid
layer is limited to less than one millimeter. Increasing viscosity of the magnetic
fluid is also reported to have minimizing impact on the mirror surface vibrations
resulting from the ambient noise. Nonetheless, the most effective remedy is
presented by the applied magnetic field itself. The magnetic field applied to
control the surface profile of the mirror dampens the vibrations significantly
(Brousseau et al. 2007).

• Stability and Compatibility of Reflective Film. A significant part of the research
efforts expended thus far in the area of MFDMs has been directed at the
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development of appropriate magnetic fluids and compatible MELLFs. As men-
tioned earlier, the previously known types of MELLFs were incompatible with
the oil-based magnetic fluids. On the other hand, water-based magnetic fluids,
which showed compatibility with the MELLFs, suffered from the drawback of
evaporation over time (Thibault et al. 2006). The recent introduction of a new
type of oil-based magnetic fluid (Dery et al. 2008), which are compatible with
the silver MELLFs, is a significant advancement, which increased the likelihood
of their practical application in the near future.

• Control. Difficulties in the control of the MFDM surface were first highlighted
in Laird et al. (2006), which revealed that the deflections of the MFDM surface
could not be obtained as a linear superposition of the influence of the individual
actuator coils—a method routinely used in existing deformable mirrors. This
unique feature of the MFDM has had serious implications in the control of
these mirrors. Conventionally, control systems employed in AO systems have
utilized static models of the response of their wavefront correctors. These models
are referred to as the influence function matrix in the AO literature and the
DC gain of the plant in the control community. The models are constructed by
statically computing the mirror surface deflections—or to be exact, the wavefront
shape—resulting from applying unit input to each of the actuators. The resulting
wavefront shapes—also called influence functions of the individual actuators—
are assembled into a matrix, the inverse of which is then utilized to control the
deformable mirror in a closed-loop operation. Generally, cascading the inverse
of the matrix thus obtained with a suitably tuned proportional or proportional-
plus-integral controller gain provides actuator input updates for the closed-loop
operation of the mirror.

The assumption behind this method is that the wavefront corrector is a linear
system, that is, the surface deflections and the resulting wavefront shapes at any
point can be obtained using a linear combination of the influence functions of the
individual actuators. As it was discovered that the assumption of linearity did not
hold true in the case of MFDMs, the control methods based on the computation of
influence function were rendered inapplicable to these mirrors. Notwithstanding
these difficulties, some efforts have been made to control the MFDMs to generate
desired wavefront shapes (Brousseau et al. 2007; Seaman et al. 2007). These
efforts are based on a static model (Jones 1988) of the response of the MFDM
surface, which describes the mirror surface deflections as a nonlinear function
of the magnetic field applied to control the shape of the mirror. The use of
this nonlinear model again precludes the possibility of directly using any linear
control algorithms. In this backdrop, the closed-loop operation of the MFDMs is
yet to be seen. A final look at the strengths and the challenges of MFDMs brings
forward the control of the mirror as the most pressing requirement that needs to
be met before they can be considered for a practical application. The research
work presented in this book has been undertaken to facilitate the fulfillment of
this requirement. In what follows, an analytical model that sufficiently represents
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the dynamics of the MFDM will be developed. This model is then utilized
to devise effective control algorithms, which will be implemented to control a
prototype MFDM in a closed-loop system. Using an evocation prompted by the
analytical work undertaken to develop a model of the mirror, we will devise
a means to linearize the actual response of the mirror surface, thus easing the
difficulties stemming from the nonlinearity in the MFDM model.

3.4 Performance Requirements for MFDMs in Ophthalmic
AO Systems

Keeping in view the most immediate intended application of the MFDM, that is,
an ophthalmic imaging AO system, the application-specific requirements that the
proposed MFDM mirror should meet are stated as follows:

(1) The most stringent of the requirements of AO systems in ophthalmic systems is
the depth of correction provided by the wavefront corrector, that is, the stroke
length for the case of a deformable mirror. For a pupil large enough to provide
the required spatial resolution, Doble and Williams (2004) argue that a least
stroke length of ˙12 �m will be required to effectively compensate the ocular
aberrations.

(2) Studies (Hofer et al. 2001; Fernandez et al. 2001) show that the significant
dynamic component of the aberrations introduced by the human eye remains
within a few Hertz. Using the rule of thumb that suggests a correction speed
two times faster than the aberration dynamics, a wavefront corrector with more
than 10 Hz bandwidth would be suffice for an ophthalmic AO system.

(3) Also, studies have shown that the contribution of the various spatial modes of
aberrations in the eye decreases with the increasing order of the modes (Hofer
et al. 2001). The improvements in image quality or vision acuity that can be
attained by correction of the spatial modes higher than the tenth order become
negligibly small. Although correction of modes as high as possible may be
desirable, it also translates to a requirement of higher packing density of the
actuators, which may not be viable due to increasing cost of development.

(4) Compactness is a highly desirable feature in the ophthalmic imaging systems
intended mainly for clinical settings. As the dilated pupil size of the human
eye ranges between 4 and 8 mm, an ideal deformable mirror to be used in an
ophthalmic AO system should have a comparable size (Doble and Williams
2004). A deformable mirror larger than the pupil size requires optics to project
the small pupil on the deformable mirror. The deformable mirrors larger than a
few times the pupil size would require prohibitively large optical path lengths,
thus compromising the compactness requirement.
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In light of the above, the remaining chapters of this book address the following
goals:

• Model development. Develop a comprehensive dynamic model of the response of
an MFDM surface shape, which may be utilized in the design of a control system
for the mirror.

• Rectification of the nonlinearity in the MFDM response. Devise means to rectify
the problem of nonlinearity in the response of the MFMD surface.

• Design of a Prototype MFDM and Closed-Loop AO Setup. Design and develop
a prototype MFDM keeping in view the requirements of ophthalmic AO system.
Also, design and develop an experimental AO setup to use the prototype MFDM
in a closed-loop system.

• Controller design. Design a controller for the surface shape of the mirror to be
employed for the cancellation of the dynamically varying unknown aberrations.

• Experimental validation and evaluation. Experimentally validate the dynamic
model of the mirror, and evaluate the performance of the closed-loop system
using the prototype MFDM.

3.5 Summary

Liquid mirrors represent a promising technology. They offer an interesting
alternative to the conventional deformable mirrors fabricated using thin plates or
membranes. Large rotating mercury liquid mirrors have been used in observatories
to yield perfect parabolic reflective surface and have delivered numerous scientific
results. In order to generate more complex surface shapes other than the parabolic
one, magnetic fluid deformable mirrors have been developed recently for a number
of potential new optical applications. Compared with conventional solid mirrors,
magnetic fluid deformable mirrors have the advantages of large strokes, low cost,
and ease of scalability. The recent developments of MFDMs are very encouraging.
In this chapter, the brief history of the development of MFDMs is introduced first.
The working principle of MFDMs is then presented, including the description of
their main structures and compositions. A review of the advantages of MFDMs
and difficulties in controlling their surface shape due to the nonlinear behavior of
the surface deformation as a function of the applied magnetic field is discussed.
A number of studies characterizing various features of the mirrors have been
reviewed, and the overview of the literature reveals promising capabilities as well
as significant challenges facing this new technology. An analysis of the problems
impeding the potential utilization of these mirrors in practical applications leads to
the motivation of the outlined research topics discussed in this book.
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Analytical Model of a Magnetic Fluid
Deformable Mirror

Contents

4.1 Analytical Model in Cartesian Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.1.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.1.2 Simplification of the Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.1.3 Derivation of the Surface Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.2 Analytical Model in Circular Geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.2.1 Simplification of the Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.2.2 Derivation of the Surface Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.3 Current–Potential Relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.4 Simulation of the MFDM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.4.1 Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.4.2 Static Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.4.3 Dynamic Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.1 Analytical Model in Cartesian Geometry

Consider a MFDM diagram in Cartesian coordinates as shown in Fig. 4.1. Let
the time-varying deflection of the mirror surface at any horizontal location (x, y)
be denoted by  .x; y; t /. The deflection is produced by the cumulative magnetic
field generated by an array of electromagnetic microcoils located underneath the
magnetic fluid layer. The magnetic field generated by any given coil j, j D
1; 2; : : : ; J , centered at the horizontal location

�
xj ; yj

�
, is idealized as that of a point

source of magnetic potential j .t/. The idealization allows the electromagnetic field
to be modeled as a current-free field and thus significantly simplifies the derivation
of the model.
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Fig. 4.1 Geometric representation of the magnetic fluid deformable mirror

4.1.1 Governing Equations

The deflection of the free surface of a magnetic fluid results from the fluid flow
induced by the applied magnetic field. The fluid flow is governed by the fundamental
principles of fluid dynamics appropriately modified to account for the effects of the
magnetic field. The equations governing the fluid field, derived from the principles
of conservation of mass and momentum, respectively, are as follows (Rosensweig
1997):

r � V D 0 (4.1)

�

�
@V
@t

C V � rV
�

D �r .p C ps C pm/C �r2V C �g C �0MrH (4.2)

where V is the velocity of the fluid; p, ps, and pm are, respectively, the thermody-
namic, magnetostrictive, and fluid-magnetic pressures; � and � are the density and
viscosity of the fluid; �0 is the magnetic permeability of free space; and M and H
are the magnitudes of the magnetization vector M and the magnetic field vector H,
respectively.

The magnetic field itself is governed by Maxwell’s equations. Since the magnetic
field of the microcoils is idealized as that of point sources of magnetic potential
located at the fluid domain boundary, a current-free electromagnetic field can be
assumed. Using this assumption and further assuming that the displacement currents
in the fluid are negligible, Maxwell’s equations can be written as follows:

r � H D 0 (4.3)

r � B D 0 (4.4)

where B is the magnetic flux density, which is related to the magnetic field H and
the magnetization M by the following constitutive relationship:

B D �H D �0 .H C M/ (4.5)
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where � is the magnetic permeability of the magnetic fluid. Assuming the magnetic
fluid is linearly magnetized by the applied field, the magnetization vector M can be
written as

M D 	H (4.6)

where 	 D ..� =�0 /� 1/ is considered to be a constant.
With the objective of obtaining the surface deflection  .x; y; t /, the set of

governing Eqs. (4.1), (4.2), (4.3), (4.4), (4.5), and (4.6) is augmented with two free-
surface conditions. Firstly, the deflection  itself is related to the fluid motion by the
following kinematic condition:

@

@t
D Vz at z D  (4.7)

where Vz is the vertical component of the fluid velocity V (see Sect. A.1). The other
free-surface condition, referred to as the surface dynamic equation, is derived from
the stress balance at the interface between the magnetic fluid and the air above it
(see Sect. A.2). The condition describes a jump in the pressure states at the interface
and can be written as follows:

p C �0	

2

�
.H � H/C 	.H � On/2


D pa C 2�� at z D  (4.8)

where p is the fluid pressure immediately below the interface, pa is the air pressure
immediately above the interface, 2�� is the capillary pressure expressed as function
of the coefficient of surface tension � and the surface curvature �, and On is a unit
vector directed normal to the surface. The second term on the left-hand side of (4.8)
accounts for the magnetic effects—written in terms of magnetic field H immediately
below the interface. In deriving (4.8), it has been assumed that the magnetization of
the air is negligibly small.

4.1.2 Simplification of the Governing Equations

Keeping in view the actual flow conditions in the magnetic fluid layer, a number
of approximations can be made in order to reduce the system of Eqs. (4.1), (4.2),
(4.3), (4.4), (4.5), (4.6), (4.7), and (4.8) to a simpler form (see Sect. A.3). Firstly, if
the fluid flow is considered to be incompressible as well as irrotational, then using
a well-known vector identity, the velocity field V can be written in terms of a scalar
potentialˆ.x; y; z; t / as

V D � rˆ (4.9)

such that ˆ obeys the Laplace equation

http://dx.doi.org/10.1007/978-3-642-32229-7
http://dx.doi.org/10.1007/978-3-642-32229-7
http://dx.doi.org/10.1007/978-3-642-32229-7
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r2ˆ D 0 for � h < z <  (4.10)

Since the applied magnetic field is not expected to induce any volume change in
the fluid, the magnetostrictive pressure ps can be ignored. Moreover, the assumption
that the magnetization of the fluid depends on the magnetic field only allows the
magnetic pressure term �rpm and the magnetic body force �0MrH in (4.2) to
cancel each other. If the magnetic fluid is considered to be nonviscous, the viscous
force term �r2V also vanishes. Using these simplifications, the momentum Eq.
(4.2) can be reduced to (Bashtovoi and Rosensweig 1993)

��@ˆ
@t

C p C �gz D 0 (4.11)

Assuming a uniform magnetic permeability � throughout the fluid domain and
using the same vector identity as mentioned earlier, the magnetic field H can be
written in terms of a scalar potential ‰ .x; y; z; t / as

H D � r‰ (4.12)

such that ‰ satisfies the Laplace equation

r2‰ D 0 for � h < z <  (4.13)

Similarly, assuming a uniform magnetic permeability �0 in the air above the free
surface of the fluid, the magnetic field in this domain too can be written as

HaD � r‰a (4.14)

such that ‰a .x; y; z; t / satisfies

r2‰a D 0 for z >  (4.15)

Using (4.11) (evaluated at z D ) and (4.12), the surface dynamic Eq. (4.8) can
be written as

��@ˆ
@t

C �g � �0	

2

�
r‰ � r‰ C 	.r‰ � On/2


C pa C 2�� D 0 at z D 

(4.16)

The set of Eqs. (4.10), (4.13), (4.15), and (4.16) can be solved to obtain the
four unknowns ;ˆ;‰ and ‰a. However, Eq. (4.16) above is nonlinear in ‰, and,
therefore, linear solution methods cannot be applied to this system of equations in its
present form. This complication can be circumvented by introducing a large uniform
magnetic field with a constant flux density B0 superimposed on the input field
generated by the array of microcoils. Without qualitatively affecting the resulting
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surface shape, the presence of the large uniform field allows linearization of Eq.
(4.16), thus greatly simplifying the solution process. It may be noted that the
uniform vertical magnetic field itself does not cause any surface deflection unless it
exceeds a critical value at which point a known instability takes place (Cowley and
Rosensweig 1967).

In what follows, the magnetic fluid layer in an initial equilibrium state will be
perturbed by the input magnetic field applied at the bottom of the layer. It is assumed
that the applied field results in small perturbations of all the field quantities and
hence small surface deflections. Making use of this assumption, the perturbation
part of the reduced set of Eqs. (4.10), (4.13), (4.15), and (4.16) is extracted below
and will be solved in the following section.

The magnetic fluid layer is initially exposed to the magnetic flux density B0 and
is in a state of equilibrium manifested by a perfectly flat surface. The initial state is
characterized by

 D 0

� D 0

On D Ok
V D V0 D 0

H0 D Œ0; 0;H0�
T D

	
0; 0;

B0

�


T

Ha
0 D �

0; 0;Ha
0

�T D
	
0; 0;

B0

�0


T

(4.17)

The fluid is then displaced by applying the input magnetic potential, which results
in perturbations v, h, and ha in the fluid velocity V0, the magnetic field H0 in
the fluid, and the magnetic field Ha

0 in the air, respectively. The resulting state is
characterized by

On D � @
@x

Oi � @

@y
Oj C Ok

� D �1
2

�
@2

@x2
C @2

@y2

�

V D V0 C v D v

H D H0 C h

Ha D Ha
0 C ha

(4.18)

where h and ha are small in magnitude as compared to H0 and Ha
0 . The linearity of

Laplace Eqs. (4.10), (4.13), and (4.15) allows the perturbations v, h, and ha to be
written as
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v D �r
 (4.19)

h D �r (4.20)

ha D �r a (4.21)

such that

r2
 D 0 for � h < z <  (4.22)

r2 D 0 for � h < z <  (4.23)

r2 a D 0 for z >  (4.24)

Using (4.17) and (4.18), the perturbation part of the surface dynamic Eq. (4.16)
is extracted (see Sect. A.4) and is written as follows:

��@

@t

C �g C 	B0
@ 

@z
� �

�
@2

@x2
C @2

@y2

�
D 0 at z D  (4.25)

4.1.3 Derivation of the Surface Response

The set of Eqs. (4.22), (4.23), (4.24), and (4.25), with the four unknowns , 
,  ,
and  a , describes the dynamics of the magnetic fluid mirror and will be solved to
eventually find the mirror surface deflection . We assume solutions of the following
form:

 .x; y; t / D Q.t/E .x; y/ (4.26)


 .x; y; z; t / D Q
 .z; t / E .x; y/ (4.27)

 .x; y; z; t / D Q .z; t / E .x; y/ (4.28)

 a .x; y; z; t / D Q a .z; t /E .x; y/ (4.29)

where

E .x; y/ D e�i.kxxCkyy/ (4.30)

http://dx.doi.org/10.1007/978-3-642-32229-7
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kx and ky are the mode numbers, and it is understood that only the real part of the
solution will be retained carriage.

The Laplace Eq. (4.22) can be solved using the assumed solution (4.27) and two
boundary conditions on 
. The first boundary condition is derived from the free-
surface kinematic condition (4.7), which can be written as

�@

@z

D @

@t
at z D  (4.31)

Considering that the surface deflection  is small in magnitude, condition (4.31)
is written at z D 0 instead of z D . The second condition is deduced from the
physical consideration that there cannot be any flow across the solid surface at the
bottom of the layer, which implies

�@

@z

D 0 at z D �h (4.32)

The resulting solution is as follows (For the detailed solutions of the Laplace
Eqs. (4.22), (4.23), and (4.24), see Sect. A.5):


 .x; y; z; t / D � 1
k

cosh .k .z C h//

sinh .kh/

d Q.t/
dt

E .x; y/ (4.33)

where

k D
q
k2x C k2y (4.34)

and, depending on kx and ky , an infinite number of solutions can be obtained for 
.
Equations (4.23) and (4.24) are simultaneously solved using the following magnetic
field boundary conditions:

On � .H � Ha/ D 0 at z D  (4.35)

On � .B � Ba/ D 0 at z D  (4.36)

lim
z!1 a < 1 (4.37)

 .x; y; z; t / D
JX

jD1
 j .t/ı

2
�
x � xj

� �
y � yj

�
at z D �h (4.38)

The standard boundary condition (4.35) states that, at the interface of the fluid
and the air, the tangential components of the magnetic fields in the two media
are equal. Similarly, condition (4.36) signifies that the normal components of the
magnetic flux densities in the two media are also equal at the interface. Again,

http://dx.doi.org/10.1007/978-3-642-32229-7
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keeping in view the small magnitude of , these two conditions are written at
z D 0 instead of z D . Condition (4.37) implies that the magnetic field in
the region above the free surface remains bounded. Condition (4.38) specifies the
magnetic field resulting from the input magnetic coils as point sources of magnetic
potential applied at the bottom of the fluid layer. Using (4.35), (4.36), and (4.37),
the following solutions are obtained for  a and  , respectively:

 a .x; y; z; t / D A.t/e�kzE .x; y/ (4.39)

 .x; y; z; t / D
�
A.t/

�
cosh.kz/ � �0

�
sinh .kz/

�
� 	

�
B0 Q.t/ cosh.kz/

�
E .x; y/

(4.40)

where A(t) is the integration constant that will be later determined using (4.38).
Application of the condition that the components of velocity and magnetic field

normal to the container walls must be zero yields the following mode shapes:

E .x; y/ D cos .kxx/ cos.kyy/ (4.41)

and the characteristic equations

sin kxx D 0 at x D Lx (4.42)

sin kyy D 0 at y D Ly (4.43)

The conditions (4.42) and (4.43) can be satisfied by an infinite number of discrete
values of kx and ky , which can be written in the series form as

kx D .m � 1/ �

Lx
for m D 1; 2; 3; : : :

ky D .n � 1/ �

Ly
for n D 1; 2; 3; : : :

Now, applying the input magnetic potential (4.38) as a boundary condition on  
at z D �h and making use of the orthogonality property of the mode shapes, the
unknown constant A.t/ can be determined for each mode as

Amn.t/ D 1

cosh .kmnh/C .�0=�/ sinh .kmnh/

�
0

@	
�
B0 cosh .kmnh/ Qmn.t/C cmcn

LxLy

JX

jD1
 j .t/ cos

�
kmxj

�
cos

�
knyj

�
1

A

(4.44)



4.1 Analytical Model in Cartesian Geometry 107

where the subscripts m, n, and mn have been affixed to show that the mode numbers
kx , ky , and k, as well as the variables dependent on them, can take only discrete
values and

cm D
�
1 for m D 1

2 for m > 1

cn D
�
1 for n D 1

2 for n > 1

Now that the scalar potentials 
,  a, and  have been determined as given in
(4.33), (4.39), and (4.40), their substitution into the surface dynamic Eq. (4.25) gives

�
1

kmn

1

tanh .kmnh/

d2 Qmn.t/
dt2

C �g Qmn.t/C �k2mn
Qmn.t/ � 	�0

�
B0kmnAmn.t/ D 0

(4.45)

Further substitution of (4.44) into (4.45), followed by its rearrangement, yields

d2 Qmn.t/
dt2

C !2mn
Qmn.t/ D fmn.t/ (4.46)

where

!2mn D g tanh.kmnh/kmn C �

�
tanh.kmnh/k3mn

� 	2

�

B2
0

�

sinh.kmnh/

.�=�0/ cosh.kmnh/C sinh .kmnh/
k2mn

fmn.t/ D Fmn

JX

jD1
 j .t/E

j
mn

Fmn D 	
B0

�

tanh.kmnh/

.�=�0/ cosh .kmnh/C sinh.kmnh/
k2mn

cmcn

LxLy

Ej
mn D cos

�
kmxj

�
cos

�
knyj

�

The second-order differential Eq. (4.46) can be solved to obtain the generalized
displacements Qmn.t/. The generalized displacements and the corresponding mode
shapes Emn, evaluated at any desired location .x0; y0/, give the total surface
displacement at the location as

 .x0; y0; t / D
1X

mD1

1X

nD1
Qmn.t/Emn .x0; y0/ (4.47)
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The damping effect associated with the fluid viscosity may be introduced into the

model by adding a factor of !dmn

�
d Q =dt


to the left-hand side of (4.46) (Blums

et al. 1997), where

!dmn D 4
�

�
k2mn (4.48)

For convenience, the solution (4.47) is truncated to a finite number of modes such
thatm D 1; 2; : : : ;M and n D 1; 2; : : : ; N . The dynamics of the system comprising
(4.46) and (4.47), with the viscous damping term added to the former, is represented
in state-space form as follows:

Px D Ax C B0u0

y D  D Cx (4.49)

where x D
h Q11; PQ11; Q12; PQ12 : : : ; QMN ; PQMN

iT
is the vector of the generalized

displacements and the corresponding velocities, u0 D �
 1  2 � � �  J

�T

.J�1/ is the
vector of input magnetic potentials,

A D

2

6
6
66
6
6
6
6
66
6
6
6
4

0 1 0 0 � � � 0 0

�!211 �!d11 0 0 � � � 0 0

0 0 0 1 � � � 0 0

0 0 �!212 �!d12 � � � 0 0

:::
:::

:::
:::

: : :
:::

:::

0 0 0 0 � � � 0 1

0 0 0 0 � � � �!2MN �!dMN

3

7
7
77
7
7
7
7
77
7
7
7
5

.2MN�2MN/

B0 D FE

where

F D

2

6
66
6
6
6
66
6
6
4

0 0 � � � 0

F11 0 � � � 0

0 0 � � � 0

0 F12 � � � 0

:::
:::

: : :
:::

0 0 � � � FMN

3

7
77
7
7
7
77
7
7
5

.2MN�MN/
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E D

2

6
6
66
6
4

E1
11 E2

11 � � � EJ
11

E1
12 E2

12 � � � EJ
12

:::
:::

: : :
:::

E1
MN E2

MN � � � EJ
MN

3

7
7
77
7
5

.MN�J /

and

C D
h

E11 0 E12 0 � � � EMN 0
i

1�2MN

The state-space model (4.49) describes the dynamics of the surface shape of
a rectangular MFDM in terms of deflections  of the mirror surface. It provides
the deflections of the mirror surface as a function of the magnetic field of the
electromagnetic coils idealized as the magnetic field of the point sources of
potential,  j , j D 1; 2; : : : ; J: The model can be used to simulate the response
of the MFDM surface as well as to develop controllers to control the surface shape.

4.2 Analytical Model in Circular Geometry

Almost all optical systems are designed and described in circular geometry. It is,
therefore, pertinent to extend the model presented in the previous section to circular
geometry. Accordingly, this section describes the model of a MFDM in a cylindrical
coordinate system.

As shown in Fig. 4.2, the MFDM is represented by a cylindrical horizontal layer
of a magnetic fluid. The top free surface of the fluid layer is coated with a reflective
film and serves as the deformable surface of the mirror. The shape of the mirror
is described by the deflection  .r; �; t / of the deformed surface as measured with
respect to a point .r; �/ in the horizontal plane. The deflection is produced by the
cumulative magnetic field generated by an array of miniature electromagnetic coils
located underneath the magnetic fluid layer. The magnetic field generated by any
given coil j, j D 1; 2; : : : ; J , centered at the horizontal location

�
rj ; �j

�
, is idealized

as that of a point source of magnetic potential  j .t/.

Fig. 4.2 Geometric representation of a circular magnetic fluid deformable mirror
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4.2.1 Simplification of the Governing Equations

Since the system of governing Eqs. (4.1), (4.2), (4.3), (4.4), (4.5), (4.6), (4.7),
and (4.8) is presented in operator notation, it is equally valid for the cylindrical
coordinate system. Also, the simplifications given in Sect. 4.1.2 are independent of
coordinate system and hence remain valid for the analysis presented in this section.
Using these simplifications, the set of Eqs. (4.1), (4.2), (4.3), (4.4), (4.5), (4.6), (4.7),
and (4.8) can be reduced to

r2ˆ D 0; �d � z �  (4.50)

r2‰.i/ D 0; i D 1; 2; 3 (4.51)

��@ˆ
@t

C �g � �0	

2

�
r‰.2/ � r‰.2/ C 	

�r‰.2/ � On�2


C p.1/ C 2�� D 0 at z D 

(4.52)

whereˆ is a scalar potential that describes the fluid velocity vector V as follows:

V D � rˆ (4.53)

Note that in this case, the point sources of magnetic potential are placed
underneath the magnetic fluid layer and are not restricted to the fluid domain
boundary. Considering that the magnetic field extends into the space above and
below the fluid layer, Maxwell’s equations are applied to all three sub-domains
marked in Fig. 4.2 as (1), (2), and (3). The scalar potentials ‰.i/; i D 1; 2; 3

describe the magnetic field vectors H.i/ in these sub-domains as follows:

H.i/D � r‰.i/; i D 1; 2; 3 (4.54)

The set of Eqs. (4.50), (4.51), and (4.52) can be solved to obtain the five
unknowns ;ˆ and ‰.i/; i D 1; 2; 3. However, the surface dynamic Eq. (4.52)
is nonlinear in ‰.2/, which not only complicates the solution of the equations but
also has implications in the eventual control of the fluid surface. To circumvent the
nonlinearity in (4.52), we introduce a large uniform magnetic field with a constant
flux density B0 superimposed on the input field generated by the array of miniature
coils. Below a critical level, at which a known instability occurs (Rosensweig 1997),
the presence of the large uniform field by itself does not affect the surface shape.

The magnetic fluid mirror is considered to be in an initial equilibrium state char-
acterized by a perfectly flat horizontal surface . D 0/ and the uniform magnetic
flux B0 applied vertically across the whole fluid volume. The fluid is then perturbed
by the magnetic field resulting from the input potentials  j .t/; j D 1; 2; : : : ; J .
Assuming small perturbations of all the field quantities and retaining only first-order
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terms, the perturbation part of (4.50), (4.51), and (4.52) is extracted as given
below:

r2
 D 0; �d � z �  (4.55)

r2 .i/ D 0; i D 1; 2; 3 (4.56)

��@

@t

C �g C 	B0
@ .2/

@z
� �

�
@2

@r2
C 1

r

@

@r
C 1

r2
@2

@�2

�
D 0 at z D  (4.57)

where 
 and  .i/; i D 1; 2; 3 are the perturbation components of the scalar
potentials ˆ and ‰.i/; i D 1; 2; 3, respectively. Note that only the vertical
component of the field generated by the miniature coils, that is, @ .2/ =@z , appears in
the linearized surface dynamic Eq. (4.57) and that the component is being multiplied
by the uniform vertical field B0. These features will be referred to in the design of
the prototype MFDM presented in Chap. 5.

4.2.2 Derivation of the Surface Response

Equations (4.55), (4.56), and (4.57), with the five unknowns , 
, and  .i/, i D
1; 2; 3, describe the dynamics of the magnetic fluid mirror and will be solved to
eventually find the mirror surface deflection . We assume the following separable
solutions:

 .r; �; t / D Q.t/R.r/‚ .�/ (4.58)


 .r; �; z; t / D Q
 .z; t / R.r/‚ .�/ (4.59)

 .i/ .r; �; z; t / D Q .i/ .z; t /R.r/‚ .�/ ; i D 1; 2; 3 (4.60)

The Laplace Eq. (4.55) is solved using the assumed solution (4.59) and the
following two boundary conditions:

�@

@z

D @

@t
at z D  (4.61)

�@

@z

D 0 at z D �d (4.62)

The condition (4.61) is derived from the kinematic condition (4.7), and (4.62) has
been deduced from the physical consideration that there cannot be any flow across

http://dx.doi.org/10.1007/978-3-642-32229-7_5
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the solid surface at the bottom of the layer. Considering the surface deflection  to
be small in magnitude, condition (4.61) is written at z D 0 instead of z D . The
solution thus obtained is as follows:


 .r; �; z; t / D � 1
�

cosh .� .z C d//

sinh .�d/

d Q.t/
dt

R.r/‚ .�/ (4.63)

where � is the separation constant, and where ‚.�/ and R(r) satisfy the following
ordinary differential equations (Haberman 2003):

d2‚

d�2
Cm2‚ D 0 (4.64)

 
d2R

dr2
C 1

r

dR

dr

!

C
�
�2 � m2

r2

�
R D 0 (4.65)

where m is yet another separation constant.
The magnetic field Eqs. (4.56) are simultaneously solved using the following

boundary conditions:

lim
z!1 .1/ < 1 (4.66)

On � �H.2/ � H.1/
� D 0 at z D  (4.67)

On � �B.2/ � B.1/
� D 0 at z D  (4.68)

Oz � �H.3/ � H.2/
� D 0 at z D �d (4.69)

Oz � �B.3/ � B.2/
� D 0 at z D �d (4.70)

 .3/ .r; �; z; t / D
JX

jD1
 j .t/

1

r
ı
�
r � rj

�
ı
�
� � �j

�
at z D �h (4.71)

Inequality (4.66) implies that the magnetic field in the region above the free
surface remains bounded. Equations (4.67), (4.68), (4.69), and (4.70) are the
standard boundary conditions of a magnetic field. Condition (4.71) specifies the
magnetic field resulting from the input magnetic coils as point sources of magnetic
potential applied in a plane located under the fluid layer at z D �h: Again, keeping
in view the small magnitude of , (4.67) and (4.68) are written at z D 0 instead of
z D . Using (4.66), (4.67), (4.68), (4.69), and (4.70), the following solutions are
obtained for  .i/; i D 1; 2; 3:

 .1/ .r; �; z; t/ D �A.t/ �
�0

e��zR.r/‚ .�/ (4.72)
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 .2/ .r; �; z; t/ D �
�
A.t/X .�z/C 	

�
B0 Q.t/ cosh.�z/

�
R.r/‚ .�/ (4.73)

 .3/ .r; �; z; t / D
�
A.t/Y .�z/ �Z .�z/ B0 Q.t/


R.r/‚ .�/ (4.74)

where A.t/ is the integration constant that will be later determined using (4.71) and

X .�z/ D �

�0
cosh.�z/� sinh .�z/ (4.75)

Y .�z/ D �
�
�

�0

ˇ

˛
C 	

˛

�
cosh.�z/C

�
�

�0

�
˛

ˇ
� 	

˛

�
� 	2

˛ˇ

�
sinh .�z/ (4.76)

Z .�z/ D .ˇ cosh.�z/C 	 sinh .�z//
	

�

1

˛
(4.77)

˛ D tanh.�d/� coth .�d/ (4.78)

ˇ D �

�0
tanh.�d/� coth .�d/ (4.79)

Equation (4.64) has well-known periodic solutions cosm� and sinm� and results
in the following eigenfunctions:

‚.�/ D
�

sinm�; m D 1; 2; 3; : : :

cosm�; m D 0; 1; 2; : : :
(4.80)

Equation (4.65) is Bessel’s equation, which can be solved for each m and has the
general solution of the following form:

R.r/ D C1Jm .�r/C C2Ym .�r/ ; (4.81)

where C1 and C2 are constants of integration and Jm .�/ and Ym .�/ are the Bessel
functions of the first and the second kind, respectively, each of order m. The
condition that both magnetic and fluid potentials are bounded throughout the domain
can be satisfied only if C2 D 0, which results in

R.r/ D C1Jm .�r/ (4.82)

Further considering that the miniaturized coils are located far from the walls of
the fluid container, (4.82) yields the following characteristic equation:

Jm .�r/ D 0 at r D R (4.83)
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Equation (4.83) can be solved numerically and yields an infinite number of
solutions "mn D �R, m D 0; 1; 2::: ; n D 1; 2; 3:::, providing the eigenvalue
�mn for each mode as follows:

�mn D "mn

R
(4.84)

Equations (4.80) and (4.82) can be combined to obtain the following permissible
mode shapes:

Hmnc D Jm .�mnr/ cos .m�/

Hmns D Jm .�mnr/ sin .m�/ (4.85)

Applying the input magnetic potential (4.71) as a boundary condition on  .3/ at
z D �h and making use of the orthogonality property of the mode shapes (4.85),
the unknown constant A.t/ can be determined for each mode as

Amnc.t/ D 1

Y .��mnh/

�
8
<

:
Z .��mnh/B0 Qmnc.t/C k

�R2ŒJmC1 ."mn/�
2

JX

jD1

 j .t/Jm
�
�mnrj

�
cos

�
m�j

�
9
=

;

(4.86)

form D 0; 1; 2; : : : ; n D 1; 2; 3; : : : and

Amns.t/ D 1

Y .��mnh/

�
8
<

:
Z .��mnh/B0 Qmns.t/C k

�R2ŒJmC1 ."mn/�
2

JX

jD1

 j .t/Jm
�
�mnrj

�
sin
�
m�j

�
9
=

;

(4.87)

form; n D 1; 2; 3; : : : where

k D
�
1 for m D 0

2 for m ¤ 0
(4.88)

With the integration constantA.t/ obtained asAmnc.t/ (4.86) andAmns.t/ (4.87),
the scalar potentials 
 and  .i/; i D 1; 2; 3 are fully determined as given in (4.63),
(4.72), (4.73), and (4.74), and, for the case of symmetric modes (cosm�), their
substitution into the surface dynamic Eq. (4.57) gives
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�
1

�mn

1

tanh .�mnd/

d2 Qmnc.t/
dt2

C �g Qmnc.t/C ��2mn
Qmnc.t/C 	B0�mnAmnc.t/ D 0

(4.89)

Further substitution of (4.86) into (4.89), followed by its rearrangement, yields

d2 Qmnc.t/
dt2

C !2mn
Qmnc.t/ D fmnc.t/ (4.90)

where

!2mn D g tanh.�mnd/�mn C �

�
tanh.�mnd/�3mn C 	

�
B20 tanh.�mnd/�2mn

Z.��mnh/
Y .��mnh/

(4.91)

fmnc.t/ D Fmn

JX

jD1
 j .t/H

j
mnc (4.92)

Fmn D �	
�
B0

tanh.�mnd/

Y.��mnh/ �
2
mn

k

�R2ŒJmC1 ."mn/�2
(4.93)

Hj
mnc D Jm

�
�mnrj

�
cos

�
m�j

�
(4.94)

m D 0; 1; 2; : : : ; n D 1; 2; 3; : : : ; j D 1; 2; 3; : : : J

Using (4.87), a similar set of equations can be obtained for the antisymmetric
modes (sinm�) as follows:

d2 Qmns.t/
dt2

C !2mn
Qmns.t/ D fmns.t/ (4.95)

fmns.t/ D Fmn

JX

jD1
 j .t/H

j
mns (4.96)

Hj
mns D Jm

�
�mnrj

�
sin
�
m�j

�
(4.97)

m; n D 1; 2; 3; : : : j D 1; 2; 3; : : : J

The generalized displacements Qmnc.t/ and Qmns.t/, obtained from the solution
of the second-order differential Eqs. (4.90) and (4.95), respectively, and the corre-
sponding mode shapes Hmnc and Hmns evaluated at any desired location .rk; �k/
give the total surface displacement at the location as
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 .rk; �k; t / D
1X

mD0

1X

nD1
Qmnc.t/Hmnc .rk; �k/C

1X

mD1

1X

nD1
Qmns.t/Hmns .rk; �k/

(4.98)

The damping effects associated with the fluid viscosity may be introduced into

the model by adding the factors !dmn
�

d Qmnc =dt


and !dmn
�

d Qmns =dt


to the

left-hand side of (4.90) and (4.95), respectively. The damping frequency !dmn can
be approximated as follows (Blums et al. 1997):

!dmn D 4
�

�
�2mn (4.99)

The solution (4.98) is truncated to a finite number of modes such that m D
0; 1; 2; : : : ;M and n D 1; 2; : : : ; N . Similarly, the surface deflection  .rk; �k; t /
as provided by (4.98) is limited to a discrete number of surface locations k, k D
1; 2; : : : ; K: The dynamics of the system comprising (4.90), (4.95), and (4.98), with
the viscous damping terms added to the first two, is represented in state-space form
as follows:

Px D Ax C B0u0

y D  D Cx (4.100)

where

x D
h Q01 PQ01 Q02 PQ02::: Q0N PQ0N Q11c PQ11c Q11s PQ11s Q12c PQ12c Q12s PQ12s : : :

QMNc PQMNc QMNs PQMNs
iT

.1 � 2N.2MC1/ /

is the vector of the generalized displacements and the corresponding velocities,

u0 D Œ 1  2 � � �  J �T.1 � J /

is the vector of input magnetic potentials, and

y D Œ1; 2; : : : ; K�
T
.1�K/

is the vector of surface deflections defining the system output. With the system order
determined as Nd D 2N.2M C 1/, the system matrices A 2 RNd�Nd , B 2 RNd�J

,

and C 2 RK�Nd are as follows:
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A D

2
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66
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4

0 1 0 0 � � � 0 0 0 0

�!201 �!d01 0 0 � � � 0 0 0 0

0 0 0 1 � � � 0 0 0 0

0 0 �!202 �!d02 � � � 0 0 0 0

:::
:::

:::
:::

: : :
:::

:::
:::

:::

0 0 0 0 � � � 0 1 0 0

0 0 0 0 � � � �!2MN �!dMN 0 0

0 0 0 0 � � � 0 0 0 1

0 0 0 0 � � � 0 0 �!2MN �!dMN

3

7
77
7
7
7
7
77
7
7
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77
7
7
7
7
7
5

.Nd�Nd /

B0 D FH

where

F D

2

6
6
6
6
66
6
6
6
66
6
6
6
6
66
6
6
4

0 0 � � � 0 0

F01 0 � � � 0 0

0 0 � � � 0 0

0 F02 � � � 0 0

:::
:::

: : :
:::

:::

0 0 � � � 0 0

0 0 � � � FMN 0

0 0 � � � 0 0

0 0 � � � 0 FMN

3

7
7
7
7
77
7
7
7
77
7
7
7
7
77
7
7
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.Nd�Nd =2 /

H D

2
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66
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6
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6
66
6
6
6
6
66
6
6
6
66
4

H1
01c H2

01c � � � HJ
01c
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02c H2

02c � � � HJ
02c

:::
:::

: : :
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H1
0Nc H2
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0Nc

H1
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11c � � � HJ
11c

H1
11s H2

11s � � � HJ
11s

H1
12c H2

12c � � � HJ
12c

H1
12s H2

12s � � � HJ
12s

� � � � � � : : :
:::

H1
MNc H2

MNc � � � HJ
MNc

H1
MNs H2

MNs � � � HJ
MNs
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7
7
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7
7
7
77
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7
7
77
7
7
7
7
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7
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5

.Nd =2�J /
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and

C D

2

66
666
66
4

H1
01c 0 H1

02c 0 � � � H1
0Nc 0 H1

11c 0 H1
11s 0 H1

12c 0 H1
12s 0 � � � H1

MNc 0 H1
MNs 0

H2
01c 0 H2

02c 0 � � � H2
0Nc 0 H2

11c 0 H2
11s 0 H2

12c 0 H2
12s 0 � � � H2

MNc 0 H2
MNs 0

:::
:::

: : :
:::

:::
:::

:::
: : :

:::
:::

HK
01c 0 HK

02c 0 � � � HK
0Nc 0 HK

11c 0 HK
11s 0 HK

12c 0 HK
12s 0 � � � HK

MNc 0 HK
MNs 0

3

77
777
77
5

representing the matrix of shape functions evaluated at .rk; �k/, k D 1; 2; : : : ; K .
The state-space model (4.100) can be used to measure the response of a MFDM
surface to the inputs generated by an arbitrary array of miniature coils.

4.3 Current–Potential Relationship

For the development of the analytical model given above, electromagnetic coils were
idealized as point sources of magnetic potential. The actual mirror, on the other
hand, is controlled using currents applied to the coils. To generate corresponding
surface responses using the analytical model, it is necessary to establish a relation-
ship between the current input to a coil and the value of the magnetic potential of
the corresponding point source. The current–potential relationship is determined as
follows.

Firstly, the position of the point source with respect to the corresponding coil
is fixed. Since the contribution of the top turns of the coil to the magnetic field
observed at the surface of the fluid is much more significant than that of the lower
turns, it is assumed that the point source of potential is located at the same position
as that of the center of the top turns of the coil.

Secondly, using arbitrary values of current in the coil, the magnetic field of the
actual coil is simulated using COMSOL MultiphysicsTM (finite element analysis
software by COMSOL Inc. Stockholm, Sweden), and the values of the magnetic flux
density at the location corresponding to a point on the liquid surface immediately
above the center of the coil are determined. Then, using the derived analytical
model, the values of the point source of potential that yield the same values for the
magnetic flux density at the corresponding location are computed. The slope of the
linear current–potential relationship is then determined based on the obtained data.
Actually, only two points are sufficient since the relationship is found to be linear.

The current–potential relationship for the prototype MFDM, whose physical
parameters are described in the Chap. 5, is given in Fig. 4.3. The relationship is
based on the COMSOL simulation of the actual coils used in the prototype MFDM
(see Table 5.1 for the coil specification used in the simulation). The relationship
is determined for one electromagnetic coil and is then applied uniformly across
all others in the array. It should be noted that this relationship was determined
independently of the experimental data.

http://dx.doi.org/10.1007/978-3-642-32229-7_5
http://dx.doi.org/10.1007/978-3-642-32229-7_5
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Fig. 4.3 Current–potential relationship

If ˛ is the slope of the current–potential relationship, then

u0 D ˛u (4.101)

where u is the vector of currents uj , j D 1; 2; 3; : : : J , applied to the electromag-
netic coils. Using (4.101), the model (4.49) or (4.100) can be rewritten as follows:

Px D Ax C Bu

y D Cx (4.102)

where B D ˛B0. A discrete-time equivalent representation of model (4.102) is given
by

x.k C 1/ D Adx.k/C Bdu.k/

y.k/ D Cx.k/ (4.103)

where x.k/ is the vector of state variables, u.k/ is the vector of control currents,
y.k/ is the vector of the mirror surface deflections, and Ad and Bd are the system
matrices.

The DC gain of the system relating the steady-state response yss to a vector of
static inputs uss can be obtained as (Skogestad and Postlethwaite 2005)
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G0 D �CA�1B (4.104)

in the case of continuous time system and as (Chen and Francis 1996)

G0 D C.I � Ad/
�1Bd (4.105)

in the case of discrete-time system.

4.4 Simulation of the MFDM Model

The analytical model presented above can be used to simulate the response of the
MFDM surface to the magnetic field generated by an array of electromagnetic coils.
The model provides the static as well as the dynamic surface shapes produced by
the applied magnetic field. In the following, the analytical model representing the
prototype MFDM presented in the next chapter is simulated. The same simulations
will be utilized later to validate the analytical model by comparing the results
predicted by the model to the experimental results obtained using the prototype
mirror.

4.4.1 Model Parameters

The MFDM is modeled as a layer of EFH1 (ferrofluid for education—hydrocarbon
type), which is a commercially available oil-based magnetic fluid (Ferrotec Corpo-
ration, NH, USA). The properties of the fluid used in the simulation are given in
Table 4.1. The fluid layer has the following dimensions:

d D 1:0 mm; R D 30 mm

The magnetic field is generated using an array of 19 electromagnetic coils
arranged in a circular pattern and placed at distance h D 2:0 mm below the
undisturbed surface of the mirror. To ensure accuracy, the actual location of
the coils measured in the prototype mirror is used in the model. The location˚�
rj .mm/ ; �j .rad/

�
; j D 1; 2; : : : ; 19

�
of the coils is given as

Table 4.1 Properties of
EFH1, the magnetic fluid
used in the prototype MFDM

Density 1,210 kg/m3

Viscosity 5.8 cP
Saturation magnetization 40 mT
Relative permeability 1.78
Coefficient of surface tension 29� 10�3N=m
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f.0; 0/; .4:1; 4:7/; .3:4; 5:6/; .3:9; 0:8/; .4:2; 1:7/; .5:2; 2:7/; .4:4; 3:8/; .7:6; 4:8/; : : :
.7:4; 5:3/; .7:0; 5:8/; .7:5; 0/; .7:4; 0:6/; .7:1; 1:3/; .8:3; 1:7/; .7:8; 2:2/; .9:2; 2:7/; : : :

.8:9; 3:1/; .8:0; 3:7/; .7:0; 4:2/g

The slope of the current–potential relationship, ˛, as determined from the
COMSOL simulation of the actual electromagnetic coil, is set to 2:3625�10�6=A. A
vertical, uniform magnetic field with the flux density B0 D 2:5 mT is superimposed
on the magnetic field generated by the array of coils. The factors considered in the
selection of the field strength are discussed in Sect. 5.1.3. The analytical model
(4.102) used for simulation is based on the above mentioned parameters, and the
model was obtained by truncating the radial and azimuthal modes to N D 4, M D 4,
respectively.

4.4.2 Static Response

The static response of the mirror surface shape can be obtained by setting Px D
0 with input u given as a vector of constant currents. Firstly, the response of the
mirror surface to the current applied to only one coil is simulated. The simulated
static shapes of the mirror surface obtained by applying constant currents to the
coil located at .r1; �1/ are plotted in Fig. 4.4. Taking advantage of the symmetry of
the surface shape generated by the chosen coil, that is, the one in the center of the
mirror, only 2D shapes are shown in the figure. As can be observed from the figure,
application of current to a single coil results in a Gaussian surface shape with its
peak located immediately above the location of the energized coil. A 3D surface
shape resulting from a specified set of input currents

u D Œ0:1; 0:5; 0:4; 0:3; 0:1;�0:1; 0:2; 0:9; 0:7; 0:6;�0:5; 0:6; 0:1;

� 0:4;�0:9;�0:3; 0:5;�0:3; 0:4�T � 1

31:5
A

applied to the complete array of 19 coils is presented in Fig. 4.5.

4.4.3 Dynamic Response

The analytical model can be used to observe the dynamics of the mirror surface
shape. As an illustration of the ability of the model to capture the dynamic response
of the mirror surface, the surface deflections resulting from a step input applied to
the center coil are plotted in Fig. 4.6. The figure shows the time history of the surface
deflections observed at a surface location immediately above the coil.

http://dx.doi.org/10.1007/978-3-642-32229-7_5
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Fig. 4.6 Response to a step input. The input current is applied to the center coil only, and the
surface deflection is observed at a point immediately above the same coil

A comprehensive picture of the dynamics of the MFDM surface can be seen by
drawing the Bode plots of the MIMO model. Figure 4.7 shows the Bode plots for
three selected channels where the input is applied at the coils located at .r1; �1/,
.r2; �2/, and .r10; �10/ and the output surface deflections are observed at the surface
points located immediately above the respective coils. While a detailed discussion
on the dynamics of the mirror will follow in following chapters, a few observations
may be noted here. Note that plots on the leading diagonal show the input–output
relationship between an electromagnetic coil input and the surface displacement
obtained immediately above the same coil. The off-diagonal plots, on the other hand,
show the coupling effect between different input–output channels. It is obvious that
for any input coil, the magnitude of the surface deflection immediately above the
coil is significantly higher than the magnitude of the deflections obtained away
from the coil. Also note that the coupling effect varies from channel to channel.
While an input to the coil located at .r1; �1/ results in an output at .r2; �2/ with a
significant magnitude, the magnitude of the resulting surface deflections at .r10; �10/
is negligibly small.

4.5 Summary

An analytical model of the dynamics of the surface shape of a MFDM has been
presented in this chapter. The model is derived using a coupled system of equations
obtained from the fundamental governing principles of conservation of mass and
momentum, and Maxwell’s equations. The model describes the dynamics of the
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Fig. 4.7 Bode plot of the MFDM model. The array of Bode plots shows the system response
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plots of the output surface deflections predicted by the model for the location immediately above
the center of coil #1. The second row shows the corresponding phase plots. The magnitude and
phase plots for the predicted deflections above coils #2 and #10 are given alternatively in the
following rows of plots

mirror surface shape in terms of deflections of the mirror surface produced by
a magnetic field generated by an array of electromagnetic coils. The model has
been developed in both the Cartesian and the cylindrical coordinate systems. An
innovative method of linearizing the equations governing the dynamics of the mirror
surface was introduced and will be utilized to propose an important modification in
the design of a MFDM. The developed model was presented in state-space form and
was used to simulate the static as well as the dynamic response of the mirror surface
shape.
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Design of a Magnetic Fluid Deformable Mirror
and Experimental Model Validation
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5.1 Design of Magnetic Fluid Deformable Mirror

The design of a practically deployable MFDM involves a wide range of con-
siderations including—just to name a few—the application specific performance
requirements, maintainability, and cost constraints. Covering all these aspects is
beyond the scope of this book. However, in what follows, we will examine important
design features of a MFDM that affect the control of the mirror and its potential
application in ophthalmic imaging systems.

Z. Wu et al., Modeling and Control of Magnetic Fluid Deformable Mirrors
for Adaptive Optics Systems, DOI 10.1007/978-3-642-32229-7 5,
© Springer-Verlag Berlin Heidelberg 2013
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5.1.1 Conceptual Design

5.1.1.1 Conventional Conceptual Design

The basic operating principle of a MFDM was briefly described in Sect. 3.2, and
the schematic layout of the conventional design of the mirror was shown in Fig.
3.3. The primary elements of the mirror are a layer of a magnetic fluid, a thin
film of a reflective material coated on the free surface of the fluid, and an array of
electromagnetic coils placed beneath the fluid layer. Each of the electromagnetic
coils is driven independently by applying a corresponding current input. The
combined electromagnetic field of the coils causes the fluid surface and the reflective
film to deform. The deformed reflective surface acts as a mirror whose shape can
be controlled by adjusting the current applied to the individual coils. The material
properties of the magnetic fluid and the reflective film, the shape and size of the fluid
layer, the number and arrangement of the electromagnetic coils, and the dimensions
of each coil are the variables that need to be established in the detailed design
process.

5.1.1.2 Modified Design

The analytical work undertaken to develop a model of a MFDM, as given in Chap.
4, revealed that the deflection of the magnetic fluid surface is nonlinear in the
applied magnetic field. This nonlinearity results in a fundamental limitation of the
conventional MFDM design: since the surface displacement is a quadratic function
of the applied magnetic field, only positive displacements can be achieved. It has
already been known that the magnetic field of electromagnetic coils in conventional
configuration can displace the magnetic fluid in the upward direction only, that is,
the magnetic field can “push” the fluid surface but cannot “pull” (Laird et al. 2006).
As it was briefly introduced in Sect. 4.1.2, one of the solutions to the problem
of nonlinear response of the fluid surface is to linearize it by superimposing a
large, uniform, vertical magnetic field on the field generated by the electromagnetic
coils. The proposed modified design is the realization of this solution, where a
large uniform magnetic field generated by an appropriate source is superimposed
on the magnetic field of the conventionally used array of coils. In the proposed
design, a Helmholtz coil is used to generate the uniform magnetic field. As shown
in Fig. 5.1, the Helmholtz coil consists of two circular coils of equal diameter, which
are separated by a distance equal to the radius of the coils. This distinctive design
provides a magnetic field, which runs parallel to the central axis and is uniform over
a significant volume extending around the axis.

The proposed modified design of a MFDM is a combination of a Helmholtz coil
and the conventional design illustrated in Fig. 3.3. The modified design, as shown
in Fig. 5.2, places the conventional MFDM inside the Helmholtz coil, thus allowing
the uniform field of the Helmholtz coil to be superimposed on the field of the coils

http://dx.doi.org/10.1007/978-3-642-32229-7_3
http://dx.doi.org/10.1007/978-3-642-32229-7_3
http://dx.doi.org/10.1007/978-3-642-32229-7_4
http://dx.doi.org/10.1007/978-3-642-32229-7_4
http://dx.doi.org/10.1007/978-3-642-32229-7_3
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Fig. 5.1 Layout
of a Helmholtz coil

Fig. 5.2 Modified conceptual design of a magnetic fluid deformable mirror

placed underneath the fluid layer. The figure shows a more practical Helmholtz coil
with each of the two coils comprising multiple turns. For clarity, the coils placed
underneath the fluid layer will be referred to as miniature coils. If the magnetic field
of the Helmholtz coil is significantly larger than the field of the miniature coils, the
surface displacements become linearized in terms of the vertical component of the
magnetic field of the miniature coils. As alluded to in the theoretical work presented
in Sect. 4.1.2, the horizontal components of the magnetic field can be ignored when
the magnetic field of the Helmholtz coil is present. The following are the main
features of the proposed design:

• The conventional mirror is placed inside the Helmholtz coil such that the central
axis of the coil is aligned with the gravity vector, that is, the uniform field of the
coil runs perpendicular to the free static surface of the magnetic fluid.

http://dx.doi.org/10.1007/978-3-642-32229-7_4
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• The strength of the uniform field is chosen to be significantly larger than the
maximum magnetic field of each of the miniature coils.

• Contrary to the conventional configuration where the electromagnetic coils are
augmented with a soft magnetic core for increasing the flux density, the miniature
coils in the modified design are air-cored type. Theoretically, the coils with a soft
magnetic core can still be used to serve the basic purpose of linearization of
the response of the fluid surface. However, they cause the magnetic field of the
Helmholtz coil to concentrate along the axis of the miniature coils submerged
in the field of the Helmholtz coil, thus resulting in nonuniformities of the field.
The resulting field gradients cause deflections of the fluid surface even when no
currents are applied to the miniature coils.

• The diameter of the fluid layer is chosen to be significantly larger than the active
area containing the coils, which implies that the diameter of the fluid layer is
significantly larger than the optical pupil as measured on the fluid surface. This
feature ensures that the effects of the magnetic field gradients at the edges of the
fluid layer are excluded from the active mirror area. The gradients are caused
by the unavoidable discontinuity of magnetic permeability at the interface of
the fluid and the container. The exclusion of the edges is also desirable for the
conventional design as it avoids the meniscus along the walls of the container.

5.1.2 Detailed Design

While the conceptual design provides only an outline of any product, the detailed
design is an iterative process that determines the definite values of the various design
features, that is, design variables, which meet a prescribed set of constraints and
performance requirements. Depending on the nature of the application, different
sets of constraints and performance requirements can be specified for the design of
a MFDM. These requirements in turn dictate what features should be considered as
design variables. We consider a generalized set of requirements and design variables
as described below.

5.1.2.1 Design Requirements

Spatial resolution: Spatial resolution or the number of spatial modes to be corrected
signifies the degree of accuracy of correction required. The finer the extent of defects
that need to be compensated for, the higher the required order or the number of
modes will be.

Bandwidth: The bandwidth is the required operating frequency range of the
deformation of the mirror surface. The requirement is dictated by the frequency
of the aberrations that need to be corrected.

Dynamic range: The dynamic range defines the maximum and the minimum
achievable correction, that is, the magnitude of surface deflection that can be
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generated using the MFDM. For example, a deformable mirror may be required
to produce up to 10 �m deflection with a resolution of 10 nm. The stroke, that is,
the maximum required deflection of the mirror surface, is dictated by the depth of
the aberrations that need to be corrected. The requirement of the smallest applicable
deflection is dictated by the precision of the correction.

5.1.2.2 Design Variables

Number of actuators and actuator spacing: The total number of actuators (elec-
tromagnetic coils) and spacing between them determines the spatial resolution
or the number of modes that can be corrected. For a given shape of the array
of actuators, it also determines the size of the active part of deformable mirror,
which in turn determines the size of the AO system. A good approximation of the
appropriate spacing can be obtained from the empirical observation that most of the
wavefront correctors currently in use have 10–20% coupling between two adjacent
actuators (Tyson 2011). The actuator spacing that provides the desired coupling can
be directly observed by plotting the surface shape obtained by applying input to a
single actuator.

Dimensions of the miniature coils: The strength of the magnetic field generated by
each magnetic coil as measured at the surface of the magnetic fluid is the principle
factor that controls the shape and magnitude of the resulting surface deflections. The
strength of the magnetic field generated by the coil is a function of the number of
turns in each coil, the length and diameter of the coil, and the maximum allowable
current in the coil.

In the modified design featuring a vertical, uniform magnetic field superimposed
on the field of the miniature coils, only the vertical component of the magnetic
field of the miniature coils plays the significant role. It serves to provide the desired
shape of deformation of the fluid surface, while the large uniform field provides the
necessary amplification of the surface deflections.

Size of the fluid layer: The size of the fluid layer refers to the depth and diameter
of the layer. The depth of the fluid layer affects the stroke of the mirror, that is, the
maximum achievable surface deflections. As discussed in Sect. 4.2, the magnitude
of the mirror surface deflection is a linear function of the vertical component, bz,
of the magnetic field of the miniature coils as observed at the mirror surface. The
magnetic field component bz itself can be varied by varying the vertical distance
h between the top edge of the array of electromagnetic coils and the deformable
surface of the mirror. Therefore, keeping all other factors constant, the maximum
mirror surface deflection can be varied by varying the depth of the fluid layer. As
shown in Fig. 5.3, the vertical component, bz, of the magnetic field generated by
an electromagnetic coil varies exponentially with the variation of the distance h.
Consequently, any variation in the depth of the fluid layer also causes an exponential
change in the stroke of the mirror.

http://dx.doi.org/10.1007/978-3-642-32229-7_4
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Fig. 5.3 The decay of the
vertical component of the
magnetic flux density (bz) of
a coil with an increasing
distance, h, from the top edge
of the coil

Magnetic fluid properties: Due to the synthetic nature of the magnetic fluids, the
properties of a fluid intended for an application can always be tailored according
to the requirements of the application. Therefore, the choice of appropriate fluid
alone offers a great degree of freedom in the design of a MFDM. For example, the
surface deflections obtained using a given magnetic field can be greatly varied by
using magnetic fluids with different permeability or density. Similarly, the viscosity
of the fluid affects the damping properties of the fluid motion and hence is an
important determinant of the dynamic stability and controllability of the MFDM.
Surface tension is another fluid property that affects the surface response and will
be discussed at greater length in Sect. 5.3.2.

5.1.2.3 Design of the Helmholtz Coil

The nominal diameter (d in Fig. 5.2) of the two circular coils, the number of turns
in each coil, and the maximum allowable current are the primary design variables
pertaining to a Helmholtz coil. The Helmholtz coil should be able to provide a
magnetic field, which is significantly (at least ten times) larger than the magnetic
field of the miniature coils. Also, the uniformity of the magnetic field generated
by the Helmholtz coil deteriorates with the increasing distance from the central
axis. Therefore, the internal diameter should be large enough to ensure a minimum
specified uniformity.

The nonuniformity of the magnetic field far from the central axis can produce
a curvature on the initial surface of the liquid. This initial curvature in the liquid
surface shape can be compensated using the miniature coil actuators; however,
this compensation is done at the expense of using stroke that would otherwise
be available for the correction of incoming wavefronts. An alternative to using a
Helmholtz coil is to use a Maxwell coil (Brousseau et al. 2010). A Maxwell coil is
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Fig. 5.4 Layout of a
Maxwell coil

made up of three separate coils (see Fig. 5.4), which results in a uniform magnetic
field up to the sixth order derivative with respect to the position near the center of the
coil, compared with the 4th order derivative produced by Helmholtz coil (Caprari
1995). The radii of the coils and their vertical position must follow the ratios shown
in Fig. 5.4. The number of ampere-turns (AT) of both the lower and upper coils
must also be exactly in the ratio of 49/64 relative to the middle coil. It is usually
more convenient to adjust the number of turns of the lower and upper coils than
to adjust their current in the design of a Maxwell coil. By properly adjusting the
number of turns of the lower and upper coils, the three coils can be arranged in a
series configuration in the resulting electric circuit by supplying them with the same
current. Using this structure, Brousseau et al. (2010) built a 91-actuator MFDM with
a high linearization performance.

5.1.3 Description of the Prototype MFDM

A MFDM comprising 19 input channels has been developed for the experimental
validation of the MFDM model and the controllers presented in this book. Though
a practically deployable mirror should meet all of the requirements listed above,
the mirror was built as a proof-of-concept prototype, which meets only as many
requirements as could be accommodated within the limited time and resources
available for the research work. Figure 5.5 shows the schematic layout of the mirror.
The pictorial view of the assembly of the mirror is shown in Fig. 5.6. The salient
features of the mirror are as follows:

• The fluid element of the mirror comprises a 60-mm-diameter layer of EFH1
(ferrofluid for education—hydrocarbon type) which is a commercially available
oil-based magnetic fluid (Ferrotec Corporation, NH, USA). The thickness of the
layer can be varied by adding appropriate volume of the fluid. Experiments were
performed using 1.0-mm-thick layer. Important properties of the fluid are listed
in Table 4.1.

http://dx.doi.org/10.1007/978-3-642-32229-7_4
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Fig. 5.5 Schematic diagram of the prototype MFDM

• The mirror is driven using an array of 19 electromagnetic coils arranged in a
circular pattern as shown Fig. 5.7. The coils are radially spaced at 4 mm from
center to center, thus presenting a total active footprint area of approximately
22-mm diameter.

• The electromagnetic coils are conventional circular coils wound on a cylindrical
bobbin. The coils were obtained off-the-shelf from Dia-Netics Inc., CA, and have
the properties/dimensions as given in Table 5.1.

• The Helmholtz coil was locally fabricated and has the properties/dimensions as
given in Table 5.2. The strength of the magnetic field of the Helmholtz coil can
be controlled by varying the current applied to the coil. The coil is normally
operated at 194 mA, which produces a nominal magnetic flux density of 2.5 mT
at the center of the coil. The strength of the magnetic field is chosen such that it
is sufficiently larger than that of the miniature coils (bz � 0:25) mT, as measured
at the fluid surface, but is safely below the critical limit (�17 mT) at which the
Rosensweig instability occurs (Gollwitzer et al. 2007).
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Fig. 5.6 Assembly of the prototype MFDM (a) Array of coils. (b) Fluid container added.
(c) Mirror and Helmholtz coil. (d) Assembled mirror
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Fig. 5.7 Layout of the array
of electromagnetic coils

• The array of electromagnetic coils is driven by a PC-based system comprising a
PCI-type analog voltage output card (National Instruments 6723) and a current
amplification and protection unit. The analog voltage card features 32 output
voltage channels with a maximum sampling speed of 45 kS/s. With the 13-bit
resolution, it can provide voltages up to ˙10 V at a precision of 2.4 mV. Since the
analog output voltage channels can supply only up to 5 mA current as against the
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Table 5.1 Properties of the
miniature electromagnetic
coils

Manufacturer’s part no. PCRC 408-006
Length 0.4 in (10.1 mm)
Internal diameter 0.084 in (2.1 mm)
External diameter incl. bobbin flange 0.137 in (3.5 mm)
No. of turns 620
No. of layers 4
Core-type Air-cored
Average resistance 31.5 �
Wire gauge AWG41
Wire material Copper
Wire diameter (bare) 0.0028 in (0.071 mm)
Wire thickness incl. insulation 0.0029 in (0.074 mm)
Bobbin internal diameter 0.074 in (1.9 mm)
Bobbin wall thickness 0.005 in (0.125 mm)
Bobbin material Kapton®

Table 5.2 Properties of the
Helmholtz coil

Nominal diameter 3.45 in (88 mm)
Internal diameter 3.02 in (77 mm)
No. of turns in each coil 625
No. of layers in each coil 25
Average resistance (combined) 49.5 �
Wire gauge AWG26
Wire material Copper
Wire diameter 0.0159 in (0.404 mm)
Bobbin internal diameter 3.0 in (76.2 mm)
Bobbin material Aluminum

50 mA required by the electromagnetic coils to be driven, a current amplification
circuit was developed. To avoid damage to the system, necessary protection
measures using a voltage following circuit were incorporated into the circuit. The
circuit diagram shown in Fig. 5.8 corresponds to the voltage following circuit and
the voltage to current conversion circuit for one channel. The associated transfer
function from the voltage input Vin to the resulting current in the coil I0 is

I0 D
�
1

Rs
C Rs � RL

Rs .RL C 2Rf/

�
Vin (5.1)

where RL D Rc C Lcs, Rc is the resistance of the coil, and Lc is the inductance
of the coil. For the case of Rf � Rs and Rc, when the system works in the
low-frequency range, the current I0 of the coil in (5.1) can be approximated as

I0 D Vin

Rs
(5.2)
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Fig. 5.8 Current amplification and protection circuits including a voltage following circuit and a
voltage-controlled current source circuit. The diagram shows the circuit for one channel only. The
circuit can be replicated to any desired number of channels

5.2 Experimental Setup

The prototype MFDM described above has been incorporated into an experimental
adaptive optics setup. The system is designed to be used as platform for testing,
characterization, and evaluation of the MFDM in the first stage and can be
subsequently complemented with a science camera and auxiliary components that
will render it a complete AO retinal imaging system.

5.2.1 Layout of the System

Figure 5.9 shows the snapshot of the experimental AO setup used in this study
for validations. Important components of the system have been indicated. The
schematic diagram of the system is given in Fig. 5.10. The components drawn as
dotted lines in the figure represent the imaging subsystem that can be incorporated
at a later stage.

In the final ophthalmic AO imaging system, the optical relay indicated as R1 will
be eliminated and a thin beam of laser or a super-luminescent diode (SLD) light will
be directed into the eye using the beam splitter marked as BS2. The light reflected
from the eye, which exits the eye as a beam with a diameter equal to that of the pupil
of the eye, will be directed to the MFDM using the optical relay R2. Since the main
purpose of the current system is only the characterization and control of the MFDM,
the system is modified accordingly as described below.

A collimated, aberration-free beam of light from the laser source is magnified
using the first optical relay R1. The magnified beam is limited by an aperture stop
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Fig. 5.9 Snapshot of the experimental setup

with 5.5-mm diameter, which is the average size of the pupil of a dilated human eye.
The 5.5-mm beam is diverted and further magnified (�4) using relay R2 to 22 mm.
The 22-mm beam is directed on the horizontal fluid surface using the fold mirror,
which also collects the reflected beam and folds it back to the Shack–Hartmann-
type wavefront sensor at an angle of � 8ı from the incoming beam. The reflected
beam, now carrying the aberrations induced by the mirror, is demagnified (�6) to
3.6 mm in order to be projected fully on the lenslet array of the Shack–Hartman-type
wavefront sensor. The wavefront sensor measures the slope of the incoming beam
using an array of 32 � 32 lenslets. The wavefront slope information is acquired by
a PC-based reconstruction and control software, which provides necessary current
inputs to the MFDM through an electronic control unit.

5.2.2 Description of the Main Components

Important features of the main components of the system are described below.

5.2.2.1 Wavefront Sensor

The Shack–Hartmann-type wavefront sensor (HASO 32 by Imagine Optic, Orsay,
France) comprises a 32 � 32 array of lenslets. The sensor has an aperture dimension
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Fig. 5.10 Schematic layout of the experimental setup. The components shown in the blue color
(dashed lines) are to be incorporated later. The subscripted letters L, M, R, and BS indicate a lens,
mirror, relay, and beam splitter, respectively. All dimensions are in millimeter (mm)

of 3.6 � 3.6 mm backed by a CCD camera detector (Toshiba Teli CS8550i-01) and
operates at a maximum acquisition frequency of 30 Hz. The wavefront slope data,
measured discretely at the 32 � 32 subapertures of the wavefront sensor, is acquired
by a PCI frame grabber (Euresys Domino Alpha2 acquisition board) which provides
an interface to a host PC.

5.2.2.2 Laser Diode

The reference light used for the measurement of aberrations is provided by a 661-
nm fiber-coupled diode laser source (QFLD-660-10S by Nolatech JSC, Moscow,
Russia). The laser source can provide up to 10 mW of optical power, which is
controlled by a current driver (QSDIL-300). The single-mode fiber-coupled laser
diode with a 14-pin DIL packaging is mounted on a temperature controller DIL
mount. The FC/APC terminated fiber is coupled to a dual aspheric lens collimator.
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Table 5.3 Specifications of
the optical components

Focal length (mm) Diameter (mm)

L1 40 12.5
L2 200 50.8
L3 100 25.4
L4 400 50.8
L5 300 50.8
L6 50 12.5

5.2.2.3 Optical Components

The optical system broadly comprises three optical relays (R1, R2, and R3), which
magnify and demagnify the light beam for proper projection on the MFDM and the
wavefront sensor. The relays are constructed by plano-convex lenses coated with
antireflection coatings. Table 5.3 provides the specifications of the lenses used in
the setup. A manually operated fold mirror is used for directing the light beam to
the MFDM whose surface lies essentially in the horizontal plane.

5.2.2.4 Software

The control software for the experimental AO system consists of three main
components. The first component is the wavefront acquisition and reconstruction
module. The acquisition and reconstruction functions used in this work are provided
by the manufacturer of the wavefront sensor, Imagine Eyes Inc. The second
component is the software implementation of the control algorithms. All controllers
are written in discrete-time state-space form and are implemented as a CCC class.
The third part is the driver software for the MFDM, which has been developed
using the driver functions provided by National Instruments. The whole system is
integrated using a CCC console application accessing the three components in a
closed loop. A single PC, using a 4200C AMD Athlon 64 � 2 Dual Core processor
with two gigabytes of RAM, centrally controls the sensor acquisition, controller
data processing, and MFDM actuation.

5.2.3 System Assembly

The experimental optical setup is composed of lenses, beam splitters, and mirrors.
Essentially, the system optically conjugates the exit pupil of the eye, given by the
virtual image of the retina through the cornea, with the plane of the DM and the
wavefront sensor. This means that a point that is in focus at the exit pupil of the eye
will be in focus on the plane of the DM and the wavefront sensor, thus minimizing
aberrations caused by the hardware misalignment of AO system. Conjugation is
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achieved by using relay telescopes formed using two positive lenses. All lenses are
off-the-shelf plano-convex lenses. Figure 5.9 shows a picture of the actual system
with its main components. Figure 5.10 shows a schematic of an AO system layout.
In Fig. 5.10, conjugate planes are indicated with the letters P and R, and the direction
of the light is shown with arrows. The image of the retina on the DM is magnified
by a factor of 4. The image of the retina from the DM to the WFS’s CCD detector
is magnified by a factor of �6.

For the purposes of sensor alignment and testing, an artificial eye based on a
dynamic eye model presented in Fernandez and Artal (2007) was used. The artificial
eye consists of a doublet lens (acting as the artificial lens of the eye) and a rotating
diffuser placed at a fixed distance from the lens (acting as the artificial retina).
Different refractive errors can be simulated by rotating the diffuser. The artificial
eye can be used for alignment and testing of the AO system due to its ability to
create low-order aberrations.

In most AO systems, tip and tilt aberrations are compensated for using an
additional (costly) mirror, known as a tip-tilt mirror. The tip-tilt mirror is needed
because of the low achievable stroke of most of the electrostatic mirrors used in
many AO systems for retinal imaging. Due to the high achievable stroke of the
MFDM used in this AO systems, tip and tilt aberrations will be corrected for using
the WFC, substantially reducing the overall cost of the system.

The DM and the WFS all lie in conjugate planes with the pupil of the eye,
and since they all have different diameters, this requires optical relays, known
as relay telescopes, to adjust the diameter of the beacon light as it propagates
through the system. Before entering the eye, the beacon light shares a common
path with the beacon light exiting the eye. In order to couple the beacon light path
with the rest of the system, a pellicle beam splitter (PS) is used to direct light into
the eye. Pellicle beam splitters are ideal because they minimize light dispersion
and eliminate ghosting from the system. The pellicle beam splitter’s membrane is
extremely uniform exhibiting less than 1/2 wavelength of variation across a 25-
mm beam splitter, using a 661-nm light source. This minimizes the wavefront error
introduced into the reflected beam to less than half a wavelength, thus reducing
the amount of the wavefront aberration introduced by the system itself. The entire
system was designed to fit into a compact space, with dimensions of 1 m � 1 m.

The system control is performed using a single processor personal computer (PC)
as shown in Fig. 5.11. The WFS data is collected by a frame grabber (Euresys
Domino Alpha2 acquisition board) and sent to the PC, which uses the data to
reconstruct the wavefront of the beacon light. The reconstructed wavefront is then
used by a controller (also housed in the PC) to generate the required actuator signals,
in the form of voltages, for each of the actuators in WFC. The actuator signals are
sent to an analog voltage output card (National Instruments 6723), which transfers
control signals to the current control circuit. Actuator current signals are then sent
from the current drive box to the WFC. A detailed arrangement of the components
used in this AO system is provided in Appendix D.

http://dx.doi.org/10.1007/978-3-642-32229-7_BM
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Fig. 5.11 Data flow for AO system with a MFDM

5.2.4 Alignment Procedure

Optical alignment refers to the process of adjusting the positions of various optical
components in the system so that the AO system is set up optically as designed.
A number of approaches can be taken to align the optics of an AO system. Many
of these include the use of specialized equipment such as alignment telescopes and
interferometers, which can add to the cost of an AO system. The optical alignment
procedure adapted in this work involves four steps. The first step is to layout the
main optics (the beacon light, DM, and WFS with respect to the position of the
pupil of the eye) on an optical table according to design specifications. This will
ensure that the components are placed close to the nominal design. It should be
noted that the WFC and WFS are on X-Y-Z stages that allow precise movements in
the X-Y-Z directions using adjustment dials on the stages.

The second step is to establish the optical axis of the system. In order to
establish the optical axis, a line of sight (LOS) and set of targets are needed to
define the intended optical axis. The targets will be permanent targets that can be
continuously used throughout the life of the AO system to check for alignment. For
this application, irises are used that can be closed when the targets are needed and
opened, allowing the beacon light to pass through, when the targets are not needed.
The LOS acts as the optical axis, making it easier to center the optics of the system,
such as sources and detectors, with respect to the optical axis. In order to properly
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Fig. 5.12 Setting the LOS in the AO system

establish the LOS, permanent targets (T1, T2, and T3) are placed at prespecified
positions. These targets are used to align the beacon light (or laser light) as it passes
through different components in the system, shown in Fig. 5.12. Once the first leg
(L1) of the system (the optical path from the alignment laser to PS) is aligned, the
second leg (L2, the optical path from the eye to the DM) is aligned. The beacon
light reflects from a flat mirror (M1, used to represent the pupil of the eye during
alignment) and is directed toward the DM. The beacon light then reflects from the
DM and is directed toward a second target, T2. The position of the DM can be
adjusted using its X-Y-Z stage so that the laser hits T2 on target. T2 is then opened
allowing the beacon light to pass through, hitting the third target, T3. The DM is
adjusted until the light can hit both T2 and T3 at their centers. Next, the WFS is
aligned by positioning the sensor using its alignment setting with the beacon light.
The WFS is adjusted using its X-Y-Z stage so that the beacon light hits its lenslet
array in the center.

The third step is to complete the alignment of the afocal relay telescopes in the
system. It should be noted that a relay telescope is a lens arrangement, shown in
Fig. 5.13, which accepts a collimated beam in and outputs a magnified collimated
beam. The relay telescopes, shown in the Fig. 5.13, will each be aligned online using
the laser. The lenses are centered using the predetermined LOS set up in step 2. If the
LOS passes through the nodal point (or the center) of the lenses, then the LOS will



144 5 Design of a Magnetic Fluid Deformable Mirror and Experimental Model Validation

Fig. 5.13 Aligning the relay telescopes for the AO system

not deviate from its path. Therefore the height of each of the lenses is adjusted until
the LOS hits the targets. Once the lenses are centered, the distance between the two
lenses can be set using a shear plate. The two lenses can be adjusted with respect to
each other until the output of the relay is a collimated beam. This will ensure that the
two lenses are positioned correctly with respect to one another. The shear plate can
be used to determine if the beam is collimated by analyzing the beam’s wavefront.
The shear plate is positioned in the optical path of the system immediately following
the relay telescope that is being assembled. If the beam exiting the relay telescope
is collimated, a fringe pattern is created, as shown in Fig. 5.14a. If the beam is
not collimated, the fringe pattern will be misaligned, as shown in Fig. 5.14b. The
relay telescope is then adjusted until the fringe pattern is similar to the pattern in
Fig. 5.14a. The relay in L3 can be set in a similar manner. The relay telescopes will
be known as RT2 and RT3, corresponding to L2 and L3.
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Fig. 5.14 Fringe pattern created by the shear plate: (a) collimated beam and (b) diverging beam

The fourth step is to align the conjugate planes of the system. In most AO
systems, two sets of conjugate planes are important (Hecht 2002). The first set
of planes is conjugate to the eye’s retina and includes the aperture plane of the
reference beacon and the CCD plane of the WFS. The second set of conjugate
planes is conjugate to the eye’s pupil and includes the DM and the lenslet array
of the WFS. Since the field of view of the system is relatively small compared to
its overall dimension, there is very little penalty in having the conjugate planes of
the eye’s pupil slightly out of position (viz., by a millimeter or two). Thus, the
conjugate planes can easily be positioned using precise measurement. More detail
regarding the alignment procedure and the design of the AO system are presented
in Appendix D.

5.2.5 Miscellanea

5.2.5.1 Uniformity of the Initial Surface

The Helmholtz coil used in the prototype MFDM has a uniformity of less than 0.1%
as measured at 20-mm diameter. Although small in magnitude, the nonuniformity
of the magnetic field of the Helmholtz coil does produce a curvature in the initial
surface of the fluid. Moreover, any misalignment in the vertical axis of the
Helmholtz coil and the gravitational vector, as well as the imperfections in the
optical components, result in a non-flat initial wavefront surface as measured by
the wavefront sensor. Though the tilt and the curvature in the initial surface mea-
surements can be minimized by properly adjusting the fold mirror (see Fig. 5.9) and
the position of the wavefront sensor, some deformations of the initially measured
wavefront surface remain uncorrected. Generally, these initial imperfections in the
system are eliminated by presetting the actuators, which ensures a planar initial
wavefront surface.

http://dx.doi.org/10.1007/978-3-642-32229-7_BM
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5.2.5.2 Effect of the Earth’s Magnetic Field

The effects of the earth’s magnetic field have been ignored. For our experimental
setup with the miniature coil strength bz � 0:25 mT and earth’s magnetic field
� 0:055 mT in Toronto, Canada (Haines and Newitt 1997), the approximation
is valid. However, with any smaller coils, the effects of the earth’s magnetic field
may be significant. Under such circumstances, the vertical component of the earth’s
magnetic field can be directly added to the uniform field of the Helmholtz coil
without affecting the validity of the model.

5.3 Experimental Evaluation

This section is aimed at experimentally validating the analytical model developed
in Chap. 4 using the prototype MFDM and the AO setup described in Sect. 5.2.
After some preliminaries given in the following section, the analytical model is
validated by comparing the predictions made by the model with the corresponding
experimental results. The effects of the linearization of the MFDM response using
a Helmholtz coil are investigated and verified. The experimental evaluation of the
performance of the controllers will be presented and given later in Chaps. 7 and 8.

5.3.1 Preliminaries

5.3.1.1 Parameter Settings

Before presenting the experimental results, it is pertinent to specify the settings used
in obtaining the results. The common settings are listed as follows:

• The magnetic fluid properties used in the analytical model of the MFDM are
those of EFH1 as listed in Table 4.1.

• The MFDM model (4.102) is truncated to the following numbers of radial and
azimuthal modes, respectively: N D 4 and M D 4.

• All results are obtained using a magnetic fluid layer which has a thickness of
1.0 mm.

• If not otherwise stated, the Helmholtz coil is set to run at 194 mA current, which
corresponds to a nominal magnetic flux density of 2.5 mT.

• The optical pupil size, that is, the diameter of the laser beam, is set to 22 mm as
measured on the MFDM surface. All optical metrics, for example, the PSF and
the RMS of the wavefront shape error, are computed using this pupil size.

http://dx.doi.org/10.1007/978-3-642-32229-7_4
http://dx.doi.org/10.1007/978-3-642-32229-7_7
http://dx.doi.org/10.1007/978-3-642-32229-7_8
http://dx.doi.org/10.1007/978-3-642-32229-7_4
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5.3.1.2 System Identification

System identification (SI) is a black-box approach to system modeling, which
is used to estimate models of dynamic systems from experimentally measured
input–output data. A supplementary model of the dynamics of the MFDM surface
shape was obtained using this approach and has been used in the validation of
the analytical model. The identified model of the dynamics of the MFDM surface
shape is briefly described here. The identified model is obtained using the System
Identification Toolbox of MatlabR (Ljung 2009). Multiple sets of input–output
data are generated by applying suitable currents to the electromagnetic coils and
measuring the surface deflections at selected output positions using the wavefront
sensor. The input–output data is then fit to a prespecified model structure. The
prediction error minimization method (Ljung 1999) is used to estimate a discrete-
time state-space model†SysID of the MFDM response:

†SysID W
8
<

:

x.k C 1/ D OAx.k/C OB Ou.k/
Oy.k/ D OCx.k/C OD Ou.k/

(5.3)

where Ou and Oy are the experimentally generated inputs and outputs, respectively, and
OA, OB, OC, OD are the estimated system matrices.

To get the best estimates of the system matrices, multiple sets of input–output
data are generated by applying step, sinusoidal, and multifrequency inputs to each
of the input channels and observing the outputs over time. The data is preprocessed
by removing any spurious readings and trends. One set of data, obtained with the
multifrequency inputs, is used as the primary data for identification, while the
remaining sets are used for validation purpose. The identification process is done
iteratively such that the prediction error is minimized, while the estimates of the
system matrices are updated in each iteration. The order of the system is gradually
increased until the simulated model output best fits the measured data. The identified
model thus obtained for a single-input single-output system is given as:

OA D
2

4
0:672 �0:345 �0:063
0:636 �0:031 0:411

�0:012 �0:549 �0:606

3

5

OB D
2

4
0:079

�0:137
�0:266

3

5

OC D �
61:103 16:155 4:802

�

OD D Œ0:000�
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5.3.1.3 Jones’ Model of Static Response

In the validation of the analytical model that will follow, in addition to comparing
the predictions of the analytical model with the experimental results, a static model
of the mirror response will also be used for comparison. The static model has
been adapted from an existing model of the displacements of the free surface
of a magnetic fluid presented by Jones (Jones 1988). Using Jones’ model, the
displacements of the free surface of a magnetic fluid produced by an applied
magnetic field with the flux density bz can be written as

N& D 	b2z

2�g�
(5.4)

As presented here, the model is applicable to the special case where the magnetic
fluid surface is exposed to a vertical magnetic field, that is, the flux density of the
magnetic field has only a vertical component bz and no horizontal component. Jones’
model can be utilized to derive the displacement of the MFDM surface where a
large magnetic field with the flux density B0 is superimposed on a smaller magnetic
field with the flux density bz and where both of the fields are acting in the vertical
direction. The derived surface displacements in this case can be found as

O& D 	bzB0

�g�
(5.5)

This model can be used to obtain static displacements of the MFDM surface
at the surface locations where the magnetic field of the miniature electromagnetic
coils presents only a vertical component and no horizontal component. One such
location is the peak of the surface shape produced by applying current input to
only one electromagnetic coil and will be used in the following paragraphs for the
comparison of the analytical model with Jones’ model.

5.3.1.4 Initial Surface Map and Measurement Noise

The experimental results presented in this chapter are based on wavefront shape
measurements obtained using a Shack–Hartmann wavefront sensor. Before present-
ing the results, a brief discussion on the accuracy of the measurements is presented
in this section.

Theoretically, in absence of any input currents applied to the wavefront corrector
and with no externally induced wavefront aberrations, the wavefront shape as
measured by the wavefront sensor should be a perfect planar surface. However, prac-
tically achieving this is almost impossible because the optical and electromechanical
components of system itself induce aberrations, which cannot be completely
eliminated in the initial process of installation and alignment of these components.
Therefore, the wavefront sensor reads an initial wavefront shape ys0 that needs to
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be taken into consideration in all subsequent measurements. The initial wavefront
shape is dynamic in nature, that is, it varies over time. However, the initial wavefront
shape measurement ys0 has a relative large mean component that can be considered
to be static and is called the initial surface map. It is a common practice in AO
systems that the effect of the initial surface map is canceled out by giving a bias to
the wavefront corrector using a set of initial inputs. On the other hand, the dynamic
component of the initial wavefront shape measurement remains uncorrected. The
static and the dynamic components of the initial wavefront shape measurement are
discussed in the following.

Static Surface Map

The initial static surface map and the set of inputs used to cancel its effect were
determined as follows. With no inputs applied to the MFDM, a series of wavefront
measurements is taken such that at any instant k, k D 1; 2; : : : ; K , ys0.k/ is a
vector of wavefront shape displacements measured at M discrete lenslet locations
contained in the optical pupil. The initial static surface map is obtained as a mean
surface defined by

Nys0 D 1

K

KX

kD1
ys0.k/ (5.6)

Once the initial static surface map Nys0 is known, the vector of input currents
needed to cancel its effect can be obtained as follows:

u0 D G�1
0 Nys0 (5.7)

where G0 is the DC gain of the system as given in (4.104) or (4.105) which can
be obtained analytically. The application of this initial bias flattens the resulting
wavefront shape, which becomes the reference for all subsequent wavefront shape
measurements. Before applying any input currents computed in order to produce
any desired wavefront shape, the initial input currents are added to these inputs.
The surface plot of the initial surface map of the setup used to obtain the results
presented in this chapter is given in Fig. 5.15. The set of input currents needed to
flatten the surface is given as

u0 D Œ�0:4; 3:7; 23:6; 14:5; 28:0; 9:8; 17:3; 14:0;�9:9; 12:8; 11:4; 7:5; 8:4; : : :

�2:9; 3:1; 2:2;�15:9; 19:8; 7:3� � 1

31:5 � 103A

The surface plot of the resulting wavefront shape obtained after applying the bias
currents is given in Fig. 5.16.
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Dynamic Noise Component

The dynamic component of the initial wavefront shape remains uncorrected in
the open-loop measurements and can be considered as measurement noise. Unless
mitigated by closed-loop control system, the measurement noise poses a limit on the
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performance of the AO system. An estimate of the magnitude of the measurement
noise can be obtained by computing the standard deviation of the initial wavefront
shape measurements ys0.k/ given as

N� D
vu
u
t 1

K

KX

kD1
.ys0.k/ � Nys0/

2 (5.8)

The mean of the standard deviations computed over the 19 surface locations
corresponding to the 19 actuator coils was found to be 0.181 �m. Another similar
measure of the dynamic component of the initial surface shape is the standard
deviation of the RMS values computed at instants k, k D 1; 2; : : : ; K . The computed
standard deviation of the RMS values of the experimentally obtained initial surface
shapes is 0.173 �m.

5.3.2 Model Validation

The results of an experimental investigation aimed at validating the analytical
model are presented in this section. In the following subsection, the static response
of the prototype MFDM is compared to the response predicted by the analytical
model. The dynamic characteristics of the mirror as predicted by the model are also
experimentally validated in Sect. 5.3.2.2.

5.3.2.1 Static Response

As the first step toward validating the analytical model, the static surface deflections
predicted by the model are compared with those obtained experimentally. The
steady-state response of the MFDM surface can be analytically derived from the
state-space model given in (4.102) and is given as

yss D �CA�1Buss (5.9)

where uss is the vector of constant currents applied to the array of 19 electromagnetic
coils and the system matrices A, B, and C are 19 by 19 matrices, respectively. The
steady-state response of the surface to a set of constant input currents is a static
surface shape, which can be obtained from (5.9). The static response of the actual
MFDM can be directly measured using the wavefront sensor.

Figure 5.17 presents the comparison of the experimentally obtained surface
deflections with those predicted by the presented model. The figure shows the
surface deflections resulting from applying various input currents to only the center
coil (coil # 1 in Fig. 5.7). Since the resulting deflections are symmetric about the
vertical axis, only 2D surface shapes are shown. The RMS of the error between the
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Fig. 5.17 Comparison of the static surface shapes obtained experimentally versus those predicted
analytically

two corresponding surfaces computed over the 22-mm pupil is shown in Fig. 5.18.
It is evident from the computed RMS errors that the steady-state surface deflections
predicted by the presented model closely agree with those obtained experimentally.
Besides the comparable deflections, the model also reveals the Gaussian profile of
the deformed surface.

The peak surface displacement predicted by the analytical model can also be
compared to those given by Jones’ model as given in (5.5). Figure 5.19 shows
the comparison, where it can be observed that the analytical model shows a
better conformance to the experimental results than Jones’ model. It is reiterated
that the comparison of the Jones’ model to both the experimental results and
the analytical model presented in this section is valid only for the peak surface
displacements where the magnetic field has only a vertical component and the
horizontal component is zero. It may also be noted that, contrary to the analytical
model presented in this book, Jones’ model does not consider surface tension of the
magnetic fluid.

The analytical model (4.102) represents a MIMO system. Experiments show
that the surface deflections determined by the model are just as valid for the
simultaneously applied multiple inputs as for the case of the single input. The 3D
surface shapes resulting from a specified set of input currents
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u D Œ0:1; 0:5; 0:4; 0:3; 0:1;�0:1; 0:2; 0:9; 0:7; : : :

0:6;�0:5; 0:6; 0:1;�0:4;�0:9;�0:3; 0:5;�0:3; 0:4� � 1

31:5
A

applied to the array of 19 coils are presented for comparison of the analytically
predicted surface shapes with those obtained experimentally. Figure 5.20a shows the
surface shape predicted by the analytical model. The corresponding shape obtained
by applying the currents to the prototype MFDM is given in Fig. 5.20b. Figure 5.20c
shows the contour plot of the shape error computed as the difference of the surfaces
shapes shown in Figs. 5.20a, b. The contours are spaced at � =2 , where � is the
wavelength of the laser light used. The RMS of the shape error computed using
the discrete displacements at the wavefront sensor lenslet locations contained in
the pupil is 0.19 �m. Given the noise conditions in the laboratory as discussed in
Sect. 5.3.1.4, the resulting RMS error shows that the surface shape predicted by the
analytical model compares fairly well with the experimentally obtained shape.
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5.3.2.2 Dynamic Response

In the following, important dynamic response parameters predicted by the model
are compared with the corresponding experimental results. The dynamic response
of the MFDM surface to a step, a sinusoidal, and a multitone input is presented.
The Bode plots of the analytical model and the identified model are compared, and
important features highlighted by the plots are discussed.

Response to a Step Input

Figure 5.21 presents a comparison between the step response of the actual MFDM
and that of the analytical model of the mirror. A step input of 32 mA is applied to
the center coil (coil # 1 in Fig. 5.7) of the MFDM. The time history of the mirror
surface deflections immediately above the center of the coil is noted and plotted as
shown in Fig. 5.21a. The response of the actual mirror surface is shown by the solid
line (blue), while the analytically determined surface deflections are represented by
the dashed line (red). The deflections predicted by the identified model are given
as the dash-dotted line (magenta). For a direct visual comparison, the input current
applied to the electromagnetic coil is scaled appropriately and is plotted against
the right-hand side axis. The input current plot is shown as the dotted line (black).
The error in the analytically predicted surface displacements as measured against
the experimental results and the predictions of the identified model is presented in
Fig. 5.21b. As can be observed from the figure, the response given by the analytical
model agrees fairly well with the experimental results as well as with the identified
model.

Response to a Sinusoidal Input

Figure 5.22 shows the response of the MFDM to a sinusoidal signal with 3 Hz
frequency and an amplitude of 32 mA. Again, the input signal is applied to the
center coil (coil #1 in Fig. 5.7). The output is measured at the location immediately
above the center of the coil and is plotted in Fig. 5.22a. The experimentally obtained
deflections of the mirror surface are represented by the solid line (blue); the response
obtained using the analytical model is shown by the dashed line (red); and the dash-
dotted line (magenta) represents the response given by the identified model. The
sinusoidal input current is shown on the right-hand side axis with the plot drawn
using a dotted line (black). Note that the scale of the right-hand side axis is the
same as the one used in the response to the step input plotted in Fig. 5.21 above,
thus highlighting the drop in the amplitude of the output surface deflections with
the increased frequency of the input current signal. The error in the analytically
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Fig. 5.21 Response to step input: (a) surface deflections and (b) error

predicted surface displacements as measured against the experimental results and
the predictions of the identified model is presented in Fig. 5.22b. Although a
significant error can be seen in the shown plot, it remains less than 10% of the
peak-to-valley deflections of 15 �m as shown in Fig. 5.22a.
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Response to a Multitone Input

Figure 5.23 shows the response of the MFDM surface to a multitone signal where
the input current frequency varies over time. The input signal is given by

u1 D I0 sin

�
2�

�
f1 C f2 � f1

T
t

�
t

�
(5.10)
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Fig. 5.23 Response to multitone input: (a) surface deflections and (b) error

where I0 D 32 mA is the amplitude of the input current signal and the frequency of
the signal linearly varies from f1 D 0 to f2 D 5 Hz in T D 5 s. Figure 5.23a
shows a comparison of the analytically predicted surface deflection against the
experimental results and surface displacements predicted by the identified model.
The corresponding error is shown in Fig. 5.23b. It is evident from the comparison of
the response given by the analytical model to the experimental results as well as to
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Fig. 5.24 Bode plot of the SISO system

the response given by the identified model that there exists good agreement among
all three results. With the increasing frequency of the input current signal, certain
trends in the experimental results can be observed. It can be seen that the output
surface displacements follow the driving input closely in the low-frequency range.
The agreement deteriorates as the frequency is increased. Firstly, the amplitude of
the surface deflections decreases with the increasing frequency. Secondly, there
exists a phase lag between the input current signal and the output displacements,
which increases with the increasing frequency. It is evident from the presented plots
that analytical model captures both these trends and closely follows the experimental
results. On both trends, the analytical model agrees with the identified model as well.

Bode Plots

Bode plots present a comprehensive picture of the dynamics of a system. Figure 5.24
shows the Bode plots of the analytical model and the identified model of the plant.
The plots presented are for the system where the input current is applied at the center
coil (coil #1 in Fig. 5.7) of the MFDM, and the output wavefront displacement
is measured at the location of the corresponding input coil. The analytical model
agrees well with the identified model in the low-frequency range. Some mismatch
between the two models appears for frequencies beyond 10 rad/s. Some important
characteristics of the mirror response can also be observed from the Bode plots.
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Fig. 5.25 Effect of surface tension on the peak surface displacements

The MFDM features a bandwidth of approximately 20 rad/s. Secondly, there exists
a significant phase lag in the response of the mirror surface, which increases with
the increasing frequency. This explains the lag between the input currents and the
output surface deflections as plotted in Fig. 5.23.

The results presented above for the validation of the analytical model show
that there exists a very close agreement between the response of the MFDM
system as predicted by the analytical model and the corresponding results obtained
experimentally. Similarly, these two results also agree fairly well with the response
of the system as predicted by the identified model.

5.3.2.3 Effects of Surface Tension

The effects of surface tension in the magnetic fluid become evident when comparing
the experimentally obtained peak displacements with those predicted by the analyt-
ical model, with and without including the surface tension. Such a comparison is
made in Fig. 5.25 where the peak surface deflections already presented in Fig. 5.19
are reproduced with the predictions of the analytical model presented for both the
cases, that is, with and without considering surface tension. It is obvious from the
figure that the surface tension plays a significant role in determining the response
of the mirror. It may be noted that the predictions of the analytical model and those
provided by Jones’ model (5.5) coincide when the effects of surface tension are not
included in the analytical model.
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Fig. 5.26 Comparison of the response of the MFDM with conventional design versus proposed
design

5.3.3 Linearity of the MFDM Response

A significant contribution of the work presented in this book is the linearization of
the response of the MFDM, which is achieved by incorporating a Helmholtz coil in
the design of the mirror. Experimental results which validate the proposed design
modification and its effect on the response of the MFDM surface are presented here.
First, the response of a MFDM, which uses the miniature coils only, is demonstrated
by disabling the Helmholtz coil of the prototype mirror and recording the surface
displacements as a function of the current applied to one of the miniature coils.
Then, the linearizing effect of the Helmholtz coil is captured by observing the
surface displacements while the Helmholtz coil is turned on. Finally, the proposition
is substantiated by testing the principle of superposition of the response of the fluid
surface.

Figure 5.26 shows the peak surface deflections as a function of currents applied
to the miniature coil in the center of the mirror. The points marked as ‘*’ signify the
peak surface deflections of the MFDM when the Helmholtz coil is disabled. It can be
seen that the surface deflections are positive for both positive and negative polarities
of the input current applied to the miniature coil. Also, the surface deflections are
nonlinear with respect to the applied current. A trend line fitted on the data reveals
a quadratic approximation. This behavior can be explained using Jones’ model of
the static response of the fluid surface as given in (5.4). The model shows that
the displacement N of a magnetic fluid surface exposed to a magnetic field is a
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Fig. 5.27 Illustration of the principle of superposition of the MFDM surface displacements

quadratic function of the magnetic flux bz of the field. The magnetic flux, in turn,
is a linear function of the applied current implying that the surface deflection N is a
quadratic function of the applied current. The experimental peak surface deflections
for the case when the Helmholtz coil is turn on are marked as ‘ı’. It is obvious that
(1) the surface deflections vary linearly with the increasing currents applied to the
coil and (2) both negative and positive deflections are achieved.

The experimental results also show that when the Helmholtz coil is turned on, the
principle of superposition holds distinctly. As illustrated in Fig. 5.27, when the two
coils marked 1 and 2 (see Fig. 5.7) are energized, the surface deflection (‘�’) at a
point midway between the two coils is the sum of the deflections (‘C’ and ‘ı’) at this
point generated by each of the two coils energized separately. It is therefore evident
that the proposed change in the design of the MFDM does produce the desired effect
of linearizing the response of the mirror surface.

5.3.3.1 Bidirectional Displacements

The linearity of the response of the mirror also allows bidirectional displacements.
Under the conventional design, the magnetic fluid can “push” only but not “pull.”
Due to this limitation of conventional MFDMs, the pulling effect is generated
by biasing the electromagnetic coils to 50% of their maximum “push,” which
results in a reduction of the maximum achievable deflection by half. The design
proposed in this book resolves this problem by generating both positive and negative
displacements.
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Fig. 5.28 Illustration of the amplifying effect of the large, uniform magnetic field generated using
the Helmholtz coil. The plot shows the peak surface deflections as a function of the current applied
to the Helmholtz coil, while the current applied to the miniature coil is kept constant at 32 mA

5.3.3.2 Amplification of the Surface Deflections

Another significant aspect of the proposed design modification is the amplification
of the surface deflections achieved by applying the large uniform magnetic field.
The amplification effect of this field provided by the Helmholtz coil can be seen
in Fig. 5.28 where the current applied to the Helmholtz coil is gradually increased,
while the current applied to the miniature coil (#1 in Fig. 5.7) is kept constant at
32 mA. Note that the polarity of the current applied to the Helmholtz coil also has
the effect of reversing the “push” or “pull” to the mirror surface.

It may be noted that the magnetic field of the miniature coils generates the
desired shape of the mirror surface. The large uniform magnetic field, on the other
hand, amplifies the magnitude of the surface displacements. A very significant
connotation of this effect is that very small electromagnetic coils can be used in
conjunction with an appropriately large uniform magnetic field to produce far larger
surface deflections than those possible with the small coils only. This will allow
fabrication of very small mirrors—most likely developed using one of the MEMS
microfabrication methods—with sufficient actuator density and surface deflections
for possibly all applications of MFDMs.

5.4 Summary

In this chapter, the design of the prototype MFDM and the experimental AO
setup has been described. The novel conceptual design change prompted by the
findings of the analytical work presented in Chap. 4 is implemented in the design
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of the prototype MFMD by using a Helmholtz coil. A description of the design
requirements and the design variables of a MFDM are presented. The detailed
design of the prototype MFDM is described. An adaptive optics setup is designed
and assembled. The details of the layout of the experimental setup and the
description of the components used in the setup are presented. The prototype mirror
and the experimental setup are designed to be used to validate the analytical model
of the mirror and to evaluate the performance of the controllers presented in the
following chapters. In order to validate the analytical model developed in Chap.
4, the experimental static response of the prototype MFDM is first compared to
the response predicted by the analytical model, and the dynamic characteristics
of the mirror as predicted by the analytical model are validated using sinusoidal
input signals. Then, the linearization of the response of the MFDM achieved by
incorporating a Helmholtz coil in the design of the mirror is further verified. The
experimental results show that when the Helmholtz coil is turned on, the principle
of the superposition holds distinctly, which render the possibility of implementation
of a closed-loop AO control system using linear system control method. The
experiments also show that the bidirectional displacements of the mirror surface
are achieved, and the magnitude of the surface deflections is significantly amplified
by applying the large uniform magnetic field with the Helmholtz coil.
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Chapter 6
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6.1 Review of the Control Methods

In general, the imaging quality of an optical system is often expressed in terms of
the Strehl ratio (Tyson 2011). The Strehl ratio is defined as the peak intensity of
the image of a point source normalized to the diffraction limited peak intensity. The
Strehl ratio is a useful and sensitive performance measure since the wavefront error
is expected to diffract light away from the center of the image, thereby reducing
the peak intensity. In the presence of any wavefront aberration, the Strehl ratio will
be less than 1, and the general objective of AO control problem can be formulated
as maximizing the Strehl ratio. However, from a practical point of view, the direct
optimization of the Strehl ratio is not very convenient. Evaluating the Strehl ratio
requires accurate knowledge of the wavefront over the entire aperture, which is
generally not available. According to the Marechal approximation (Tyson 2000),
the Strehl ratio is a decreasing function of the variance of the phase error over
the aperture; therefore, the objective of maximizing the AO imaging quality can be
replaced by that of minimizing the residual phase variance over the aperture using
deformable mirrors.

The mirror control problem faced in AO systems can be generalized as a shape
control problem. The objective of the AO system is to obtain a shape, for the fluid
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surface under consideration, which is as close as possible to the desired shape
needed to cancel the wavefront aberrations present in the incoming wavefront. At
the core of any AO system is a feedback loop, where an incoming uncorrected
wavefront is reflected by the deformable mirror (DM), the reflected wavefront is
measured by the WFS, and the DM is adjusted by a control algorithm, based on
the WFS measurements. The objective of the control algorithms presented in this
book is to select control inputs to reduce the error between the actual shape and the
desired shape of the MFDM, thus obtaining the shape needed to cancel wavefront
aberrations. Within the literature, a number of control design techniques have been
proposed for the control of AO systems. In order to increase the image quality
that can be achieved practically by an AO system, the designed closed-loop control
system must be able to track and compensate for unknown and time-varying changes
in the aberrations. Different controllers have been proposed in the literature to
provide real-time correction of aberrations in AO systems, including proportional–
integral–derivative (PID) controllers, optimal controllers, and adaptive controllers.

The nonlinear control problems of the conventional MFDM are simplified to
linear control problems by superimposing a strong uniform magnetic field on top
of the field created by the distributed coil actuators as shown in Chap. 5. This has
the effect of linearizing the response of the liquid, which results in a significant
simplification of the control system design in that instead of having to develop exotic
nonlinear control algorithms, it is now possible to develop linear control algorithms
to regulate the surface shape of the MFDM. In the following, different AO system
control strategies proposed in the literature are reviewed.

6.1.1 Classical Decentralized AO Control Methods

Most AO control systems are based on a simple control law that involves a series
of parallel single-input single-output compensators. Such an approach is usually
referred to as a classical control approach (Hinnen et al. 2008, 2007). The classical
control strategy is still the most widespread control approach used in AO systems.
This approach implicitly assumes that the plant dynamics is fully decoupled.
Moreover, the dynamics of both the DM and WFS and the temporal evolution of the
wavefront are not explicitly accounted for in the controller design. A block diagram
representation of a classical decentralized AO control system is shown in Fig. 6.1,
where aberrated is the shape of the aberrated wavefront incident on the mirror surface,
u is the vector of inputs to the DM actuators, s is the shape of the residual wavefront
reflected from the mirror surface, and s is a vector of local slope measurements
for the residual wavefront. The interaction that takes place at the level of the DM
between the shape of the DM surface  and the aberrated wavefront shape aberrated

and that yields the residual wavefront shape s is discussed later in the chapter.
The AO control system is designed to optimize the AO system imaging per-

formance by minimizing the residual wavefront phase, that is, the phase of the
wavefront reflected by the deformable mirror. Equivalently, the shape of the residual
wavefront is driven as close as possible to a flat surface shape. The standard AO

http://dx.doi.org/10.1007/978-3-642-32229-7_5
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Fig. 6.1 Block diagram representation of a classical decentralized AO control system consisting
of a wavefront sensor (WFS), wavefront reconstruction mapping R, a decentralized controller, a
static mapping F, and a deformable mirror (DM)

system control loop mainly consists of a wavefront sensor (WFS), a wavefront
corrector (WFC) that includes a deformable mirror (DM) and its corresponding
actuators, and a controller. The WFS typically measures the slope or curvature of
the wavefront using a curvature WFS, a pyramid WFS, a shearing interferometer,
or a Shack–Hartmann sensor. The most widely used WFS is the Shack–Hartmann
sensor which measures the subaperture gradients of the incoming wavefront shape.
In this book, we will restrict our attention to the Shack–Hartmann sensor; however,
the other types of WFSs can be handled in a similar way. The slope information
provided by the WFS is used in the reconstruction of the residual wavefront
shape and to express the latter as a linear combination of modal basis functions
(Goodman 2004). The reconstruction can take place in any appropriate set of basis
functions.

The classical AO control approach decomposes the controller into two static
mappings and a series of parallel single-input single-output (SISO) feedback
loops as shown in Fig. 6.1. The wavefront reconstruction problem is solved first,
where the WFS measurements are multiplied by the matrix R to yield either an
estimate of the residual wavefront shape or a set of coefficients related to the
representation of the estimated residual wavefront shape as a linear combination of
basis functions. The decentralized compensator is designed to achieve stability and
closed-loop performance and to attenuate the residual wavefront. The outputs from
the decentralized compensators are then processed by the second static mapping,
denoted by F, to produce the control signals for the DM actuators so that the DM
mirror achieves the desired surface shape. The DM dynamics maps the actuator
commands u into a deformed mirror surface  as follows:

 D M.u/ (6.1)

where M .�/ is a linear operator. The steady-state relationship between the mirror
surface and the actuator commands is assumed to be a static linear mapping as

ss D Huss (6.2)
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where ss and uss are the steady-state values of  and u, respectively. H is the DC
gain of the linear operator M .�/, which is often defined as the influence function
matrix of the DM.

The controller design approaches can be divided into two categories, namely,
the modal compensation approach and the zonal compensation approach discussed
below in more detail.

6.1.1.1 Modal Compensation

Let cs be the vector of Zernike coefficients associated with the expression of
the residual wavefront shape as a linear combination of Zernike polynomials.
In the modal compensation-based AO control systems, the static mapping R
represents the wavefront modal reconstructor between the measured local slopes
s of the residual wavefront and the Zernike modal coefficients cs as

cs D Rs , QZ�s (6.3)

where QZ� is the pseudo-inverse of modal reconstruction matrix QZ (see Appendix C).
The vector of Zernike coefficients cs is then processed by the decentralized
controller to yield the vector of modified coefficients cm as follows:

cm D T cs

where
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The vector of modified coefficients cm represents Zernike coefficients associated
with the desired DM shape when the latter is expressed as a linear combination
of Zernike polynomials. It should be noted that for i D 1; : : : ; n, the input to
the compensators Ti is the ith Zernike coefficient cs;i . Consequently, for each
i D 1; : : : ; n, the compensator Ti aims at driving to zero the contribution of the ith
Zernike mode to the total residual wavefront, that is, driving the Zernike coefficient
cs;i to zero.

The static mapping F represents the modal injection matrix between the modified
coefficients cm (the output of the compensators) and the DM actuator commands
u as

u D F cm , H�Zcm (6.4)

http://dx.doi.org/10.1007/978-3-642-32229-7_BM
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Fig. 6.2 Block diagram representation of an AO control system based on the modal compensation
approach

where Z is the matrix of Zernike mode shapes computed at specified points (see
Appendix C) and H� is the pseudo-inverse of the influence function matrix H. A
block diagram of an AO control system based on the modal compensation approach
is presented in Fig. 6.2.

6.1.1.2 Zonal Compensation

For zonal compensation-based AO control systems, the static mapping R represents
the wavefront reconstructor between the local slopes s of the residual wavefront and
an estimate zs of the residual wavefront shape y (or s) specified at a finite number
of spatial locations as

zs D Rs , Z QZ�s (6.5)

The vector zs describing the estimate of the residual wavefront shape is then
processed by the decentralized controller to yield the vector zm representing the
desired shape for the deformable mirror surface as follows:

zm D T zs

where the decentralized compensator T is as given above. In the zonal compensation
approach, each compensator Ti processes the residual wavefront shape value at the
ith spatial location on the wavefront. Consequently, for each i D 1; : : : ; n, the
compensator Ti aims at driving the residual wavefront shape value at the ith spatial
location to zero.

The static mapping F represents the zonal injection matrix between the modified
zonal wavefront displacement zm (the output of the compensator) and the DM
actuator commands u as

u D F zm , H�zm (6.6)

http://dx.doi.org/10.1007/978-3-642-32229-7_BM


170 6 Control System Design

WFS DM†ZZ †H
us

aberratedζ

sζ=y
sz

T
mz

Fig. 6.3 Block diagram representation of an AO control system based on the zonal compensation
approach

A block diagram of an AO control system based on the zonal compensation
approach is presented in Fig. 6.3.

The task of the compensators is to update the required modal coefficient
correction or zonal wavefront correction. It can be seen that in the wavefront
reconstruction step and in the projection on the actuator space step (i.e., processing
of the compensator outputs by F), typically all dynamics are neglected. The
compensator design requires the consideration of the models of the significant
dynamic components in the control loop. In any AO system, there are three sources
of dynamic behavior in the control loop that should be considered. First, the time
delay due to the computation time required for reading the WFS CCD, constructing
the gradients, and computing the modal coefficients can be significant. Second,
the inherent time discretization induced by the frame rate of the wavefront sensor
and the dynamics of the digital to analog converter and sampling process are also
important. Finally, the DM actuators always exhibit some dynamics. However, in
most of the literature related to the classical control approach, the DM dynamics
are normally represented using decoupled SISO linear systems and are usually
neglected with the assumption that the dynamic response of the DM is much faster
than the wavefront reconstruction. The compensator design should account for the
dynamics of the system to achieve stability and the desired closed-loop system
performance. As shown in Fig. 6.1, the compensators used in classical AO control
systems consist of a series of parallel SISO feedback controllers Ti, i D 1; : : : ; n,
which can be designed identically or separately. For zonal compensation approach,
Ti, i D 1; : : : ; n, are usually identical, and the decomposition is based on the
assumption that the actuator dynamics are identical for each actuator and the spatial
and temporal dynamics can be decoupled. For modal compensation approach, Ti,
i D 1; : : : ; n, can be identical or can be designed separately based on different
modal properties to obtain the best closed-loop system performance.

The design of a compensator Ti typically uses the SISO classical control design
approach. Commonly applied control structures include PID controllers, first-order
lag filters, and Smith predictors. Given a control structure, the controller design
problem finally boils down to determining the appropriate controller parameters that
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yield a closed-loop system with the desired bandwidth and capable of effectively
canceling the residual wavefront errors.

Most classical controllers for adaptive optics systems are either of the integral
feedback type (Downie and Goodman 1989; Auburn et al. 1987) or proportional–
integral–derivative (PID) feedback type (Stein and Gorinevsky 2005; Huang et al.
1995b). These controllers are driven by residual wavefront shape or phase errors.
Each of the SISO controllers is to drive the wavefront error at a given spatial location
to zero. Traditionally, a SISO integral or PID controller driving a single actuator has
been developed based on a pure time delay model for the system. The controller is
then duplicated for each channel in the control system. Because of the simplicity
of such approach, it has been widely used to control segmented mirrors (which
experience no inter-actuator coupling). This simple local feedback design approach
works effectively since two assumptions are met. The first assumption is that there
is very little or no coupling between the different actuator inputs and corresponding
sensor measurements in segmented mirrors. The second assumption is that the
bandwidth of the closed-loop system is significantly less than the dynamics of the
mirror actuators.

The response of a continuous DM is typically described using the mirror static
or DC gain. The continuity of the membrane always causes the deflection over an
energized actuator to influence the deflection over neighboring actuators. Influence
functions are static models that could be experimentally obtained by measuring
the response of the DM to constant control inputs. The static models are usually
developed by considering one actuator at a time and measuring the steady-state
response of the mirror to a constant input from the actuator of interest. The response
of the whole mirror is measured. By repeating the same experiment with all the
actuators, a static map between the constant inputs and the resulting steady-state
mirror response can be developed (Huang et al. 1995a). The resulting static input–
output map is actually the DC gain of the dynamic system and is usually referred to
in the adaptive optics literature as the influence function for the deformable mirror.
The influence function can be further simplified by considering responses from
sensors that are in the immediate vicinity of the actuator and ignoring the rest of
the measured responses from the remaining sensors. By setting the mapping F to be
the inverse of the influence function, the dynamics of combined mapping F and the
DM is decoupled at DC (i.e., has a DC gain equal to the identity matrix). Classical
SISO control design methods can be easily applied for each control channel.

In Roddier (1999) and Fried (1990), it was shown that computational time delay
present in an AO system dramatically affects the systems performance. This is due
to induced phase lag whose effect is to reduce the bandwidth of the AO system (i.e.,
the operating range where the AO system performance is acceptable). This occurs
primarily when the system is modeled using a static model, since such models do
not include any system dynamics. The time delay is represented in Roddier (1999)
using the transfer function

WFS.s/ D e��s (6.7)
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Equation (6.7) is the transfer function for the wavefront sensing (and reconstruc-
tion) system. The temporal characteristics of this device is a pure time delay, � , due
to the readout and computation of the sensing system.

In Roddier (1999), two examples of classical controllers that increase the AO
system performance are given and compared, where the objective of the AO system
is to reduce the error between the ideal shape of the DM and the actual shape. The
first is the use of a PI controller to reduce the phase lag. The PI controller showed
a 40% gain in AO system correction efficiency, as opposed to a pure integrator. The
second controller examined was a Smith predictor, which is a controller especially
dedicated to servos exhibiting time delay. Compared to the pure integrator, the Smith
predictor showed a 44% gain in AO system correction efficiency.

The use of an estimation controller is a way to solve the time delay problem. The
idea is to use theoretical and experimental knowledge of the temporal evolution of
the wavefront phase fluctuations to compensate for the time delay (Voulgaris et al.
2003; Montera et al. 1997; Dessenne et al. 1997). In Voulgaris et al. (2003), a least
mean square estimation algorithm is used to propagate the WFS outputs forward to
the current time, for use by the controller. Analysis of the output data for the WFS
revealed that the AO systems time delay corresponds to the sampling rate of the
sensor. In order for the controller to provide accurate control commands to the DM,
it requires up to date measurements of the wavefront (provided by the WFS).

The classical control approach has shown a reasonable performance under the
moderate assumptions that the wavefront turbulence has a power spectrum mainly
in the low frequency range. The controller with a built-in integrator function gives
a high loop gain in the low frequency range, which implies a good disturbance
rejection can be achieved for this slowly varying process. Looze (2006) has shown
that if the temporal dynamics of the wavefront distortions can be modeled as
independent first-order autoregressive processes, the classical AO control structure
is optimal under some stringent conditions, such as that the only dynamics in the
AO system is a one sample delay, the influence function matrix is invertible, and the
uncorrected wavefront is an isotropic first-order temporal turbulence.

6.1.2 Centralized Optimal Control Methods

Even though the classical AO control strategy yields acceptable performance and
offers a simple structure and a small computation burden, there is still a significant
need for improvement in the performance of current systems through the use of
modern control techniques. As pointed out by Roddier (1999), the compensation
efficiency of large AO systems based on classical AO control approach is unduly
low; therefore, it may be also necessary to search for optimal control approaches to
improve the performance of AO systems. It is clear that the classical AO control
approach does not explicitly account for the spatial–temporal evolution of the
wavefront turbulence and the dynamics of the AO systems. A promising way to
reduce the effect of the temporal error is to exploit the spatiotemporal correlation
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in the turbulence to anticipate future wavefront distortions. On the other hand, in
order to further improve the image quality in real time, the adaptive optics system
needs to be designed to run sufficiently fast to attenuate the dynamic wavefront
turbulence, and sampling times below 0.5 ms or even lower may be necessary. With
these high sampling frequencies, the deformable mirror in adaptive optics systems
cannot be considered as a static system, since the high-frequency DM dynamics can
be easily excited in the high frequency range and a full-coupled dynamic model
of the DM hence needs to be considered in the controller design. Therefore, it
is necessary to consider the design of an AO system control loop from a modern
control system perspective. In particular, this means first that the dynamics of the
different elements involved in the control loop have to be taken into account. In
particular, a specific dynamic model for the DM should be considered for the
purpose of controller design. Second, a model of the turbulent wavefront, built from
its spatial and temporal frequency domain characteristics, should also be accounted
for in the controller design. Furthermore, the finite time delay between measurement
and correction is known to be one of the main limitations on the performance of an
AO system and needs to be minimized. Also, the measurement noise is known to
constitute an error source of significant importance and should be tackled properly
in the overall closed-loop AO system.

The residual wavefront represents the input to the controller in an AO system.
As stated above, the objective of the control algorithm is to select control inputs
to eliminate this residual wavefront error by minimizing a specified performance
criterion. Many in the AO community have turned to a linear quadratic Gaussian
(LQG) control formulation which seeks to minimize a quadratic cost function and,
thus, determine the controller that minimizes the error between the actual shape and
the desired shape of the deformable mirror. Under the LQG assumptions, the system
to be controlled is assumed to be modeled by a set of static equations or linear
differential equations driven by white Gaussian noise inputs. A relevant AO optimal
performance criterion is to minimize the variance of residual wavefront shape s,
defined as

J.u/ , lim
T!1

1

T

Z T

0

ks.t/k2dt (6.8)

For this class of minimum-variance problems, LQG techniques appear partic-
ularly attractive given the quadratic nature of the cost function J on the residual
wavefront shape s.

An LQG design technique is first used by Paschall and Anderson (1993) to
develop a controller for an adaptive optics system used in ground-based telescopes.
Work in much of the literature pertaining to atmospheric aberrations suggests that,
although both modulation of intensity and phase of the optical image contribute
to the formation of aberrations, it is the modulation of phase that is the dominant
distortive component. Therefore, the controller presented in Paschall and Anderson
(1993) is directed toward phase distortion compensation only. Previous research
had considered the wavefront sensor measurements to be available to the observer



174 6 Control System Design

instantaneously, namely, no consideration was given to the effect of the sample
period time delay inherent in the sensor. The control law presented in Paschall and
Anderson (1993) is an extension of the work of Von Bokern (1990), in which the
measurements are delayed by one sample period. The LQG controller generates
optimal inputs to the deformable mirror given (1) a time series of wavefront
sensor measurements, (2) the statistical characteristics of those measurements (viz.,
second-order time and spatial correlations), and (3) the statistical characteristics of
the measurement noise. The quadratic cost function J was given in discrete time as

J D E

(
NX

kD0

1

2

�
xT.k/�x.k/C uT.k/‰u.k/

�
)

(6.9)

whereE f�g denotes the expectation operator and x.k/ is the state vector of the state-
space model that incorporates the dynamic behavior of the wavefront corrector (i.e.,
DM and actuators). The signal u.k/ represents the control inputs, in the form of
actuator voltages, applied to the DM, and � and ‰ are cost-weighting matrices
selected such that quadratic penalties are assigned for state deviations from zero
and for requiring excessive energy to control those states.

Design of the LQG regulator requires determination of the optimal vector of
control inputs, u.k/, to apply to the DM which minimizes the cost function (6.9).
If it were possible to gain perfect knowledge of all the system states, the optimal
feedback control law would be based on these states. Since this is not possible, a
state observer is used to generate estimates of the states. Under the assumption of
no measurement processing delay, the adaptive optics system was able to reduce the
phase distortion in the reflected wavefront by more than 50%.

In Wiberg et al. (2004b), a static LQG controller design approach was presented.
The feedback control law used to minimize the LQG criterion reduces to finding
the finite-dimensional control vector as a function of the finite-dimensional sensor
vector. Each control signal is associated with a specific actuator having a particular
spatial influence function on the process; this influence function is called the
controller mode shape. Next, it is shown that each sensor is similarly associated with
a sensor mode shape. It is shown further that the best control is achieved when the
controller mode shapes equal the sensor mode shapes. In Wiberg et al. (2004a), the
theory of a spatial non-dynamic LQG controller developed in Wiberg et al. (2004b)
is applied to astronomical adaptive optics telescopes. Simulation results suggest
difficulties facing the practical design of a system with a large actuator/sensor array
for adaptive optics applications.

Looze (2006) formulated the adaptive optics minimum-variance control problem
as a linear quadratic Gaussian optimization problem using a discrete-time model
that includes both the temporal dynamics of the DM and atmospheric aberrations,
the computational loop delay, and the frame integration of the WFS. The objective
is to select control inputs (in this case actuator voltages) to minimize the error
between the actual and the desired shape of the mirror. The assumption of zero-mean
Gaussian white noise is made to represent the aberrations. Given this assumption,
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the controller objective is then met by minimizing the variance of the error signals.
This is accomplished by minimizing the following functional:

J D lim
N!1

1

2N

NX

kD0
xT
kQxk (6.10)

where Q is a symmetric, positive-semidefinite matrix and xk is the state variable
of the discrete-time state-space model representing for the DM, atmospheric
disturbance, and WFS. The controller is first computed explicitly for an adap-
tive optics system in which the models for the DM, wavefront sensor, and the
uncorrected wavefront are ideal: this includes an isotropic first-order temporal
atmospheric aberrations, no computational loop delay, and no DM dynamics. Under
these assumptions, when the time constant of the atmospheric model becomes
increasingly large, the performance of the developed LQG controller approaches
the performance of the integral controller that is commonly used in adaptive optics
systems. If the time constant of the atmospheric model is finite, the dynamics of
the LQG controller consist of identical first-order lags. The performance of the
optimal LQG controller in the presence of deviations from the ideal conditions is
further examined in Looze (2010), where a linear quadratic Gaussian (LQG) design
approach is presented for the case that the WFS and zero-order hold (ZOH) need not
be synchronized. The LQG controller is formulated based on an equivalent hybrid
discrete-time model of the adaptive optics system presented in Looze (2009). The
design model incorporates deformable mirror dynamics, an asynchronous wavefront
sensor and zero-order hold operation, and a continuous time model of the incident
wavefront. The hybrid LQG design does not assume that the beginning of the frame
of the WFS is synchronized with the application of the DM commands via the zero-
order hold. Using the structure of the discrete-time model, the dimensions of the
Riccati equations to be solved are reduced. The LQG controller is shown to improve
the AO system performance as compared to the LQG controller designed without
accounting for intra-sample behavior of both the DM and the incident wavefront.

Le Roux et al. (2004) developed and simulated LQG designs for both classical
and multiconjugate AO (MCAO) systems. The approach gives an optimal estimation
of the turbulence using a Kalman filter in the closed loop. The optimal control law
incorporates both spatial and temporal information on the turbulent phase, as well
as information on the system noise statistics. Petit et al. (2009) further presented a
comprehensive analysis of the linear quadratic Gaussian control approach applied
to adaptive optics (AO) and multiconjugate AO (MCAO) based on both numerical
and experimental validations. Various properties that make this control law a
good option for different applications are discussed, such as open-loop control,
aliasing reduction, or vibration filtering. The structure of an LQG controller and its
relation to integral controllers were investigated by Kulcsár et al. (2006) under the
assumption that the time response of the deformable mirror (DM) is fast compared
with the sampling rate of the AO loop. The LQG control problem is broken down
into an optimal deterministic control problem and an optimal estimation problem,
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where the solution is linear quadratic (LQ) control with Kalman filter. Correia
et al. (2010) presented a minimum-variance control approach based on the LQG
formalism for adaptive optics systems with mirror dynamics. Such regulator is
derived in a particularly instructive scalar case with a resonant second-order DM
in an extremely large telescopes scenario, where large-amplitude wind-induced
disturbances are considered. The simulation results show that neglecting DM
dynamics gives rise to worse performance in terms of both residual phase and
stability. The DM tends to oscillate with large amplitudes due to noise amplification
at the resonant frequency, while the optimal regulator with DM dynamics grants
stability for a broad range of natural resonant frequencies and damping coefficients.
The result is further extended to the case of asynchronous DM/WFS sampling in
adaptive optics systems in Raynaud et al. (2011).

Within the controls community, many researchers have turned to H2- and H1-
based optimal controllers for the control of spatially distributed systems. In Hinnen
et al. (2008, 2007), a data-driven H2 optimal control approach is proposed to
exploit the spatiotemporal correlation in the wavefront without assuming any form
of decoupling, and the minimum-phase-variance problem is solved in the H2

optimal control design framework. This approach consists of a dedicated subspace
identification algorithm that estimates the atmospheric disturbance model directly
from open-loop WFS. The identified disturbance model should be able to capture
the spatiotemporal correlation imposed by frozen turbulence satisfying the Taylor
hypothesis. Given the identified atmospheric disturbance model and a model of the
AO system dynamics, the AO control problem is then formulated in an H2 optimal
control framework. It has been shown that the general two Riccati equations can
be simplified to one Riccati equation. By analyzing the dynamic behavior of the
WFS camera, for any AO system with a DM that has a time constant that is short
as compared to the WFS exposure time, an analytical expression for the H2 optimal
controller can be derived in the case that the AO system can be characterized by a
scalar dynamic transfer function consisting of an integer number of samples delay
and a two-tap impulse response. The data-driven optimal control approach obtained
by combining the proposed subspace identification algorithm and the analytical
expression for the H2 optimal controller is also experimentally demonstrated on an
AO laboratory setup. The validation study has shown that compared to the common
control law consisting of a minimum-variance wavefront reconstructor and a first-
order lag filter, the proposed optimal control helps improve the performance of
current AO systems particularly in heavy turbulence conditions, including high wind
speeds and small Fried parameters, as well as under low-level light conditions.

In Huang et al. (1995b), a sequence of AO control system designs of increasing
complexity are presented for a continuous DM with piezoelectric actuators used in
ground-based telescopes. The authors use models developed in Huang et al. (1995a)
that use an influence function to capture the coupling between the different actuator
inputs and sensor measurements. The authors develop SISO PI and PID control
laws which are duplicated for each actuator. MIMO H1-based controller was also
developed and compared to the SISO-based PI and PID controllers. The paper
effectively compares the use of a SISO-based controller design to a MIMO design.
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Both controllers met performance requirements with respect to error regulation
when the closed-loop system has a high bandwidth. However, the MIMO H1
controller proved to be superior in performance in that the MIMO controller is
able to perform well at low frequencies as well as high frequencies. In Baudouin
et al. (2008), a robust control technique is proposed for an adaptive optics system
using a bimorph deformable mirror as the wavefront corrector. The dynamic model
of the mirror is modified from the usual plate equation, and the turbulence phase
model is presented as the output of a linear shaping filter through the orthogonal
basis of Zernike polynomials. By proper truncation of the number of eigenfunctions
of Laplace operator and the number of Zernike model used to describe the phase
turbulence, an H1 controller in an infinite-dimensional setting is designed to
improve the robustness while optimizing the worst-case performance. Numerical
results show a significant improvement in the performance level with respect to
traditional single-input single-output methods due to the multivariable nature of the
control problem involved in adaptive optics systems.

6.1.3 Distributed Control Methods

The distributed control techniques usually involve the use of distributed system
models or spatially invariant distributed models for large-scale dynamic systems.
The use of microactuators in the design of wavefront correctors has led to the
development of large arrays of actuators. There is now a significant effort to develop
deformable mirrors based on MEMS technology. Such mirrors will be relatively
small, and they may have thousands of actuators to enable high-resolution images.
In adaptive optics systems for astronomy, the deformable mirror is controlled to
counteract the spatially distributed wavefront distortion with a spatial resolution
which can be defined using the Fried parameter r0. Fried parameter measures the
optical quality of the atmosphere and corresponds to an area over which the RMS
wavefront aberration is less than 1 rad, which is typically in the order of 20–
60 cm. For extremely large telescopes with diameters D > 30 m, the number
of actuators scales with .D =r0 /

2 and will be of the order of 104–105. This high-
dimensional system complicates the modeling and controller design for DMs with
regard to optimal objectives. The notion of spatial invariance addresses this issue by
implying that the dynamics of a spatially distributed system is invariant with respect
to translation along some spatial coordinates (Bamieh et al. 2002). The symmetric
distribution of actuators and sensors in some systems allows spatial invariance to
be exploited in their analysis and control. Standard controller techniques for finite-
dimensional systems can then be applied. The ideas of spatial invariance can be
implemented for both the tracking and stabilization of membranes with a large array
of actuators and sensors as in AO systems.

In Bamieh (1997), distributed control of spatially invariant systems is explored,
where a large array of sensors and actuators is considered. It was shown that
as a general principle, LQG, H2 and H1 optimal controllers, under a variety
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of performance criteria inherit any spatial invariance of the plant. Namely, it
was shown that if the plant structure is spatially invariant, the best achievable
performance can be approached with a spatially invariant controller. The systems
considered and the optimal controllers designed in Bamieh (1997) are typically
infinite dimensional. However, by exploiting the properties of spatial invariance,
it was shown in Castros and Paganini (2002) that optimal controllers, such as LQG,
H2, and H1 controllers, can be designed using finite-dimensional approximations
of the infinite-dimensional problem. The finite-dimensional approximations of the
infinite-dimensional controllers are developed using “spatial truncation” (developed
by the authors) as opposed to the standard practice of modal truncation. The
control algorithms are not implemented as centralized controllers, which would
consider information from all the sensors in the array. Instead, the controllers are
implemented as distributed controllers, where each actuator runs on an algorithm
with information from its neighboring sensors. A similar controller was developed
to control an AO telescope in Kulkarni et al. (2002).

In Castros and Paganini (2002), a method was proposed to synthesize local-
ized and decentralized controllers for distributed systems with spatial invariance.
However, unlike the method in Bamieh et al. (2002), this method directly imposes
localization in the controller design. Conditions are provided for the existence of
localized controllers that satisfy performance specifications, namely, H1 condi-
tions. However, as opposed to Bamieh et al. (2002), these conditions are only
sufficient. The work proposed in Castros and Paganini (2002) can be used in
shape control problems for systems with spatial invariance. Voulgaris et al. (2003)
considered the design of optimal H2 controllers for stable distributed discrete-time
spatially invariant systems with a temporal delay in the interaction of neighboring
sites. By employing a standard parameterization approach, the constraints on the
controller transform to convex constraints on the Youla parameter, given that the
plant has the same cone-causality structure.

In Stein and Gorinevsky (2005), the control of a large space reflector structure,
treated as a spatially invariant infinite-dimensional system, was achieved using a
large distributed actuator array. The system was modeled using experimentally
determined actuator influence functions. The influence functions were localized
in the spatial neighborhoods of the respective actuators. The notion of spatial
invariance was exploited to develop simple PI controllers as localized controllers.
The use of localized constraints on the control law structure allows for scalability to
very large arrays of actuators and sensors. Design examples resembling an actively
controlled reflector whose deformations are controlled by an array of actuators and
sensors were used to demonstrate the ability of the controller to satisfy closed-loop
engineering specifications such as stability, robustness, and performance, where the
performance criteria involve regulation of the error value as described above.

Fraanje et al. (2010) proposed a decomposition approach to distributed control
for thin membrane or plate-based deformable mirrors. The actuators are assumed to
be distributed in a hexagonal pattern, and each consists of a parallel connection of
a spring, a damper, and a force actuator. The partial differential equation model
of the thin plate is first discretized using the finite difference approximation of
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the biharmonic operator over the hexagonal grid with unit distance between two
neighboring actuators. Then, using a forward Euler discretization approach, the
dynamic model of the deformable is written as a decomposable system consisting
of an interconnection of a series of equal and small-size subsystems (Massioni and
Verhaegen 2009), based on which efficient and structured controllers can be derived.
This technique allows the design of a distributed H2 controller for a deformable
mirror of any size, with a computational cost that does not increase with the size of
the mirror.

6.1.4 Adaptive Control Methods and Others

Due to the dynamic nature of the wavefront aberrations, the shape control problem
of DM addressed in adaptive optics is the tracking of an unknown and time-varying
shape for a distributed mirror surface (i.e., desired shape of the mirror). In the
past, researchers in adaptive optics have introduced a variety of control approaches
for wavefront prediction and reconstruction, but until recently the control loops
in adaptive optics systems have been linear time-invariant. Classical AO control
systems are based on classical feedback control methods so that the controllers
are linear and time-invariant (LTI) and cannot adapt to the changes of the external
disturbance. Optimal controllers are also LTI. Though they may involve minimum-
variance prediction based on spatial and temporal wavefront statistics, the optimal
controllers are only suitable to LTI plants with stationary disturbance and require
either a priori modeling of wavefront statistics or off-line system identification of a
Kalman predictor from sampled wavefront sequences. Control loops which have
fixed gains that are based on known or assumed statistics of the system cannot
be considered adaptive. Since the desired shape of the mirror in an AO system
is unknown and time varying, it would be beneficial to have the controller tuned
adaptively online to converge to the controller needed to achieve regulation. In
recent years, adaptive control algorithms based on adaptive estimation of optimal
reconstructor matrices have been proposed to improve the performance of AO
systems in applications with strong, time-varying atmospheric turbulence. A number
of adaptive control algorithms have been developed for adaptive optics based on
different recursive algorithms (Ficocelli and Ben Amara 2012; Monirabbasi and
Gibson 2010; Gibson et al. 2000; Zhu et al. 1999). Adaptive controllers have two
important properties. The first is their capability to compensate for loop latency by
predicting wavefront error, and the second is the capability to identify optimal gains
in real time as the wavefront properties or statistics change.

In Zhu et al. (1999), an iterative control algorithm to track surface shapes
based on experimentally measured mirror shape responses, that is, an influence
function, is presented. The WFC contains a DM and 19 electrostatic actuators and is
used primarily for astronomical applications. The authors use a centralized control
scheme that is able to update all the control signals simultaneously. Following the
approach of a standard steepest descent algorithm, the derivative of the measured
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wavefront error (i.e., the error between the actual and ideal shapes of the DM) is
evaluated with respect to the control signal vector. This gives the direction of the
increasing wavefront error in the multidimensional control signal space at the point
of the current control signal vector. An adjustment of the control signal vector in the
opposite direction can reduce the wavefront error. This is done for all the control
signals at once so that the total wavefront error moves toward a minimum. This
approach is similar to that used in many adaptive signal processing applications
with the difference that the method used in Zhu et al. (1999) uses a multivariable
adaptive algorithm.

In Gibson et al. (2000), a feedback control loop containing a digital integrator
and a feedback controller are used to choose control inputs for an AO system. The
objective of the control system is to minimize a cost function J using a multichannel
recursive-least-squares (RLS) lattice filter. The gains of the filter are adaptively
chosen using an RLS algorithm to minimize the error between the desired shape
of the mirror and the actual shape (i.e., minimize the cost function J). Multichannel
lattice filters are used because they are among the few classes of algorithms that
could yield the numerical stability and the speed required for real-time AO. The
multichannel RLS lattice filter remained numerically stable for a large numbers of
channels typical of AO systems.

Monirabbasi and Gibson (2010) presented an experimental implementation of a
minimum-variance adaptive control scheme. The adaptive controllers are based on
a multichannel recursive-least-squares (RLS) lattice filter, which identifies gains in
real time for minimum-variance prediction of wavefront sequences. The coupled
multichannel structure of this adaptive filter allows both spatial and temporal
wavefront statistics to be incorporated implicitly in the prediction filter. The adaptive
control approach is evaluated in an adaptive optics experiment setup, where closed-
loop wavefront errors measured by a self-referencing interferometer are fed back
to the control loops and drive a membrane deformable mirror with 31 actuators to
correct the wavefront. The corrected laser beam is imaged by a diagnostic target
camera. The experimental results show reduced closed-loop wavefront errors and
correspondingly sharper diagnostic target images produced by the adaptive control
loop as compared with the classical AO control loop.

In Ficocelli and Ben Amara (2012), an adaptive shape control algorithm is
developed to compensate for unknown and time-varying aberrations in the eye. The
proposed controller design approach relies on two steps. The first step is to construct
a Q-parameterized set of stabilizing controllers for the system under consideration
and to derive conditions on the Q parameter in the controller expression to achieve
regulation. Partial decoupling of the closed-loop system dynamics is performed to
facilitate the development of the adaptive regulator. Since the desired shape of the
mirror is unknown and time varying, the second step is to derive an online tuning
algorithm for the Q parameter in the expression for the parameterized stabilizing
controller. The online tuning of the Q parameter allows the controller to converge
to the controller needed to achieve regulation, hence compensating for the lack
of information on the desired shape for the deformable mirror. The decoupling



6.2 Control System for the Magnetic Fluid Deformable Mirrors 181

introduced in the closed-loop system allows the tuning to be performed using
decentralized adaptation algorithms.

Besides the control methods mentioned above, other modern control methods
have also been proposed and applied to the AO systems. In Montera et al. (1997), the
authors examine the use of neural networks for WFS slope measurement estimation
with only the WFS measurements as inputs. They then compare the neural network
solution to a linear minimum mean-square-error (LMMSE) estimator, which is
based on prior knowledge of the second-order statistics of the wavefront slopes
and measurement noise. The work shows that overall the neural network solution
outperforms the LMMSE estimator. In (Dessenne et al. 1997), the argument is
made that correction efficiency of AO systems is limited mainly by measurement
noise and time delay. The authors describe a new optimized linear predictive
controller whose parameters are optimized by means of a least-squares algorithm
to minimize the residual optical phase variance. The least-squares algorithm is used
to estimate parameters in the predictive controller according to the statistics of the
noise and turbulence measurements of the WFS and was shown to work better
than a classical optimized integral controller. Poyneer and Veran (2008) presented
a predictive control approach for adaptive optics with arbitrary control loop delays
based on a new form of the predictive Fourier control and Kalman filters. State-
space model parameters are directly estimated from closed-loop telemetry and are
used to solve the algebraic Riccati equation, producing the steady-state Kalman filter
to predict the atmosphere. The fundamental structure of the predictive control law
is independent of arbitrary computational delays. The simulation shows that the use
of a predictive controller provides significantly better performance than that of an
integral controller.

The above review is only a sample of the most important contributions in the
literature pertaining to the control of adaptive optics systems. However, with the
development of AO systems for emerging and more complex applications, it is
anticipated that new control methods will continue to be developed in the future.

6.2 Control System for the Magnetic Fluid Deformable
Mirrors

Magnetic fluid deformable mirrors (MFDM) have a major intrinsic advantage
over solid optics. Their main advantages are that they are inexpensive and can
produce very large deformations. Coated with MELLFs, the surface of MFDM
can be shaped by the application of a magnetic field and generates reflecting
surfaces with complicated shapes. However, earlier designs of MFDMs proposed
by Laird et al. (2003, 2006) present a major inconvenience in that the mirror
surface shape response to the applied control magnetic field is nonlinear and the
induced deformations depend on the square of the external magnetic field, resulting
in complicated control algorithms for the MFDMs. As shown in Chap. 5, these

http://dx.doi.org/10.1007/978-3-642-32229-7_5
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problems can be overcome by superposing a strong and uniform magnetic field to
the magnetic field of the actuators, thereby linearizing the response of the MFDMs.
The major advantage of this linearization is that proven control algorithms used
with solid mirrors or other modern control algorithms could be applied to the
MFDM. Using the designed prototype mirror and the experimental setup, the linear
static response of the prototype MFDM and the dynamic characteristics of the
mirror have been verified by comparing them with those predicted by the analytical
model in Chap. 5. The experimental results show that when the Helmholtz coil is
turned on, the principle of superposition holds distinctly and that the bidirectional
displacements of the mirror surface are achieved.

In the following two chapters, linear control algorithms will be developed to
control the MFDM surface shape in a closed-loop AO system. In Chap. 7, decen-
tralized control structures are used due to their simplicity and reduced computational
burden. First, a decentralized proportional-plus-integral (PI) controller designed
based on decoupling the plant model at DC is presented. This is actually the
commonly used type of controllers in adaptive optics systems referred to as the
classical decentralized control approach discussed in Sect. 6.1.1. The capabilities
and limitations of this type of controllers are investigated. To overcome stability
robustness issues in this first approach, a decentralized robust proportional–integral–
derivative (PID) controller is then presented. The controller is designed based on a
decoupled nominal dynamic model of the plant. To account for the modeling errors
in the decoupled plant model, a robust PID controller design problem is formulated
and solved using algorithms based on linear matrix inequalities (LMIs). The two
control algorithms mentioned above provide good performance in removing static
or very slowly changing aberrations but have limited capabilities in dealing with
fast-changing aberrations.

To overcome this limitation, two centralized optimal control methods are devel-
oped in Chap. 8, including the multivariable PID controller and the mixed-sensitivity
H1 multivariable controller, which are particularly suitable for applications in
AO imaging systems with dynamic wavefront aberrations. For example, these
controllers ensure that the mirror can cancel unknown dynamic wavefront aberra-
tions that fall within the band of frequencies commonly seen in ocular wavefront
aberrations. As opposed to the existing control algorithms, which are used to
compensate for static high-order aberrations, the control algorithms proposed in
Chap. 8 are capable of compensating dynamic wavefront aberrations.

Because of their simplicity, PID controllers are widely used and can specifically
achieve asymptotic tracking of static reference inputs due to the presence of
integrators in their structure. However, most of the existing PID design approaches
are developed for SISO systems. New approaches have been recently developed for
continuous time MIMO systems by transforming the PID controller design problem
into an equivalent static output feedback controller design problem. However, these
approaches are proposed based on solving bilinear matrix inequalities (BMIs)
that should be solved iteratively. The search for the optimal controller is heavily
dependent on the initial values fed into the synthesis procedure, and most likely the
obtained solution may be unacceptable. Given that the control algorithms for an AO
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system are typically implemented in a computer system, a new optimal multivariable
PID controller design approach for discrete-time systems is proposed in Chap. 8.
The multivariable PID controller parameters are designed directly by considering
the actual closed-loop system involving the plant and the controller, without
transforming the problem into an equivalent static output feedback controller
design problem. The proposed controller synthesis procedures are based on solving
properly formulated linear matrix inequalities (LMIs). The LMI-based formulation
of the controller synthesis procedure results from introducing some assumptions
on the state-space representation of the plant, from properly formulating the
controller state-space representation, and from introducing slack variables with
special structure in the controller synthesis results.

The centralized mixed-sensitivity H1 controller with integral function is also
developed for the dynamic shape control problem for MFDMs. There are two main
motivations for using the H1 controller design approach for MFDMs. First, the
aberrations of the human eye can be modeled as a combination of static, harmonic,
and random components, and the temporal frequency content of the aberrations in
the human eye has a limited range. Second, the proposed control scheme minimizes
the magnitude of high-frequency components in the controller output, that is,
in the current input to the MFDM, which is beneficial in avoiding saturation of
the control signals and in attenuating unmodeled high-frequency modes of the
waveform corrector. In fact, an analytical model of the MFDM presented in Chap.
4 shows that the system model is infinite dimensional. For practical reasons, the
controller is usually designed based on a truncated model where high-frequency
dynamics are ignored. Consequently, the mixed-sensitivity H1 design method
provides the means to deal with this model uncertainty in the high frequency range.
The experimental results with the prototype 19-channel magnetic fluid deformable
mirror demonstrate the efficiency of both proposed methods.

It should be noted that the methods proposed in the following two chapters are
derived based on the analytic model developed in Chap. 4 and the dynamics of the
MFDM model is fully considered in the design process. These proposed control
methods are not limited to MFDM-based AO systems but can also be applied to
other AO systems with different types of wavefront correctors. Some concepts
behind the presented control approaches and corresponding details of the derivations
are also included selectively in this book.

6.2.1 Description of the Closed-Loop System

In this section, the control architecture for the MFDM-based AO control system is
presented. The system model is analytically obtained based on the prototype MFDM
with 19 actuators as shown in Chap. 5. The Shack–Hartmann type wavefront sensor
is used to measure the wavefront slope data at each subapertures of the wavefront
sensor. The control algorithms are developed based on the zonal compensation
framework. In the zonal approach, the wavefront reconstructor attempts to compute
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Fig. 6.4 Closed-loop diagram of the AO system

an estimate of the shape of the residual wavefront at a finite number of spatial
locations corresponding to the actuator locations. In the closed-loop AO system, the
function of the controller is to utilize the residual wavefront shape measurements
to generate a set of actuator commands to effectively drive the residual wavefront
shape measurements to zero.

A closed-loop diagram that includes the principal elements of the AO system,
namely, the MFDM, the WFS with the wavefront reconstructor, and the controller,
is shown in Fig. 6.4. aberrated is the shape of the aberrated wavefront incident on the
mirror surface, and s is the shape of the wavefront reflected from the mirror and
sensed by the wavefront sensor.

Physically, the aberrated wavefront shape aberrated and the residual wavefront
shape s are distributed signals with continuous spatial and temporal variations. All
of these signals are evaluated at a set of spatially distributed points. Thus, aberrated

and s are represented as vectors. The Shack–Hartmann wavefront sensor measures
local subaperature slopes of the residual wavefront s, and the slope measurements
produced by the sensor are represented as a vector s and then sent to the wavefront
reconstruction software. The wavefront reconstructor uses the slope measurements
to produce an estimate of the residual wavefront shape in the form of a vector zs.
The residual wavefront estimates are used by the controller to generate the actuator
input signals. When the closed-loop system is operating properly, the shape of the
MFDM should be such that at steady state, the residual wavefront shape s at the
actuator locations should be zero in the case of static aberrations or, in the case of
dynamic aberrations, the variance of the residual wavefront shape is minimized.

Figure 6.5 shows the control block diagram of the closed-loop AO system. The
system makes use of a wavefront corrector where u is the vector of control currents
applied to the MFDM and  is the resulting shape of the deformable mirror surface.
The mirror surface shape and the incoming aberrated wavefront interact in such a
way that the sensed residual wavefront shape s can be written as (Baudouin et al.
2008)
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Fig. 6.5 Block diagram of a typical closed-loop adaptive optics system

s D aberrated � 2 (6.11)

The sensor block in Fig. 6.5 refers to both the wavefront sensor and the
reconstruction algorithm that run inside the control computer. The sensor samples
the residual wavefront s at discrete locations—using an array of lenslets in the
case of the Shack–Hartmann wavefront sensor. Though the sampled data can be
directly utilized in control computations, it is generally more helpful to reconstruct
the shape of the sensed wavefront surface. The reconstructed shape can then be
used to interpolate the wavefront surface displacements at any location in the
pupil. The estimated wavefront shape, expressed as a vector zs 2 RM of M
discrete displacements, is provided to the controller K, which computes the actuator
commands u 2 RL to be applied to the array of L input actuators.

To simplify the implementation of the closed-loop system and the testing of the
performance of the proposed control algorithms, an equivalent closed-loop system
configuration is considered in Fig. 6.6a. In this configuration, a laser beam with
a planar wavefront is directed toward the deformable mirror with surface shape .
The wavefront shape in the reflected beam is given by s D �2. The residual
wavefront shape slopes are measured by the wavefront sensor, and an estimate
residual wavefront shape is reconstructed inside the control computer. The estimated
residual wavefront shape vector zs 2 RM is sampled from the reconstructed
shape. The estimated residual wavefront shape is then added, inside the control
computer, to a hypothetical aberrated wavefront shape. The hypothetical aberrated
wavefront shape is sampled at the same locations at which the estimated residual
wavefront shape vector zs is computed from the reconstructed shape. An equivalent
block diagram representation that is consistent with the representation of negative
feedback control systems is shown in Fig. 6.6b, where ys D �zs. Let r 2 RM

denote the sampled aberrated wavefront shape. The wavefront shape error fed to the
controller K can be written as

e D r � ys (6.12)

In this configuration, the controller K is required to provide input commands u
such that the magnitude of the wavefront shape error e is minimized. A statement of
the control problem addressed for the deformable mirror is then given as follows.
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Fig. 6.6 (a) Block diagram of the modified closed-loop adaptive optics system. (b) Equivalent
negative feedback block diagram representation

6.2.1.1 Control Problem Statement

With respect to the feedback system shown in Fig. 6.6b, it is desired to design a controller
K to provide input currents u such that the signal ys (representing twice the shape of the
MFDM surface) tracks the reference wavefront shape signal r (representing the aberrated
wavefront shape aberrated).

The main advantage in considering the feedback system shown in Fig. 6.6b is that
any aberrated wavefront shape can be easily considered and analytically generated
as opposed to physically generating it as in the closed-loop system shown in Fig. 6.5.

6.3 Summary

By superimposing a strong uniform magnetic field on top of the field created by
the distributed coil actuators, the nonlinear response of the surface of MFDMs
becomes linear, hence allowing for the effective control of the mirror surface
shape in AO systems. Control algorithms that have been used extensively in AO
systems are reviewed in this chapter. The classical decentralized control methods
are simple and easy to implement. However, since full decoupling of the plant
dynamics is assumed in the design of such controllers, the resulting AO closed-
loop control systems cannot meet the high-performance requirements associated
with advanced AO system applications. A promising way to improve the control
system performance is to use centralized optimal control method by exploiting the
spatiotemporal correlation both in the wavefront turbulence and the dynamics in
DM as well. The recently developed distributed control methods are suitable for
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AO systems involving a very large number of actuators and characterized by special
invariance in their dynamics. In order to further deal with the time-varying nature of
AO systems and of the aberrations, adaptive control methods and other approaches
are developed where the controller parameters are adjusted online to achieve a better
performance in the AO closed-loop control system. Control approaches designed
for the shape control problem of MFDM are presented in the next two chapters. To
simplify the implementation and the verification of the proposed control algorithms,
an equivalent closed-loop system configuration is considered, where the arbitrary
wavefront turbulence is analytically generated in the computer software instead of
being physically generated.
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7.1 Plant Model Decoupling

A decentralized control system consists of a set of parallel decentralized single-
input single-output compensators designed based on a properly decoupled model
of the original MIMO system. This classical control strategy has the advantage of
presenting a simple structure and a low computation burden and is still widely used
in the AO community. The resulting closed-loop system is typically characterized
by a reasonable performance under the moderate assumption that the wavefront
aberrations have a power spectrum mainly in low frequency range. Through the
integral action, the PID controller yields a high loop gain in the low frequency
range, which implies effective rejection of slowly time-varying disturbances. In
this chapter, decentralized PID controllers are designed based on decoupling the
plant model in the AO system so that the controller design problem for the MIMO
system is transformed into a set of controller design problems for SISO systems. The
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coupling among the different input–output channels of the MFDM is first minimized
by appropriately choosing the location of the output points on the mirror surface,
which ensures that each output point is influenced maximally by one input coil only,
that is, the one corresponding to its own locations, while the effect of the other inputs
is significantly small. Then, a decoupling technique using the DC gain (influence
function) of the MIMO system is considered to further minimize the coupling effects
between the different input–output channels.

7.1.1 The Plant Model

In the following, the analytical model of the MFDM presented in Chap. 4 is used in
the development of controllers to control the mirror surface shape in the closed-loop
system shown in Fig. 6.4b. As shown in Fig. 6.6b, an augmented plant G is defined
and includes the WFC, a model of the optical interaction between the incident beam
and the deformable mirror, and the wavefront sensor. Using the notation presented
in Chap. 4, the WFC P will be represented by the transfer function P.s/ and a

corresponding state-space realization P W
"

A B
C 0

#

, where the system matrices A,

B, and C are obtained from the mirror model (4.102). As mentioned earlier, the
deformable mirror introduces a change in the wavefront shape, and the magnitude
of this change is twice the magnitude of the mirror shape. The sensor also introduces
a delay in the closed loop. Therefore, the augmented plant G is defined as having a
transfer function

G.s/ D 2e��sP.s/ (7.1)

where � is the sensor delay. By approximating the time delay transfer function e��s
using a rational transfer function, that is, the Pade approximation (Chen and Francis
1996), an approximate model of the augmented plant G can be given in state-space
form as

Px DAgx C Bgu

ys DCgx
(7.2)

where x 2 RNG is the vector of state variables, ys 2 RM is the vector of sensor
outputs, and Ag 2 RNG�NG , Bg 2 RNG�L

, and Cg 2 RM�NG are the system matrices
with appropriate dimensions.

7.1.2 Decoupling of the Input–Output Channels

Given the low frequency content of the aberrations of interest, it is desired in this
section to investigate the decoupling of the plant model at DC. Decoupling the

http://dx.doi.org/10.1007/978-3-642-32229-7_4
http://dx.doi.org/10.1007/978-3-642-32229-7_6
http://dx.doi.org/10.1007/978-3-642-32229-7_6
http://dx.doi.org/10.1007/978-3-642-32229-7_4
http://dx.doi.org/10.1007/978-3-642-32229-7_4
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Fig. 7.1 Bode magnitude plots corresponding to three selected input–output channels in the
augmented plant model G

plant model significantly facilitates the controller design for the AO system, as the
problem of MIMO controller design can be reformulated as that of designing a set
of SISO controllers. The developed DC-decoupled models are used in the design of
decentralized PI and robust PID controllers presented later in this chapter.

As predicted by the analytical model (4.102), and experimentally validated in
Chap. 5, the mirror surface shape generated by the magnetic field of a single
electromagnetic coil features a Gaussian profile, with the peak surface deflections
obtained immediately above the center of the coil. This feature of the MFDM
allows the augmented plant G to be decoupled and represented as a collection of
SISO systems since the coupling among the different input–output channels can be
minimized by appropriately choosing the location of the output points. For the 19
input channel system, as described in Sect. 5.2, 19 output points in the reconstructed
wavefront shape are chosen such that each of the output points corresponds to the
location of an input coil as seen in the optical pupil. This arrangement ensures
that each output point is influenced maximally by one input coil only, that is,
the one corresponding to its own locations, while the effect of the other inputs is
significantly small. The decoupling effect can be clearly observed from the Bode

http://dx.doi.org/10.1007/978-3-642-32229-7_4
http://dx.doi.org/10.1007/978-3-642-32229-7_5
http://dx.doi.org/10.1007/978-3-642-32229-7_5


192 7 Decentralized PID Controller Design

magnitude plot of the augmented plant G as shown in Fig. 7.1, where magnitudes
in the plots on the leading diagonal are significantly higher than those placed off-
diagonal. The figure shows the Bode plots for three selected channels (#1, 2, and 10
as marked in Fig. 5.7) only.

Although the right choice of input–output points does produce the desired
decoupling effect, the system is still not fully decoupled. For example, the coupling
between the adjacent output points (e.g., 1 and 2) is of the order of 20 % (i.e., the
magnitude of the wavefront measured at the output point 2 due to an input applied
at coil 1 is approximately 0.2 times the magnitude of the wavefront measured at
the output 1 due to the input applied at coil 1). Therefore, some means of further
reducing the coupling effect are still needed.

A decoupling technique, which utilizes the DC gain of the MIMO system or the
influence function matrix, is considered in the following to minimize the remaining
coupling effects. This approach is motivated by the observation that the magnitude
responses shown in Fig. 7.1 remain constant over a range of low frequencies. This
implies that the augmented plant G can be considered as a static system in this range
of frequencies. Since a static MIMO system can be fully decoupled using the DC
gain of the system (Albertos et al. 2004), this property of the plant G is exploited
to further improve the decoupling effect produced by the choice of output points as
described above.

The DC gain of the augmented plant G.s/ in (7.2) can be obtained as

G0 D G.0/ D �CgA�1
g Bg (7.3)

For frequencies ! < !0 over which the gains of all the channels of G.s/ remain
constant, the following relationship holds:

ˇ
ˇG .j!/G�1

0

ˇ
ˇ � I for ! < !0 (7.4)

where I is an identity matrix. It follows from (7.4) that for ! < !0 the system NG
given by

NG.s/ D G.s/G�1
0 (7.5)

is a decoupled system with a unit DC gain associated with each of the decoupled
channels. This decoupling effect can be incorporated in a closed-loop system by
simply cascading the gain G�1

0 with the plant G as shown in Fig. 7.2. The decoupling
effect can be more clearly observed in the magnitude response plots for the system
NG given in Fig. 7.3. It is obvious that the system is significantly decoupled in the low
frequency range ! < 12 rad=s. Note that only the magnitude plots on the leading
diagonal have significant values. Hence, we have that

ˇ̌ NG .j!/ˇ̌ � I for ! < 12 rad=s (7.6)

http://dx.doi.org/10.1007/978-3-642-32229-7_5
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Fig. 7.3 Bode magnitude plots of the decoupled plant model

A decoupled system can be treated as a collection of SISO systems that can be
controlled independently. For the system NG, a decentralized type controller NK can
be designed such that NK D kI, where k is a SISO controller. Given NK, the overall
controller K for the plant G can be written as

K D G�1
0

NK (7.7)
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The decoupling approach presented in this section is used in the design of
decentralized PI and PID controllers for the AO system as discussed in the following
two sections.

7.2 Decentralized PI Controller

Most of the existing AO systems make use of controllers designed based on a DC
model of the response of the reflected wavefront shape to the inputs applied to the
wavefront corrector. In the AO community, the DC model is commonly referred to
as the influence function matrix and is actually the DC gain of the augmented plant
comprising the wavefront corrector and the wavefront sensor. For the purpose of
controller design in this section, the closed-loop system block diagram is as shown
in Fig. 7.2, except that the plant model G is replaced by its DC gain G0.

As mentioned in Sect. 3.3, the major difficulty in controlling the conventional
MFDM arises from the nonlinear nature of the response of its deformable surface. A
clear manifestation of this difficulty has been the failure of the influence-function-
based control algorithms (Brousseau et al. 2007; Laird et al. 2006). Now that the
nonlinearity of the response of the MFDM has been taken care of by modifying
the design of the mirror, it is reasonable to expect that controllers designed based
on the DC-decoupled plant model should succeed in removing the distortions in
the aberrated wavefront, or at least do so with respect to the static aberrations. In the
following, a decentralized PI controller is designed, and its performance is evaluated
through simulation studies.

7.2.1 Controller Design

Assuming the plant model G.s/ is approximated by its DC model G0, it follows that

NG.s/ D I (7.8)

The resulting system is a decoupled system with unit gains in each of the
decoupled channels. For such a system, a decentralized type controller NK.s/ can
be designed such that NK.s/ D k.s/I, where k.s/ is a scalar controller designed
for the static plant (7.8). In this section, and with the aim of dealing mostly with
static aberrations, a proportional-plus-integral (PI) type controller is considered. The
controller k.s/ is given by

k.s/ D kp C ki
1

s
(7.9)

http://dx.doi.org/10.1007/978-3-642-32229-7_3
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where kp and ki are, respectively, the proportional and integral gains of the
controller. The corresponding discrete-time transfer function of the controller (7.9)
is given by

k.z/ D kp C ki
z

z � 1 D
�
kp C ki

�
z � kp

z � 1
(7.10)

The controller gains can be obtained using any of the standard control design
methods (Phillips 2000). Using the classical pole placement method, the following
parameters were obtained:

kp D 0:032; ki D 0:288 (7.11)

The overall controller K.s/ is given by G�1
0 k.s/I obtained as k.s/G�1

0 . The
controller thus obtained can be used to control the augmented plant G in the closed-
loop system. Simulation results of the closed-loop system response are presented in
the following section.

7.2.2 Simulation of the Closed-Loop System

To evaluate the performance of the decentralized PI controller, typical static and
dynamic aberrated wavefront shapes are specified as reference signals r (see
Fig. 7.2). Each entry in r is associated with a spatial location corresponding to the
center of one of the 19 coils. The static reference wavefront shape considered in this
simulation is given by

r0 D Œ2:0; 4:0; 5:0; 1:0; 5:5; 0:5; 3:5; 8:5; 6:0; 3:0; 2:5; 2:0; 3:0; 4:0;�2:0;
�4:0;�5:0; 1:0; 6:0�T.�m/ (7.12)

whereas the dynamic reference wavefront shape is given by

r.t/ D r0 C Œsin.f0t C 
1/ ; : : : ; sin.f0t C 
19/� .�m/ (7.13)

where r0 is as in (7.12), f0 is the frequency of the sinusoidally varying component
of the aberrated wavefront shape, and 
m, m D 1; 2; : : : ; 19, are the phases chosen
randomly such that 0 < 
m < .�=2/. All the entries in r0 and r.t/ are expressed
in micrometers. In (7.13), the 2-�m peak-to-valley dynamic reference wavefront
shape signals are superimposed on the static offset r0 to represent the aberrations
in the eye, which almost always have a large static component. These reference
wavefront shapes will be utilized in the simulations of all the controllers presented
in this chapter and in the experimental results presented in the following.
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Fig. 7.4 Tracking of a static reference shape using the decentralized PI controller: (a) wavefront
shape, (b) control inputs, (c) RMS error

Simulation results involving the static reference wavefront shape given in (7.12)
are shown in Fig. 7.4. The time history of the wavefront shape measurements ys at
the 19 output locations is shown in Fig. 7.4a. The corresponding reference wavefront
shape signals r0 are shown as dashed lines. The control inputs as determined by
the designed controller are given in Fig. 7.4b. The root mean square (RMS) of
the wavefront shape error e computed for the 19 channels is given in Fig. 7.4c.
As evident from the simulated results, the output of the closed-loop system can
successfully track the static reference shape.

Figure 7.5 shows simulation results involving the dynamic reference shape given
in (7.13). The time history of the wavefront shape measurements ys is shown in
Fig. 7.5a. For clarity, the results for only selected channels (# 2, 4, 8, and 17) are
shown in the figure. The corresponding reference wavefront shape signals are shown
as dashed lines. The control inputs as determined by the designed controller are
given in Fig. 7.5b. The RMS of the wavefront shape error e computed for the 19
channels is given in Fig. 7.5c. As expected, the tracking capability of the closed-
loop system is very limited in this case.
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Fig. 7.5 Tracking of a dynamic reference shape using the decentralized PI controller: (a)
wavefront shape, (b) control inputs, (c) RMS error

The following important observations can be made from the simulation results
presented above:

• It was demonstrated that the PI controller designed based on a DC model (i.e.,
the influence function) of the response of the WFC can be successfully used to
control the MFDMs developed according to the design modification proposed in
the Chap. 5.

• The decentralized PI controller asymptotically drives the wavefront shape error
to zero, when tracking the static reference wavefront shape signals. High-
performance tracking of static reference signals remains a characteristic feature
of the controllers that have an integrator in their structure. The same was verified
by the simulations presented above.

• The performance of the decentralized PI controller in canceling dynamic wave-
front aberrations was found to be inadequate. The controller provides the desired
tracking of the dynamic reference wavefront shape signals when the reference

http://dx.doi.org/10.1007/978-3-642-32229-7_5
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signals change very slowly with time. But the performance of the closed-
loop system deteriorates rapidly with the increasing frequency of the reference
signals as illustrated in Fig. 7.5a, which shows the results for the dynamic
reference wavefront signals (7.13) with 3 Hz frequency. A more advanced PID
controller design approach is presented in Chap. 8 and is shown to yield a better
performance in dealing with dynamic wavefront aberrations.

• An important closed-loop system stability issue is related to the fact that the PI
controller is designed based on the assumption that the augmented plant is a static
system. The MFDM exhibits significant dynamics even in the low frequency
range, which leads to stability robustness issues in the resulting closed-loop
system. This latter issue is addressed in the following section.

7.3 Decentralized Robust PID Controller

A decentralize PI controller was presented in the previous section. The controller
was designed based on the assumption that the augmented plant G can be considered
to be a static system represented by its DC gain G0. Therefore, the resulting DC-
decoupled plant model, which is strictly valid for ! D 0 only, was assumed to
be valid for all operating frequencies. However, the approximation of the plant
model by a static model introduces modeling errors whose effects become more
pronounced as the frequency content of the reference inputs increases. These
modeling errors may eventually lead to instability in the resulting closed-loop
system. In order to minimize the effect of these uncertainties, a decentralized robust
PID controller design method for the MFDM shape control is presented in this
section. The proposed controller maintains the computational and implementation
simplicity of the PI controller considered in Sect. 7.2 but at the same time addresses
the modeling uncertainties and provides the desired tracking performance in the
closed-loop system for static or slowly varying reference signals. In the design of
the decentralized controller, a decoupled approximate dynamic model of the plant is
first obtained (as opposed to the static model considered in Sect. 7.2). Then, based
on the resulting decoupled system model, a robust PID controller design approach is
employed to ensure the system stability in the whole range of operating frequencies
is maintained while also achieving the desired tracking performance in the closed-
loop system with respect to static or very slowly time-varying shapes of the mirror
surface. The design problem is first converted into a multi-objectiveH2 =H1 static
output feedback problem. In this new formulation, the controller to be designed
is a static controller represented by the gains of the desired PID controller. The
desired controller parameters are then obtained by iteratively solving some properly
formulated linear matrix inequalities. The derivations presented in this section are
based on a continuous time setting to facilitate the controller design. The resulting
controller is then discretized and implemented in the actual experimental adaptive
optics system.

http://dx.doi.org/10.1007/978-3-642-32229-7_8
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7.3.1 Controller Design

A PID controller is considered since it has a very simple structure with only
three gains to tune. To further simplify the design and implementation of the
PID controller, a decentralized structure of the controller is considered, where the
control signal applied to a given actuator is generated based only on one error
signal associated with the spatial location of the actuator. To design a decentralized
controller for the MFDM, an approximate decoupled dynamic model of the plant is
considered and is obtained using three main steps. The first step involves choosing
collocated actuation and sensing points on the mirror. Hence, each measurement is
maximally influenced by the input from the actuator at the same spatial location,
and the influence of the other actuator inputs is minimized. In the second step, the
plant model is decoupled at DC by cascading the inverse of the DC gain of the plant
model, as part of the controller, with the plant. The third step involves discarding the
off-diagonal entries in the system, resulting from cascading the inverse of the DC
gain of the plant with the plant model. Since the accuracy of the resulting model
starts to deteriorate with the increasing operating frequency, a robust controller
design approach is employed to ensure the closed-loop system stability in the whole
operating frequency range. The PID controller structure ensures that the MFDM
can successfully track desired static or slowly time-varying surface shapes while
providing a fast transient response that is acceptable from a practical point of view.
This latter goal is achieved by designing the controller to minimize the l2 norm of
the mirror shape tracking error with respect to static reference signals.

For the system under consideration, the use of the DC gain matrix serves well
in decoupling the different channels in the low frequency range. As indicated by
the selected Bode magnitude plots shown in Fig. 7.3, the diagonal entries represent
the most significant entries in the augmented system NG.s/, whereas the contribution
of the other entries is much less significant. Moreover, the diagonal entries in NG.s/
are all similar. Hence, these diagonal entries can all be represented using the same
function Ng.s/; therefore, we represent NG.s/ as

NG.s/ D

2

6
6
6
4

Ng.s/ Ng12.s/ � � � Ng1l .s/
Ng21.s/ Ng.s/ � � � Ng2l .s/
:::

:::
: : :

:::

Ngm1.s/ Ngm2.s/ � � � Ng.s/

3

7
7
7
5

(7.14)

The function Ng.s/ can be approximated using a dynamic model given by

Ng.s/ D p.s/d.s/ (7.15)

where p.s/ D 7.sC194:3/
.sC20/.sC68/ approximates each of the diagonal entries in NG.s/ as a

second-order system, assuming there is no time delay, and d.s/ D 12�6�sC.�s/2
12C6�sC.�s/2 is

the Pade approximation of the sensor delay transfer function e��s , with �D0:0345 s.
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Fig. 7.6 Bode plots of Ng.s/ and that of a typical diagonal entry in NG.s/

Figure 7.6 shows a comparison of the Bode plots of Ng.s/ and one of the diagonal
entries in NG.s/. The comparison indicates that Ng.s/ provides an accurate represen-
tation of the diagonal entries in NG.s/. The off-diagonal entries NG.s/ in (7.14) denote
the less significant uncertain dynamics in the decoupled system NG.s/. Based on Ng.s/
in (7.15), NG.s/ then can be reformulated as

NG.s/ D Ng.s/I C � NG.s/� Ng.s/I�

D Ng.s/I C N�.s/
(7.16)

where N�.s/ represents the additive model uncertainty. In order to simplify the design
of the PID controller, the uncertainty term N�.s/ will be represented using a constant
matrix� weighted by a band pass filter w�.s/ as

N�.s/ D w�.s/� (7.17)

where � 2 Rm�l is such that all entries ıij , i D 1; : : : ; m, and j D 1; : : : ; l in �
satisfy �� 6 ıij 6 � and where � can be determined experimentally.

In the following, a robust PID controller will be developed for the augmented
system (7.16). First, in order to eliminate the high-frequency noise in the real
system, the filter given by W.s/ D w.s/I, where w.s/ is a low-pass filter transfer
function, will be applied to the error signal e. By considering a decentralized PID
controller of the form KPID.s/ D kPID.s/I, it follows that the nominal closed-loop
system is fully decoupled. The resulting closed-loop system is shown in Fig. 7.7.
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Fig. 7.7 Block diagram of the closed-loop system with the uncertain plant model

y r

Δ

∼

Σ

Fig. 7.8 Block diagram of
the reconfigured closed-loop
system showing the blocks �
and †

For the purpose of stability robustness analysis, the signal r is set to zero first,
and the closed-loop system block diagram is redrawn as shown in Fig. 7.8, where†
is the system with input Nr and output Qy. The system † is given by

†.s/ D �w�.s/KPID.s/W.s/S0.s/ (7.18)

where S0.s/ is the sensitivity function given by

S0.s/ D .I C Ng.s/KPID.s/W.s//�1

D .1C Ng.s/kPID.s/w.s//
�1I

(7.19)

Let s0.s/ D .1C Ng.s/kPID.s/w.s//
�1. Then, we have

†.s/ D �w�.s/kPID.s/w.s/s0.s/I (7.20)

Assuming † is stable, then the robust stability of the closed-loop system shown
in Fig. 7.8 is satisfied if (Zhou et al. 1995)

k�k k†k1 < 1

which is equivalent to

k†k1 < k�k�1 (7.21)
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Let J 2 RM�L be such that all its entries are equal to or less than one. Then,
k�k 6 ��max.J/, where �max.J/ denote the maximum singular value of J. Based
on (7.20), it follows that k†k1 D kw�kPIDws0k1. Let � D 1=.��max.J//, then the
robust stability condition of the closed-loop system can be written as

kw�wkPIDs0k1 6 � (7.22)

If (7.22) is satisfied, then the designed PID controller yields a stable closed-
loop system. However, regulation performance of the closed-loop system is not
considered yet if the design only involves the robustness constraint (7.22). In the
following, the convergence rate of the closed-loop system with respect to the static
inputs is performed by minimizing an H2 performance specification. Consider the
nominal closed-loop system subject to an input r D v1d , where v 2 R

m is a constant
vector and 1d is the scalar valued unit step function. An additional controller
design objective is considered where it is desired to find a PID controller KPID that
minimizes the l2 norm of e, that is, kek2, by considering only the nominal system
Ng.s/I in the closed-loop system (i.e., without considering the uncertainty N�.s/).
Since the sensitivity function S0 relates the input r to the error e, the solution of
this design constraint can be obtained by considering a standardH2 optimal control
problem where it is desired to minimize the H2 norm of the system .1=s/S0. In
order to avoid the unstable pole introduced by .1=s/, the system .1=s/S0 can be
approximated by the system .1=.s C ˛//S0, where ˛ is a small positive constant.
Therefore, the decentralized robust PID controller design problem is converted into
a mixed H2 =H1 multi-objective design problem as

min
kPID

�
�
�
�

1

s C ˛
S0

�
�
�
�
2

subject to .7:22/ (7.23)

In the following, the above optimization problem will be first expressed as a
mixed H2 =H1 static output feedback problem, then a synthesis algorithm based
on solving iterative linear matrix inequalities (ILMIs) is developed to solve this
nonconvex problem by obtaining a suboptimal solution.

Consider the ith channel of the closed-loop system in Fig. 7.7. Write the
following state-space representation for Ng.s/

X

Ng
W
� Px Ng D A Ngx Ng C B Ngu0

i

yi D C Ngx Ng
(7.24)

where x Ng is the vector of state variables, u0
i 2 R is the ith control input, yi 2 R is the

ith output displacement, and A Ng , B Ng , and C Ng are the corresponding system matrices.
A state-space representation for w.s/ is given as follows:

X

w

W
� Pxw D Awxw C Bwei

Oei D Cwxw
(7.25)
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where xw is the vector of state variables, ei D ri � yi 2 R is the ith performance
error, Oei 2 R is the ith output of the filter, and Aw, Bw, and Cw are the corresponding
system matrices. Similarly, the weight function w�.s/ and 1=.sC˛/ are represented,
respectively, as

X

�

W
� Px� D A�x� C B�u0

i

Qyi D C�x�
(7.26)

and

X

s

W
( Pxs D �˛xs C ei

Qei D xs
(7.27)

where x� and xs are the vector of state variables and A�, B�, C�, and D� are the
corresponding system matrices. The control signal generated by the PID controller
kPID is given by

u0
i .t/ D kp Oei .t/C ki

Z t

0

Oei .�/d� C kd POei .t/

where kp , ki , and kd 2 R are the parameters to be designed. Let � D
�
	1 	2 	3 	4 	5

�T
, where 	1 D xg, 	2 D xw, 	3 D x�, 	4 D xs , and

	5.t/ D R t
0

Oeidt . It follows that

Oei D �
0 Cw 0 0 0

�
�

Z t

0

Oeidt D �
0 0 0 0 1

�
�

POei D ��CwBwCg CwAw 0 0 0
�

� C CwBwri

Define the new output variables Oy D Œ Oy1; Oy2; Oy3�T, where Oy1 D Oei , Oy2.t/ D
R t
0

Oeid� , and Oy3 D POei , and the new performance variable

	
z2
z1



D
	 Qei

Qyi



, then the

state-space representation from u0
i and ri to

	
z2
z1



and Oy can be written as

X

ag

W

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

P� D A� C B1ri C B2u0
i

	
z2
z1



D
	

C2

C1



�

Oy D C Oy� C D Oyri

(7.28)
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where A D

2

6
6
6
6
6
4

Ag 0 0 0 0
�BwCg Aw 0 0 0

0 0 A� 0 0
�Cg 0 0 �˛ 0

0 Cw 0 0 0

3

7
7
7
7
7
5

, B1 D

2

6
6
6
6
6
4

0
Bw

0
1
0

3

7
7
7
7
7
5

, B2 D

2

6
6
6
6
6
4

Bg
0

B�
0
0

3

7
7
7
7
7
5

,

C2 D �
0 0 0 1 0

�
, C1 D �

0 0 C� 0 0
�
, C Oy D

2

4
0 Cw 0 0 0
0 0 0 0 1

�CwBwCg CwAw 0 0 0

3

5,

and D Oy D
2

4
0
0

CwBw

3

5. Therefore, with respect to the system (7.28), the design

of the PID controller is converted into a static output feedback controller design
problem where the control signal is given by u0

i D FOy and where F D �
kp ki kd

�
.

Therefore, the controller design problem is cast as a mixed H2 =H1 static output
feedback controller design problem for the system (7.28) based on solving the
optimization problem (7.23). Using the static output feedback controller F, the state-
space representation of the closed-loop system involving the modified plant (7.28)
becomes

X

cl

W

8
<̂

:̂

P� D �
A C B2FC Oy

�
� C �

B1 C B2FD Oy
�
ri

	
z2
z1



D
	

C2

C1



�

(7.29)

It should be noted that the H1 norm of the closed-loop system relating Nri to z1
(i.e., to Qyi ) is the same as that of the closed-loop system †ri ;z1

in (7.29) relating ri
to z1. Also,

�� 1
sC˛ s0

��
2

is the same as the H2 norm of the closed-loop system †ri ;z2
in (7.29) relating ri to z2 (i.e., to Qei ). Consequently, the design of the PID controller
presented in the following is based on considering k†ri ;z1

k1 and k†ri ;z2k2. Hence,
the mixed H2 =H1 static output feedback problem can then be cast in the form of
an optimization problem involving matrix inequalities as

OP1 W min
kPID

trace.C2
QPC

T
2 /

subject to

"�
A C B2FC Oy

� QP C QP�A C B2FC Oy
�T �

B1 C B2FD Oy
�

�
B1 C B2FD Oy

�T �I

#

< 0 (7.30)

2

6
6
4

�
A C B2FC Oy

�
P C P

�
A C B2FC Oy

�T �
B1 C B2FD Oy

�
PCT1

�
B1 C B2FD Oy

�T �I 0

C1P 0 ��2I

3

7
7
5 < 0 (7.31)
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where QP > 0 and P > 0. Since the above matrix inequalities are nonlinear in the
unknown parameters QP, P and F, they cannot be solved directly using LMI solvers.
In the following, an algorithm is proposed to obtain a solution for OP1 by iteratively
solving a set of properly formulated linear matrix inequalities. First, using Schur
complement, inequality (7.30) can be written as (Boyd et al. 1994)

�
A C B2FC Oy

� QP C QP�A C B2FC Oy
�T C �

B1 C B2FD Oy
� �

B1 C B2FD Oy
�T
< 0

(7.32)

which is equivalent to

A QP C QPAT � QPC
T
OyC Oy QP C

�
B2F C QPC

T
Oy
 �

B2F C QPC
T
Oy
T

C �
B1 C B2FD Oy

� �
B1 C B2FD Oy

�T
< 0 (7.33)

Since
� QX � QP�T

CT
OyC Oy

� QX � QP� 6 0, then we have

PCT
OyC OyP > QXC

T
OyC OyP C PCT

OyC Oy QX � QXC
T
OyC Oy QX

Then, a sufficient condition for (7.33) to be satisfied can be obtained with ˛ 6
0 as

A QP C QPAT � ˛ QP � QXC
T
OyC Oy QP � QPC

T
OyC Oy QX C QXC

T
OyC Oy QX

C
�

B2F C QPC
T
Oy
 �

B2F C QPC
T
Oy
T C �

B1 C B2FD Oy
� �

B1 C B2FD Oy
�T
< 0

(7.34)

Let ‰ D A QP C QPAT � ˛ QP � QXC
T
OyC Oy QP � QPC

T
OyC Oy QX C QXC

T
OyC Oy QX. Then, (7.34) is

equivalent to
2

66
6
4

‰
�
B1 C B2FD Oy

� �
B2F C QPC

T
Oy


�
B1 C B2FD Oy

�T �I 0
�

B2F C QPC
T
Oy
T

0 �I

3

77
7
5
< 0 (7.35)

Similarly, a sufficient condition for (7.31) can be obtained as
2

6
66
6
6
4

�
�
B1 C B2FD Oy

�
B2F C PCT

Oy PCT
1

�
B1 C B2FD Oy

�T �I 0 0
�

B2F C PCT
Oy
T

0 �I 0

C1P 0 0 ��2I

3

7
77
7
7
5
< 0
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where� D AP C PAT � ˛P � XCT
OyC OyP � PCT

OyC OyX C XCT
OyC OyX. In the following,

an iterative LMI algorithm will be used to obtain a suboptimal solution for the
optimization problem OP1. A similar algorithm has been used in (Cao et al. 1998) to
solve a static output feedback stability problem. The main idea behind the following
algorithm is to first find a set of gains F such that the robust stability condition (7.31)
is satisfied, and then to further search within this set of gains for a solution that
minimizes the H2 performance.

Algorithm

Step 1: Select QQ > 0, Q > 0, and solve for QP > 0 and P > 0 from the following
algebraic Riccati equation:

QPAT C A QP � QPC
T
OyC Oy QP C QQ D 0

PAT C AP � PCT
OyC OyP C Q D 0

Set i D 1, QXi D QP, Xi D P, and an initial H2 performance value �2. Let

‰i D A QPi C QPiAT � ˛ QPi � QXiCT
OyC Oy QPi � QPiCT

OyC Oy QXi C QXiCT
OyC Oy QXi

and

�i D APi C PiAT � ˛Pi � XiCT
OyC OyPi � PiCT

OyC OyXi C XiCT
OyC OyXi

Step 2: Minimize ˛i subject to the following LMI constraints for unknown QPi > 0,
Pi > 0, F, and ˛i
2

6
6
6
4

‰i
�
B1 C B2FD Oy

� �
B2F C QPiCT

Oy


�
B1 C B2FD Oy

�T �I 0
�

B2F C QPiCT
Oy
T

0 �I

3

7
7
7
5
< 0 (7.36)

2

6
6
66
6
4

�i

�
B1 C B2FD Oy

�
B2F C PiCT

Oy PiCT1
�
B1 C B2FD Oy

�T �I 0 0
�

B2F C PiCT
Oy
T

0 �I 0

C1Pi 0 0 ��2I

3

7
7
77
7
5
< 0 (7.37)

C2
QPiCT

2 < �2 (7.38)

Step 3: If ˛i 6 0, let

‰i D A QPi C QPiAT � QXiCT
OyC Oy QPi � QPiCT

OyC Oy QXi C QXiCT
OyC Oy QXi

�i D APi C PiAT � XiCT
OyC OyPi � PiCT

OyC OyXi C XiCT
OyC OyXi

and ˇi D t race.C2
QPiCT

2 /, then go to step 5.
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Step 4: If jai�1 � ai j < ı, a prescribed tolerance, the optimal problem OP1 may
not be solved by F, or try different QQ and Q in step 1 and run the algorithm

again. Otherwise, minimize t race

�	 QPi 0
0 Pi


�
subject to (7.36), (7.37),

and (7.38) for the unknowns QPi , Pi , and F. Set i D i C 1, QXi D QPi�1, and
Xi D Pi�1, then go to step 2.

Step 5: Solve minˇi subject to (7.36), (7.37), and (7.38) for unknown QPi , Pi , and
F. If jˇi�1 � ˇi j < ", a prescribed tolerance, stop.

Step 6: Minimize t race.Pi / subject to (7.36), (7.37), and (7.38) for the unknowns
Pi and F. Set i D i C 1, QXi D QPi�1, and Xi D Pi�1, then go to step 5.

7.3.2 Simulation of the Closed-Loop System

Using the algorithm described above, a controller is designed for the system NG in
(7.14). In the controller design process, the low-pass filter w.s/ is selected as

w.s/ D 1

6:944 � 10�3s2 C 1:179 � 10�1s C 1
(7.39)

For the 19-input–19-output system, based on Bode plot analysis of the decoupled
system, we have the uncertainty bound � 6 0:2, and each output is mostly affected
by the neighboring actuators. Based on the data, we obtain k�k1 6 3:8 and the
uncertain weight function w�.s/ as

w�.s/ D s

s C 10
(7.40)

Using these parameters, the proposed iterative algorithm provides the following
PID controller:

kp D 0:30; ki D 0:26; kd D 0:65 (7.41)

Using the above parameters, the controller kPID for each channel can be
obtained as

kPID.s/ D kp C ki
1

s
C kd s (7.42)

which gives

NK.s/ D KPID.s/ D kPID.s/I (7.43)

Using (7.43) in (7.7), the overall controller K.s/ can be obtained as

K.s/ D kPID.s/G�1
0 (7.44)



208 7 Decentralized PID Controller Design

0 0.5 1 1.5 2 2.5 3
−6

−4

−2

0

2

4

6

8

10a

b c

Time (s)

W
av

ef
ro

nt
 S

ha
pe

  y
s (

μm
)

0 0.5 1 1.5 2 2.5 3
−15

−10

−5

0

5

10

15

20

Time (s)

C
on

tr
ol

 C
ur

re
nt

s 
(m

A
)

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (s)

R
M

S
 E

rr
or

 (
μm

) 

Fig. 7.9 Tracking of a static reference shape using decentralized robust PID controller: (a)
wavefront shape, (b) control inputs, (c) RMS error

A closed-loop system comprising the augmented plant model G and the decen-
tralized PID controller (7.44) was simulated in order to determine the ability of the
closed-loop system to track the reference wavefront shapes signals. The results of
the simulations are as follows:

Figure 7.9 shows the results of simulations where the closed-loop system is
required to track the static shape defined by (7.12). Figure 7.9a shows the time
history of the wavefront shape measurements ys at the 19 output locations. The
corresponding reference wavefront shape signals are shown as dashed lines. The
control inputs as determined by the designed controller are given in Fig. 7.9b.
The RMS of the wavefront shape error e computed for the 19 channels is given
in Figure 7.9c. The output of the closed-loop system was found to converge
successfully to the desired reference shape in less than 1s. Note that the RMS error
asymptotically approaches zero, which is the characteristic feature of controllers
with an integrator.
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Fig. 7.10 Tracking of a dynamic reference shape using decentralized robust PID controller: (a)
wavefront shape, (b) control inputs, (c) RMS error

Figure 7.10 shows the results of simulations where the closed-loop system is
required to track the dynamic reference wavefront shape signals specified in (7.13).
Figure 7.10a shows the time history of the wavefront shape measurements ys at
selected locations (# 2, 4, 8, and 17). The control inputs are given in Figure 7.10b. As
can be observed from the figure, the controller manages to drive the wavefront shape
ys to the static offset values of the reference signals. However, there exists a phase
difference between the reference wavefront shape signals and the corresponding
wavefront shape measurements ys , which results in a relatively large RMS error as
shown in Fig. 7.10c.

The closed-loop system based on the PID controller described above performs
satisfactorily in tracking slowly changing reference shapes. The integrator in the
structure of this type of controllers ensures that the error in tracking a constant
reference shape is driven to zero asymptotically. When tracking a dynamic reference
wavefront shape, the output of the closed-loop system lags the reference wavefront
shape signal, resulting in significant tracking errors.
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7.4 Experimental Evaluation

This section presents the results of the experimental work carried out to evaluate the
performance of the controllers presented in Sects. 7.2 and 7.3. Where possible, a
comparison to the numerical simulations is also presented.

7.4.1 Decentralized PI Controller

In order to implement the decentralized PI controller as presented in Sect. 7.2, the
closed-loop system shown in Fig. 7.2 is constructed such that the augmented plant
G is the actual system comprising the MFDM and the sensor. The sampling time in
the closed-loop system is of 0.0345 s. In order to cancel the sensor noise, an extra
low-pass filter f is chosen as follows:

f .z/ D 0:3757.z C 1/

z � 0:2487
(7.45)

which is the transfer function for a Butterworth filter with 5 Hz cutoff frequency. The
controller is given by K D kG�1

0 , where G�1
0 is obtained from (7.3) and where the

parameters in k are obtained using the classical pole placement method. To evaluate
the performance of the decentralized PI controller, aberrated wavefront shapes are
specified as reference signals r where each entry in r is associated with a spatial
location corresponding to the center of one of the 19 coils in the prototype MFDM
described in the preceding section.

7.4.1.1 Tracking of a Generalized Reference Wavefront Shape

Firstly, a generalized static reference wavefront shape defined by the following
desired displacements is considered:

r D Œ2:0; 4:0; 5:0; 1:0; 5:5; 0:5; 3:5; 8:5; 6:0; 3:0; 2:5; 2:0; 3:0; 4:0;�2:0;
� 4:0;�5:0; 1:0; 6:0�T.�m/

(7.46)

With the closed-loop system setup as described above, the static reference
wavefront shape signals specified in (7.46) are tracked using the developed closed-
loop AO system. Figure 7.11a shows the time history of the experimentally obtained
wavefront shape measurements ys , where only selected channels (# 2, 4, 8, and
17) are shown. The corresponding reference signals are shown as dotted lines. The
RMS of the wavefront shape error e is given in Fig. 7.11b where the corresponding
simulation results are also shown for comparison. While the simulations showed
that the controller can drive the RMS error to zero, the experimental results show a
residual steady-state error of 0.21 �m.
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Fig. 7.11 Experimental tracking of a static reference shape using the PI controller: (a) wavefront
shape, (b) RMS error

The optical benefit of compensating for a wavefront error can be visualized by
observing its effect on the point spread function (PSF) of the system of the wavefront
computed before and after the correction has been applied. The comparison for
the above-mentioned case of correction of the static reference shape is shown in
Fig. 7.12. Figure 7.12a represents the image of a point source of light formed by an
imaging system, which carries wavefront aberrations equivalent to the wavefront
shape error defined by this static reference shape. Figure 7.12b represents the
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Fig. 7.12 The point spread function of the static wavefront error before and after applying the AO
correction: (a) before correction, (b) after correction

image of a point source of light formed by an imaging system, which carries
wavefront aberrations equivalent to the residual wavefront error measured after the
AO correction had been applied. The results show that a significant improvement
in the image quality can be achieved using the closed-loop system comprising the
presented control algorithm and a prototype MFDM with only 19 actuators.

7.4.1.2 Tracking of Zernike Mode Shapes

In the following, it will be shown that, using the decentralized PI controllers
presented earlier, a wide range of static shapes of the MFDM can be achieved. It
follows from the linearity of the MFDM response that any combination of these
surface shapes can also be generated. The Zernike modes present a complete set
of basis functions that can be used to represent any desired shape using a linear
combination of these shapes. The number of Zernike modes that the mirror surface
can produce is a good estimate of the spatial resolution of the wavefront correction
offered by the mirror. Therefore, the MFDM was tested for its ability to generate the
series of Zernike mode shapes. A simulated signal generator as shown in Fig. 7.13
was used to provide the reference mode shapes or a combination of these shapes to
be tracked by the mirror. The reference shape vector r can be written as

r D Zc (7.47)

where c is the vector of Zernike coefficients and Z is the matrix of Zernike
mode shapes computed at the 19 output points coinciding with the location of
electromagnetic coils in the optical pupil. The mode shape matrix Z is written as
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where Zmj , j D 1; 2; : : : ; J , m D 1; 2; : : : ;M is the jth Zernike mode shape
computed at (rm, �m) output location. The Zernike coefficients determine the
magnitude of the resulting reference shape. Note that individual Zernike mode
shapes can be set as the reference wavefront shape signals by setting all coefficients,
other than that of the desired mode, to zero. Also, by introducing time-varying
coefficients, dynamic wavefront shapes can be provided as reference signals.

The closed-loop system with the decentralized PI controller presented in (7.10)
is used to track the desired mode shapes. The magnitude of the mode shape to be
tracked is specified by a 10-�m coefficient (˙10 �m peak-to-valley). Figure 7.14
shows some sampled results of the total 32 Zernike mode shapes that were attained
by the MFDM. For each Zernike modeZj , j D 1; 2; : : : ; 35, the contour plot on the
LHS is the experimentally obtained wavefront shape. The one in the middle is the
exact Zernike mode shape provided as the reference signal. The shape on the RHS
shows the wavefront shape error. Note that the contours are spaced according to the
wavelength (�D 0.661 �m) of the laser light used. While the graphical illustration
does show effectiveness of the MFDM in tracking the specified mode shapes, a more
comprehensive measure is the RMS of the wavefront shape error as shown by the
bar chart in Fig. 7.15. The initial RMS error defined by a 10-�m modal coefficient of
the reference shape is reduced to the magnitudes shown in the figure. The average
RMS error is 0.11 �m

�� �
6

�
. The successful tracking of up to 32 Zernike mode

shapes using only a 19-channel MFDM demonstrates that higher-order wavefront
aberrations can be effectively canceled out using this WFC.

7.4.1.3 Tracking of Dynamic Shapes

The experiments conducted with the dynamic reference wavefront shape signals
(7.13) show that the PI controller can track very slowly changing signals only. With
the increasing frequency of the reference signals, the error increases rapidly and
results in the saturation of the actuator electromagnetic coils.
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Fig. 7.14 Zernike mode shapes generated using the MFDM with decentralized PI controller: (a)
desired shapes, (b) acquired shapes, (c) error surface
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Fig. 7.15 RMS error for the Zernike mode shapes generated using the MFDM

7.4.2 Decentralized Robust PID Controller

The decentralized robust PID controller is implemented by setting up a closed-loop
system as was shown in Fig. 7.2, where the plant G is the actual system comprising
the MFDM and the sensor. The controller given in (7.44) is used with the PID
parameters as given in (7.41). The error signal e is filtered using the discretized
version of the low-pass filter w.s/ in (7.39). The resulting PID controller was
discretized using Tustin’s approximation algorithm.

7.4.2.1 Tracking of a Generalized Reference Wavefront Shape

The performance of the PID controller is tested by tracking a surface shape formed
by the following set of constant deflections:

r D ro D Œ2:0; 4:0; 5:0; 1:0; 5:5; 0:5; 3:5; 8:5; 6:0; 3:0; 2:5; 2:0; 3:0; 4:0;�2:0;
� 4:0;�5:0; 1:0; 6:0�T.�m/

which forms a generalized aspheric surface shape. Figure 7.16a shows the time
history of the mirror surface deflections measured at the 19 points coinciding with
the location of the coils, where only selected channels (# 2, 4, 8, and 17) are shown.
The RMS error in tracking the reference shape is also given in Fig. 7.16b. The
experimental results show a residual steady-state error of 0.18�m. As a comparison
with the performance of the control system presented in Sect. 7.4.1, it should be
noted that with respect to the reference signal given by ro, the RMS error values
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Fig. 7.16 Experimental tracking of a static reference shape using the decentralized robust PID
controller: (a) wavefront shape, (b) RMS error

were 0.21 �m using the decentralized PI controller. Hence, it can be seen that
with an RMS error value of 0.18 �m, the proposed controller provides a superior
performance to the controllers presented in Sect. 7.4.1. Figure 7.17 shows the
contour plot of the error surface, that is, the difference of the reference surface shape
and the measured wavefront shape. For clarification, only the reference surface
obtained by fitting the first 15 Zernike polynomials on to the discrete reference
displacements ro is shown here. It can be seen that the decentralized robust PID
controller is superior to the decentralized PI controller.
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Fig. 7.17 Contour plot of the error surface: (a) before correction, (b) after correction

7.4.2.2 Tracking of Zernike Mode Shapes

The Zernike modes present a complete set of basis functions that can be used to
represent any desired surface shape using a linear combination of these modes.
The number of Zernike modes that the mirror surface can produce is a good
estimate of the spatial resolution of the wavefront correction offered by the mirror.
Therefore, the closed-loop system comprising the proposed controller and the
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Fig. 7.18 Zernike mode shapes generated using the MFDM with decentralized robust PID
controller: (a) acquired shapes, (b) desired shapes, (c) error surface

prototype MFDM was also tested for its ability to generate a series of Zernike mode
shapes. Figure 7.18 shows the results where the surface plots of the first 15 Zernike
modes are shown as desired shapes and are compared to the shapes obtained using
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Fig. 7.18 (continued)

the closed-loop system. The difference is shown as an error surface for each mode
shape. The RMS of the error surfaces is plotted in Fig. 7.19. The RMS error values
are computed only at the 19 control points since the number of actuators used in the
prototype is small and computing the RMS error over the whole surface will not in
this case be reflective of the capabilities of the control algorithm. It can be seen in
Fig. 7.19 that the closed-loop system performs well in achieving the desired shapes.
It is therefore expected that, using an MFDM with a larger number of actuators, the
RMS error values computed over the whole surface will be comparable to the values
computed at the actuator locations.
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7.4.2.3 Tracking of Dynamic Shapes

The ability of the controller to track dynamic surface shapes was tested using
the reference wavefront shape signals specified in (7.13) where f0 D 3 Hz.
Figure 7.20a shows the time history of the experimentally obtained wavefront shape
measurements ys, where only selected channels (# 2, 4, 8, and 17) are shown. The
RMS of the wavefront shape error is shown in Fig. 7.20b. As can be observed from
the figure, the controller does manage to track the specified reference wavefront
shape; however, a relatively significant error still remains uncorrected.

7.5 Summary

In this chapter, two decentralized PID control algorithms are proposed to control the
surface shape of a magnetic fluid deformable mirror in a closed-loop adaptive optics
system. A decentralized proportional-plus-integral (PI) controller is first designed
based on the static decoupling of the plant model using the plant DC gain. This
represents a classical approach in the design of decentralized controllers for adaptive
optics systems and assumes that the system is fully decoupled. To overcome stability
robustness issues and to minimize the effect of the model uncertainties especially
in the high frequency range, a decentralized robust proportional-integral-derivative
(PID) controller with DC decoupling is then presented. The controller is designed
based on a decoupled nominal dynamic model of the plant. To account for the
modeling errors in the decoupled plant model, a robust PID controller design
problem is transformed into a mixedH2=H1 multi-objective optimization problem
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Fig. 7.20 Experimental tracking of a dynamic reference shape using the decentralized robust PID
controller: (a) wavefront shape, (b) RMS error

and solved iteratively based on some properly formulated linear matrix inequalities
(LMIs). The two control algorithms mentioned above provide good performance
in removing static or very slowly changing aberrations. However, the simulation
and experimental verifications show that the decentralized PID control algorithms
have limited capabilities in dealing with fast-changing aberrations. To overcome
this limitation, centralized optimal control algorithms are developed in the next
chapter.



References 225

References

Albertos P, Prez PA, Sala A (2004) Multivariable control systems: an engineering approach.
Springer, London

Boyd S, Ghaoui LE, Feron E, Balakrishnan V (1994) Linear matrix inequalities in system and
control theory. SIAM, Philadelphia

Brousseau D, Borra EF, Thibault S (2007) Wavefront correction with a 37–actuator ferrofluid
deformable mirror. Opt Express 15:18190–18199

Cao YY, Lam J, Sun YX (1998) Static output feedback stabilization: an LMI approach. Automatica
34(12):1641–1645

Chen T, Francis B (1996) Optimal sampled data control systems. Springer, London
Laird P, Caron N, Rioux M, Borra EF, Ritcey AM (2006) Ferrofluid adaptive mirrors. Appl Opt

45(15):3495–3500
Phillips CL (2000) Feedback control system. Prentice-Hall, Englewood Cliffs
Zhou K, Doyle J, Golver K (1995) Robust and optimal control. Prentice Hall, Upper Saddle River



Chapter 8
Centralized Optimal Controller Design

Contents

8.1 Multivariable PID Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
8.1.1 Closed-Loop System Presentation with a PID Controller . . . . . . . . . . . . . . . . . . . . . . . . 229
8.1.2 Stabilization with PID Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
8.1.3 PID Controller Design with an H

1

Performance Constraint . . . . . . . . . . . . . . . . . . . . 236
8.1.4 PID Controller Design with an H2 Performance Constraint . . . . . . . . . . . . . . . . . . . . . 238
8.1.5 Extension to Generalized H2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
8.1.6 The MFDM Surface Shape Control with the Multivariable PID Controller. . . . . 242

8.2 Mixed-Sensitivity H
1

Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
8.2.1 Mixed-Sensitivity H

1

Control Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
8.2.2 Controller Design Based on Algebraic Riccati Equations. . . . . . . . . . . . . . . . . . . . . . . . 254
8.2.3 Controller Design Based on the LMI Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
8.2.4 Some Modifications to the Controller Synthesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
8.2.5 The MFDM Surface Shape Control with the Mixed-Sensitivity H

1

Controller 262
8.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

8.1 Multivariable PID Controller

The decentralized control strategy for AO systems presented in the previous chapter
is simple and effective in attenuating the effects of static or slowly time-varying
wavefront aberrations. However, a significant drawback of this approach is that the
decentralized controller design is based on an approximate decoupled model of the
plant dynamics, resulting in a reduction in the level of stability and performance
robustness of the closed-loop AO system. The dynamic model of the magnetic
fluid deformable mirror cannot be fully decoupled using the traditional approach
based on the influence function matrix, especially when operating in a relatively
high-frequency range. Therefore, it is necessary to develop the centralized control
strategy for the AO system that accounts for the full dynamics of the MFDM. A new
multivariable PID controller design approach is presented in this section.

Z. Wu et al., Modeling and Control of Magnetic Fluid Deformable Mirrors
for Adaptive Optics Systems, DOI 10.1007/978-3-642-32229-7 8,
© Springer-Verlag Berlin Heidelberg 2013
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A proportional–integral–derivativecontroller (PID controller) is a generic type of
controllers widely used in industrial control systems. Besides their simplicity, PID
controllers can specifically achieve asymptotic tracking of static reference inputs
due to the presence of integrators in their structure. The popularity of PID controllers
in the industrial world resulted in many approaches to tune the PID controller gains
(O’Dwyer 2006;

0

Åström and Hägglund 2005). Most of the existing approaches are
developed for the cases where the plant is or can be decoupled into a set of single-
input single-output low-order systems. However, in industrial applications, there
exist many plants that can only be modeled as coupled multiple-input multiple-
output (MIMO) high-order systems. Therefore, it is highly desirable to develop
effective methods to design multivariable PID controllers for such MIMO high-
order systems.

The design of MIMO PID controllers in the frequency domain using generalized
Nyquist stability theorem is addressed in Morari (1985), Nwokah and Perez (1983),
and MacFarlane and Belletrutti (1973). However these methods are not convenient
to work with due to their complexity. Recently, rigorous multivariable PID controller
design methods have been proposed in Bianchi et al. (2008), Lin et al. (2004), Zheng
et al. (2003), and Mattei (2001) and share the following common features: first, the
main idea behind these approaches is to transform the MIMO PID controller design
problem into an equivalent static output feedback (SOF) controller design problem.
Second, the controller synthesis procedures are developed based on solving properly
formulated bilinear matrix inequalities (BMIs) that can be solved using existing
numerical algorithms (Apkarian et al. 2003; Cao et al. 1998; Ghaoui et al. 1997).
The PID controller gains can then be further tuned by considering H1 or H2 optimal
controller design techniques to optimize different control objectives. However, the
search for the optimal controller is heavily dependent on the initial values used in
the controller synthesis numerical algorithms. Consequently, the resulting controller
performance may be unacceptable. Third, the aforementioned results are mainly
proposed for continuous time systems. In this section, the approach to the design
of multivariable PID controllers for discrete-time systems is presented. Three main
features characterize the approach proposed in this section. First, the multivariable
PID controller parameters are designed directly by considering the actual closed-
loop system involving the plant and the controller, without transforming the problem
into an equivalent static output feedback controller design problem. Second, the
proposed controller synthesis procedures are based on solving properly formulated
linear matrix inequalities (LMIs). The LMI-based formulation of the controller
synthesis procedure results from introducing some assumptions on the state-space
representation of the plant, from properly formulating the controller state-space
representation, and from introducing slack variables with special structure in the
controller synthesis results. Third, the controller design procedure proposed in this
section is developed specifically for discrete-time systems. It should be noted that
the use of slack variables having a special structure allows the controller synthesis
to be formulated based on LMIs instead of BMIs but at the same time introduces
some level of conservatism in the controller design, which results in a suboptimal
solution to the original nonconvex PID controller design problem.
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Multivariable PID controller design approaches for continuous time systems are
discussed in Bianchi et al. (2008), Lin et al. (2004), Zheng et al. (2003), Mattei
(2001). Given that the control algorithm for an AO system is typically implemented
in a computer system, it is more convenient to design the controller directly in
discrete time. In the rest of this section, a new multivariable PID controller design
approach for discrete time systems is presented. The proposed design approach
is formulated as the problem of designing PID controllers that yield closed-loop
systems with H1 and H2 performance specifications. Corresponding synthesis
algorithms based on properly formulated linear matrix inequalities are developed.
Finally, the performance of the proposed controllers is successfully evaluated on
an adaptive optics experimental setup, where it is desired to control the surface
shape of the novel modified magnetic fluid deformable mirror. The experimental
results illustrate the effectiveness of the proposed controller in providing the desired
tracking performance and illustrate the potential offered by this controller in closed-
loop MFDM-based retinal imaging adaptive optics systems.

8.1.1 Closed-Loop System Presentation with a PID Controller

PID controllers are popular and have been widely used in industrial control systems,
mainly due to their simplicity and the ability to asymptotically drive the steady-state
error to zero. However, most of the existing PID design approaches are developed
for SISO systems. New approaches have been recently developed for continuous
time MIMO systems by transforming the MIMO PID controller design problem
into an equivalent static output feedback (SOF) controller design problem; however,
these approaches are proposed based on solving bilinear matrix inequalities (BMIs)
that should be solved iteratively with some derived linear matrix inequalities
(LMIs). The search for the optimal controller is heavily dependent on the initial
values fed into the synthesis procedure, and most often the obtained solution is
unacceptable. In the following, the multivariable PID controller is formulated as a
fixed structure controller and is included as part of an augmented plant. Then by
introducing proper slack variables, the controller synthesis procedure can be easily
derived. Consider the following generalized discrete-time linear time-invariant
system:

† W
8
<

:

xp.k C 1/ D Axp.k/C B1w.k/C B2u.k/
e.k/ D C1xp.k/C D11w.k/
y.k/ D C2xp.k/C D21w.k/

(8.1)

where A 2 Rn�n, B1 2 Rn�h, B2 2 Rn�l , C1 2 Rr�n, C2 2 Rm�n, D11 2 Rr�h,
D21 2 Rm�h, xp.k/ 2 Rn is the state vector, u.k/ 2 Rl is the control input,
w.k/ 2 Rh is an exogenous input signal representing reference or disturbance
signals, y.k/ 2 Rm is a measurement signal to be fedback to the controller, and
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e.k/ 2 Rr is the performance variable to be regulated. The following assumption is
invoked in the rest of the developments presented in this section.

Assumption 8.1 The matrix B2 in (8.1) is of full column rank. �

Remark 8.1 There is no loss of generality in considering Assumption 8.1 for the
plant model (8.1). In fact, if the plant model (8.1) is such that the B2 matrix is not
of full column rank, a new model satisfying Assumption 8.1 can be developed and
used for controller design as follows. Consider the case where B2 2 Rn�l is of rank
s and B2 does not have full column rank. A singular value decomposition of B2 can
be written as B2 D U1VU2 where U1 2 Rn�n and U2 2 Rl�l are unitary matrices

and where V 2 Rn�l is given by V D
	

Vs 0s�.l�s/
0.n�s/�s 0.n�s/�.l�s/



, where Vs 2 Rs�s

is a diagonal matrix with entries of the singular values of B2. Let v D
	

v1
v2



D

U2u where v1 2 R
s . Consider the full column rank matrix NB2 D U1

	
Vs

0.n�s/�s



2

R
n�s . It follows that B2u.k/ D NB2v1.k/. Hence, the plant model can be rewritten

as in (8.1) but where the term B2u.k/ is replaced with NB2v1.k/, and can be used
in the design of the controller. In the actual implementation of the control system,
the controller yields the vector v1(k). Since v2(k) does not contribute to the vector
B2u.k/, it can be chosen arbitrarily and set to the zero vector. Hence, the actual

control vector u.k/ can then be computed as u.k/ D U�1
2

	
v1.k/

0.l�s/�1



. That there

is no loss of generality in considering Assumption 8.1 for the plant model (8.1) is
also due to the fact that the matrix D12 2 R

r�l that would normally appear in the
expression e.k/ D C1xp.k/ C D11w.k/ C D12u.k/ in (8.1) is such that D12 D
0r�l . �

In this section, it is desired to regulate the performance variable e.k/ against the
exogenous input w.k/ using a multivariable discrete-time PID controller C given by

C.z/ D Kp C Ki

z

z � 1 C Kd

z � 1
z

D 1

z2 � z

��
Kp C Ki C Kd

�
z2 � �

Kp C 2Kd

�
z C Kd

�
(8.2)

where Kp, Ki, and Kd are all in Rl�m and represent the gain matrices of the PID
controller to be designed. A corresponding state-space realization of C can be
written as follows:

C W
(

xc.k C 1/ D Acxc.k/C Bcy.k/

u.k/ D Ccxc.k/C Dcy.k/
(8.3)
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where xc.k/ 2 R2l , Ac D
	

Il�l Il�l
0l�l 0l�l




2l�2l
, Bc D

	
Ki � Kd

Kd




2l�m
, Cc D

�
Il�l 0l�l

�
l�2l , and Dc D �

Kp C Ki C Kd

�
l�m. Let x.k/ D

	
xp.k/
xc.k/



2 RN ,

where N D n C 2l . Then combining (8.1) and (8.3) yields the following closed-
loop system representation:

†cl W
(

x.k C 1/ D Aclx.k/C Bclw.k/

e.k/ D Cclx.k/C Dclw.k/
(8.4)

where AclD
	

A C B2DcC2 B2Cc

BcC2 Ac




N�N
, BclD

	
B2DcD21 C B1

BcD21




N�h
, Ccl D

�
C1 0r�.2l/

�
r�N , and Dcl D D11 2 Rr�h. Let QA D

	
A B2Cc

02l�n Ac




N�N
,

QB D
	

B1
02l�h




N�h
, and K D

	
Dc

Bc




3l�m
. Since B2 is assumed to be of full

column rank, there exists a nonsingular transformation matrix Tb 2 Rn�n such

that TbB2 D
	

0.n�l/�l
Il�l



. Let T D

	
Tb 0n�2l
02l�n I2l�2l



2 RN�N .

Remark 8.2 It should be noted, based on the state-space representation (8.3) of
the controller, that only the matrices Bc and Dc represent the unknown controller
parameters. Hence, the approach presented in this section is valid for the design of
any controller with a state-space representation of the form (8.3) where the matrices
Ac and Cc are fixed and where the matrices Bc and Dc represent the unknown
controller parameters to be determined in the controller synthesis procedure, as
outlined in the following sections. For example, consider a controller given by the
following input–output representation:

�
Izn C A1z

n�1 C A2z
n�2 C � � � C An

�
U.z/ D �

B0zn C B1zn�1 C � � � C Bn
�

Y.z/

where U(z) and Y(z) represent the Z transform of u(k) and y(k), respectively; Ai 2
Rl�l , i D 1; : : : ; n; Bj 2 Rl�m, j D 0; : : : ; n. A state-space representation of the
controller can then be given as in (8.3) where

Ac D

2

6
6
66
6
6
4

�A1 Il�l 0l�l � � � 0l�l
�A2 0l�l Il�l � � � 0l�l
:::

:::
: : :

:::
:::

�An�1 0l�l � � � : : : Il�l
�An 0l�l � � � � � � 0l�l

3

7
7
77
7
7
5

; Bc D

2

6
6
66
6
6
4

B1 � A1B0
B2 � A2B0

:::
:::

Bn � AnB0

3

7
7
77
7
7
5

Cc D �
Il�l 0l�..n�1/�l/

�
; Dc D B0
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If the matrices Ai 2 Rl�l , i D 1; : : : ; n, are fixed, then the controller state-space
realization is such that Ac and Cc are fixed and the matrices Bc and Dc are to be
determined through the controller synthesis procedure. �

In the following, based on the closed-loop system representation (8.4), the
design of PID controllers that stabilize the closed-loop system and that optimize
the resulting H1 or H2 closed-loop system performance is investigated.

8.1.2 Stabilization with PID Controllers

To study the stabilization problem using PID controllers, consider the closed-loop
system (8.4) with w.k/ D 0;8k 	 0. It follows that

x .k C 1/ D Aclx.k/ (8.5)

It is well known that the system (8.5) is exponentially stable if and only if there
exists a matrix P > 0 such that

AT
clPAcl � P < 0 (8.6)

Then, we have the following result.

Theorem 8.1 Consider the system (8.1) where Assumption 8.1 is satisfied. If there

exist a positive-definite matrix P 2 RN�N , matrices J D
	

J11 0.N�q/�3l
J21 J22



2

RN�N , J22 2 Rq�3l , 1 � q � 3l , L D �
L1 0N�3l

� 2 RN�N , L1 2 RN�.N�3l/ and
X 2 Rq�m such that

2

6
6
4

P � JT � TTJT

	
0.N�q/�n 0.N�q/�2l

XC2 0q�2l



C JT QA � TTLT

	
0n�.N�q/ .XC2/

T

02l�.N�q/ 02l�q



C QATTTJT � LT �P C LT QA C QATTTLT

3

7
7
5 < 0

(8.7)

and if there exists K such that

J22K D X (8.8)

then the system (8.5) is exponentially stable. �
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Proof Inequality (8.7) is equivalent to

2

6
6
4

P
	

0.N�q/�n 0.N�q/�2l
XC2 0q�2l




	
0n�.N�q/ .XC2/

T

02l�.N�q/ 02l�q



�P

3

7
7
5

C
	 �JT � TTJT JT QA � TTLT

QATTTJT � LT LT QA C QATTTLT



< 0

It follows that

2

66
4

P
	

0.N�q/�n 0.N�q/�2l
XC2 0q�2l




	
0n�.N�q/ .XC2/

T

02l�.N�q/ 02l�q



�P

3

77
5

C
	

JT
LT



��IN�N QA �C ��IN�N QA �T

	
JT
LT


T

< 0 (8.9)

Using the expression for X from (8.8), it follows that

	
0.N�q/�n 0.N�q/�2l

XC2 0q�2l



D
	

0.N�q/�n 0.N�q/�2l
J22KC2 0q�2l




D
	

J11 0.N�q/�3l
J21 J22


 	
0.N�3l/�n 0.N�3l/�2l

KC2 03l�2l




D J

2

4
0.N�3l/�n 0.N�3l/�2l	

Dc

Bc



C2 03l�2l

3

5

D J

2

4

	
0.n�l/�l

Il�l



DcC2 0n�2l

BcC2 02l�2l

3

5

D J
	

TbB2DcC2 0n�2l
BcC2 02l�2l




D J
	

Tb 0n�2l
02l�n I2l�2l


 	
B2DcC2 0n�2l

BcC2 02l�2l




D JT
	

B2DcC2 0n�2l
BcC2 02l�2l
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Therefore, we have that

	
0.N�q/�n 0.N�q/�2l

XC2 0q�2l



C JT QA D JTAcl. It can also be

shown that LTAcl D LT QA. Hence, (8.9) is rewritten as

	
P 0N�N

0N�N �P



C
	

JT
LT


 ��IN�N Acl

�C ��IN�N Acl

�T
	

JT
LT


T

< 0 (8.10)

Multiplying by

	
x.k C 1/

x.k/


T

and

	
x.k C 1/

x.k/



from the left- and right-hand sides

of (8.10), respectively, we have

xT.k C 1/Px.k C 1/� xT.k/Px.k/ < 0

which implies (8.6). Hence, the closed-loop system (8.5) is exponentially stable. �

Remark 8.3 Based on Assumption 8.1, we always have n 	 l , and therefore, N D
nC 2l 	 3l . For the special case of n D l , the matrices J and L in Theorem 8.1 are
simplified to J D J22 and L D 03l�3l . The same holds true for similar matrices in
the rest of the theorems presented in this section. �

Remark 8.4 All the matrices that appear in the LMI (8.7) are independent of the
controller gains. Once K is determined based on (8.8), the corresponding parameters
in the PID controller can be obtained directly from K. The above comments hold
true for the LMIs involved in all of the other theorems presented in this section. �

Remark 8.5 Once an admissible solution to (8.7) is found, then equality (8.8) is first
solved without requiring the matrix J22 to be nonsingular. If equality (8.8) does not
admit a solution, then the following approach can be used to deal with this situation.
Select J22 2 R3l�3l and solve (8.7) while taking into account an added constraint
of the form JT D TTJT. The resulting J22 is guaranteed to be nonsingular, and
the solution will be K D J�1

22 X. The proof of the invertibility of J22 follows from
P � JT � TTJT < 0 which is derived from the (1,1) block in the left-hand side
of (8.7). Since P > 0, then 0 < JT C TTJT D 2JT, which implies that 0 < JT
and therefore JT is invertible. Since T is nonsingular, then so is J. Due to the block
diagonal structure of J, it follows that the matrix J22 is invertible. The same idea
can be applied to similar situations arising from the rest of the theorems presented
in this section. �

In typical closed-loop systems involving PID controllers, satisfactory time
response of the closed-loop system is very important. However, the above proposed
design method provides little control over the closed-loop system pole location and
transient behavior. In the following, the PID controller design method is modified
so that the closed-loop system poles are forced into a suitable subregion of the unit
circle having desired properties. Let � be an eigenvalue of the system matrix Acl,
�r and �i, the real and imaginary parts of �, respectively. Consider a disk region
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symmetrical with respect to the real axis as =D W
n
.�r ; �i /j .�r C a/2 C �i

2 < b2
o
.

All eigenvalues of the system matrix Acl lie in the region =D if and only if there
exists a P > 0 such that (Masubuchi et al. 1998)

	
bP AT

clP C aP
PAcl C aP bP



> 0 (8.11)

Then we have the following result to add a pole-clustering constraint in the design
procedure.

Theorem 8.2 Consider the system (8.1) where Assumption 8.1 is satisfied. If there

exist a positive-definite matrix P 2 RN�N , a matrix J D
	

J11 0.N�3l/�3l
J21 J22



2 RN�N ,

where J22 2 R3l�3l , and X 2 R3l�m such that
2

66
4

bP
	

0n�.N�3l/ .XC2/
T

02l�.N�3l/ 02l�3l



C QATTTJT C aTTJT

	
0.N�3l/�n 0.N�3l/�2l

XC2 03l�2l



C JT QA C aJT b

�
JT C TTJT � P

�

3

77
5 > 0

(8.12)

and if J is nonsingular, then with

K D J�1
22 X (8.13)

the eigenvalues of the system matrix Acl lie in the region =D . �

Proof First, as in the proof of Theorem 8.1, using (8.13) and the fact that	
0.N�3l/�n 0.N�3l/�2l

XC2 03l�2l



C JT QA D JTAcl, (8.12) implies that

"
bP AT

clT
TJT C aTTJT

JTAcl C aJT b
�
JT C TTJT � P

�

#

> 0 (8.14)

Since P > 0, then we have .P � JT/P�1.P � JT/T 	 0, or equivalently
JTP�1TTJT 	 JT C TTJT � P. Therefore, (8.14) implies that

"
bP AT

clT
TJT C aTTJT

JTAcl C aJT bJTP�1TTJT

#

> 0 (8.15)

Multiplying (8.15) with diag
h
I;P.JT/�1

i
on the left side and diag

h
I;
�
TTJT

��1
P
i

on the right-hand side, we immediately have (8.11). �

In the following, the PID design problem with H1 and H2 performance
specifications in the closed-loop system is investigated, where the parameters in
the PID controller are tuned using H1 and H2 constraints.
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8.1.3 PID Controller Design with an H1 Performance
Constraint

This section presents the design of a PID controller that yields a closed-loop system
with a desired H1 performance level. Let Tew denote the closed-loop system
transfer function relating w to e in (8.4). Consider a real number � > 0, and assume
the initial condition in the system (8.4) is x.0/ D 0. If ke.k/k2 � �kw.k/k2, then
we say that the worst case attenuation of the exogenous signal w.k/ is given by �
and the H1 norm of the closed-loop system (8.4) satisfies

kTewk1 < � (8.16)

The following Lemma will be used to design a PID controller that yields a desired
closed-loop system with an H1 performance level � .

Lemma 8.1 (Cuzzola and Morari 2002) Consider the closed-loop system (8.4) with
zero initial condition x.0/ D 0. If there exists a matrix P > 0 such that

xT.k C 1/Px.k C 1/� xT.k/Px.k/ < �2wT.k/w.k/ � eT.k/e.k/ (8.17)

then the H1 norm of the closed-loop system (8.4) satisfies (8.16). �

Based on the above result, the following LMI conditions can be used to design
the multivariable PID controller.

Theorem 8.3 Consider the system (8.1) where Assumption 8.1 is satisfied. If there

exist a positive-definite matrix P 2 RN�N , F D
	

F11 0.N�q/�3l
F21 F22



2 RN�N , F22 2

R
q�3l , 1 � q � 3l , G1 D �

G11 0
� 2 RN�N , G11 2 R

N�.N�3l/, G2 D �
G21 0

� 2
Rh�N , G21 2 Rh�.N�3l/, G3 D �

G31 0
� 2 Rr�N , G31 2 Rr�.N�3l/, H1 2 RN�r ,

H2 2 R
N�r , H3 2 R

h�r , H4 2 R
r�r , and Y 2 R

q�m such that

2

66
4

P � FT � TTFT 
NT
1 C QATTTFT � G1T C CT

clH
T
1 �P C G1T QA C QATTTGT

1 C H2Ccl C CT
clH

T
2

NT
2 C QBTTTFT � G2T C DT

clH
T
1 G2T QA C H3Ccl C QBTTTGT

1 C DT
clH

T
2

�G3T � HT
1 G3T QA C H4Ccl � HT

2

 
 

��2I C G2T QB C H3Dcl C QBTTTGT
2 C DT

clH
T
3 

G3T QB C H4Dcl � HT
3 I � H4 � HT

4

3

7
7
5 < 0

(8.18)
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where N1 D
	

0.N�q/�n 0.N�q/�2l
YC2 0q�2l



and N2 D

	
0.N�q/�h
YD21



, and if there exists K

such that

F22K D Y (8.19)

then the H1 norm of the closed-loop system (8.4) satisfies (8.16). �

Proof First, by simple calculation, (8.18) is equivalent to

2

66
6
6
6
6
6
66
6
6
4

P

"
0.N�q/�n 0.N�q/�2l

YC2 0q�2l

# "
0.N�q/�h

YD21

#

0N�r

"
0.N�q/�n 0.N�q/�2l

YC2 0q�2l

#T

�P 0N�h 0N�r

"
0.N�q/�h

YD21

#T

0h�N ��2Ih�h 0h�r

0r�N 0r�N 0r�h Ir�r

3

77
7
7
7
7
7
77
7
7
5

C

2

6
6
6
4

FT H1

G1T H2

G2T H3

G3T H4

3

7
7
7
5

"
�IN�N

QA QB 0N�r

0r�N Ccl Dcl �Ir�r

#

C
"

�IN�N
QA QB 0N�r

0r�N Ccl Dcl �Ir�r

#T

2

6
6
6
4

FT H1

G1T H2

G2T H3

G3T H4

3

7
7
7
5

T

< 0;

(8.20)

As in the proof of Theorem 8.1 and using F22K D Y from (8.19), we

have

	
0.N�q/�n 0.N�q/�2l
YC2 0q�2l



D FT

	
B2DcC2 0n�2l
BcC2 02l�2l



and

	
0.N�q/�h
YD21



D

FT
	

B2DcD21

BcD21



. We also have that

	
0.N�q/�n 0.N�q/�2l
YC2 0q�2l



C FT QA D FTAcl,

	
0.N�q/�h
YD21



C FT QB D FTBcl, GiT QA D GiTAcl, and GiT QB D GiTBcl,

i D 1; : : : ; 3. It follows from (8.20) that

2

6
6
4

P 0N�N 0N�h 0N�r

0N�N �P 0N�h 0N�r

0h�N 0h�N ��2Ih�h 0h�r

0r�N 0r�N 0r�h Ir�r

3

7
7
5

C

2

6
6
4

FT H1

G1T H2

G2T H3

G3T H4

3

7
7
5

	�IN�N Acl Bcl 0N�r

0r�N Ccl Dcl �Ir�r



C
	�IN�N Acl Bcl 0N�r

0r�N Ccl Dcl �Ir�r


T

2

6
6
4

FT H1

G1T H2

G2T H3

G3T H4

3

7
7
5

T

<0

(8.21)
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Multiplying (8.21) from the left- and right-hand sides by

2

6
6
4

x.k C 1/

x.k/
w.k/
e.k/

3

7
7
5

T

and

2

6
6
4

x.k C 1/

x.k/
w.k/
e.k/

3

7
7
5, respectively, we obtain (8.17). Hence, (8.16) is satisfied. �

Remark 8.6 A multi-objective controller design problem involving both the H1 and
the pole-clustering constraints can be solved using (8.12) and (8.18) simultaneously
by setting J22 D F22 and X D Y. The same idea can be applied to the case where the
H2 or generalized H2 controller design constraints to be presented in the following
sections are considered with the pole-clustering constraint. �

8.1.4 PID Controller Design with an H2 Performance
Constraint

Consider the closed-loop system (8.4). The H2 norm of Tew is given by kTewk22 D
1
2�

R 2�
0

Tr
�
Tew.ej!/

�Tew.ej!/
�
d!. Then we have kTewk2 < � for � > 0 if and

only if Tr
�
DclDT

cl C CclZCT
cl

�
< �2, where Z > 0 satisfies AclZAT

cl � Z C BclBT
cl <

0 (Zhou et al. 1995). The following result, obtained using the Schur complement
formula, can then be used to calculate the H2 norm.

Lemma 8.2 Consider the system (8.4). Then kTewk2 < � if and only if there exist
positive definite matrices Z 2 RN�N and S 2 Rr�r such that

2

4
�Z ZAT

cl 0N�h
AclZ �Z Bcl
0h�N BT

cl �Ih�h

3

5 < 0 (8.22)

2

4
Z 0N�h ZCT

cl

0h�N Ih�h DT
cl

CclZ Dcl S

3

5 > 0 (8.23)

T r .S/ < �2 (8.24)

�

The design of a PID controller that satisfies a closed-loop H2 norm constraint can
be performed using the following result.
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Theorem 8.4 Consider the system (8.1) where Assumption 8.1 is satisfied. If there

exist a positive-definite matrix P 2 RN�N , F D
	

F11 0.N�q/�3l
F21 F22



2 RN�N , F22 2

Rq�3l , 1 � q � 3l , G1 D �
G11 0

� 2 RN�N , G11 2 RN�.N�3l/, G2 D �
G21 0

� 2
Rh�N , G21 2 Rh�.N�3l/, � > 0, and Y 2 Rq�m such that

2

4
P � FT � TTFT  

NT
1 � G1T C QATTTFT �P C G1T QA C QATTTGT

1 
NT
2 � G2T C QBTTTFT G2T QA C QBTTTGT

1 �I C G2T QB C QBTTTGT
2

3

5 < 0

(8.25)
2

4
P 0N�h CT

cl

0h�N Ih�h DT
cl

Ccl Dcl S

3

5 > 0 (8.26)

T r .S/ < �2 (8.27)

where N1 D
	

0.N�q/�n 0.N�q/�2l
YC2 0q�2l



and N2 D

	
0.N�q/�h
YD21



, and if there exists K

such that

F22K D Y (8.28)

then the H2 norm of the closed-loop system (8.4) satisfies kTewk2 < � . �

Proof Inequality (8.25) is equivalent to

2

6
6
6
6
6
66
4

P
	

0.N�q/�n 0.N�q/�2l
YC2 0q�2l


 	
0.N�q/�h

YD21




	
0.N�q/�n 0.N�q/�2l

YC2 0q�2l


T

�P 0N�h
	

0.N�q/�h
YD21


T

0h�N �Ih�h

3

7
7
7
7
7
77
5

C
2

4
F

G1

G2

3

5T
��IN�N QA QB �C ��IN�N QA QB �T

TT

2

4
F

G1

G2

3

5

T

< 0

(8.29)

Using F22K D Y from (8.28), we have

	
0.N�q/�n 0.N�q/�2l
YC2 0q�2l



D

FT
	

B2DcC2 0n�2l
BcC2 02l�2l



and

	
0.N�q/�h

YD21



D FT

	
B2DcD21

BcD21



. We also have that
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0.N�q/�n 0.N�q/�2l
YC2 0q�2l



C FT QA D FTAcl,

	
0.N�q/�h

YD21



C FT QB D FTBcl,

GiT QA D GiTAcl, and GiT QB D GiTBcl, i D 1; 2. It follows from (8.29) that

2

4
P 0N�N 0N�h
0N�N �P 0N�h
0h�N 0h�N �Ih�h

3

5

C
2

4
F

G1

G2

3

5T
��IN�N Acl Bcl

�C ��IN�N Acl Bcl

�T
TT

2

4
F

G1

G2

3

5

T

< 0

(8.30)

Multiplying (8.30) from the left- and right-hand sides by

2

4
x.k C 1/

x.k/
w.k/

3

5

T

and

2

4
x.k C 1/

x.k/
w.k/

3

5, respectively, we have

x.k C 1/TPx.k C 1/ < x.k/TPx.k/C w.k/Tw.k/ (8.31)

which is equivalent to

	
x.k/
w.k/


T
"

AT
clPAcl � P AT

clPBcl

BT
clPAcl BT

clPBcl � I

#	
x.k/
w.k/



< 0

Then we have

"
AT

clPAcl � P AT
clPBcl

BT
clPAcl BT

clPBcl � I

#

< 0, which is equivalent to

2

4
�P 0N�h AT

clP
0h�N �Ih�h BT

clP
PAcl PBcl �P

3

5 < 0 (8.32)

Consider a congruence transformation on (8.32) by multiplying by

2

4
Z 0 0
0 0 I
0 Z 0

3

5

on the right-hand side and

2

4
Z 0 0
0 0 Z
0 I 0

3

5 on left-hand side, where Z D P�1, then

we immediately have (8.22). Similarly, performing a congruence transformation on
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(8.26) using

2

4
Z 0 0
0 I 0
0 0 I

3

5, we get (8.23). Therefore, based on Lemma 8.2, we obtain

kTewk2 < � . �

8.1.5 Extension to Generalized H2 Control

The objective of this section is to design a PID controller for the system (8.1)
such that a generalized H2 performance level is achieved. Consider the closed-loop
system (8.4) with zero initial condition x.0/ D 0, and assume D11 D 0r�h. Given a
� > 0, the generalized H2 performance of the closed-loop system (8.4) is defined as
the l2 to l1 induced norm of the closed-loop system and is given by Rotea (1993):

kTewk2;1 WD sup
0<kwk2<1

kek1
kwk2

< � (8.33)

Then we have the following result to design PID controllers that yield closed-
loop systems satisfying a generalized H2 performance constraint.

Theorem 8.5 Consider the system (8.1) where Assumption 8.1 is satisfied. If there

exist a positive-definite matrix P 2 RN�N , F D
	

F11 0.N�q/�3l
F21 F22



2 RN�N , F22 2

Rq�3l , 1 � q � 3l , G1 D �
G11 0

� 2 RN�N , G11 2 RN�.N�3l/, G2 D �
G21 0

� 2
R
h�N , G21 2 R

h�.N�3l/, � > 0, and Y 2 R
q�m such that

2

4
P � FT � TTFT  

NT
1 � G1T C QATTTFT �P C G1T QA C QATTTGT

1 
NT
2 � G2T C QBTTTFT G2T QA C QBTTTGT

1 �I C G2T QB C QBTTTGT
2

3

5<0

(8.34)
	 �P CT

cl

Ccl ��2I


< 0 (8.35)

where N1 D
	

0.N�q/�n 0.N�q/�2l
YC2 0q�2l



and N2 D

	
0.N�q/�h
YD21



, and if there exists K

such that

F22K D Y (8.36)

then the generalized H2 norm of the closed-loop system (8.4) satisfies (8.33). �
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Proof Using the same procedure as that presented in the proof of Theorem 8.4,
(8.34) implies that

x.k C 1/TPx.k C 1/ < x.k/TPx.k/C w.k/Tw.k/ (8.37)

Sum up (8.37) from k D 0 to k D T � 1> 0, and with the initial condition
x(0) D 0, we have

x.T /TPx.T / <
T�1X

kD0
w.k/Tw.k/ (8.38)

If (8.35) is satisfied, then we have

��2P C CT
clCcl < 0

which implies

eT.k/e.k/ < �2xT.k/Px.k/ (8.39)

Then based on (8.38), taking the supremum in (8.39) over k > 0, we have

kek21 < �2 kwk22
Hence, (8.33) is satisfied. �

8.1.6 The MFDM Surface Shape Control
with the Multivariable PID Controller

The control algorithms presented above are used in this section in a practical appli-
cation aimed at controlling the surface shape of a magnetic fluid deformable mirror
(MFDM) in an adaptive optics (AO) system. Experimental results showing the
performance of the resulting closed-loop system with the designed PID controllers
are presented.

The control system design is based on an analytical model of the MFDM already
presented in Chap. 4. The model represents the MFDM as an MIMO system with the
currents applied to the electromagnetic coils as the system inputs and the sampled
mirror surface deflections as the system outputs. To test the performance of the
proposed control algorithms, a modified closed-loop system as shown in Fig. 8.1, is
considered. In this system, a laser beam with a planar wavefront is directed toward
the deformable mirror with surface shape  which causes the wavefront shape in
the reflected beam to be 2. A hypothetical aberrated wavefront shape r is stored
inside the control computer and is sampled at the same locations at which the

http://dx.doi.org/10.1007/978-3-642-32229-7_4
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Fig. 8.1 Block diagram of the closed-loop AO system

measured wavefront shape vector ys is sampled. The signal r serves as a reference
wavefront shape in the closed-loop operation of the system. It should be noted that
the MFDM surface is required to track half the aberrated wavefront shape signals r.
The wavefront shape error e fed to the controller C can be written as

e D r � ys (8.40)

With respect to the feedback system shown in Fig. 8.1, it is desired to design a
PID controller C to provide input currents u such that the wavefront shape signals
ys track the reference wavefront shape signals r which represent the aberrated
wavefront shape. The operation of the system shown in Fig. 8.1 is along the same
lines as that of a typical adaptive optics system. The system allows for the generation
of the aberrated wavefront shapes analytically inside the control computer, hence
simplifying the testing of the control algorithms.

The development of the control algorithms is based on an analytical model of the
augmented system G, as shown in Fig. 8.1. The analytical model is developed by
considering a transfer function P.z/ of the MFDM, representing the sensor dynamics
as a unit time step delay 1 =z and incorporating a low-pass filter dynamics F.z/
to filter out high-frequency measurement noise in the signal ys . The augmented
plant G, as shown in Fig. 8.1, can then be represented using the transfer function
G.z/ D 21z P.z/F.z/ and is given in state-space form as:

G W
(

x.k C 1/ D Agx.k/C Bgu.k/

ys.k/ D Cgx.k/
(8.41)

where Ag, Bg, and Cg are system matrices with appropriate dimensions. In this
experimental evaluation, the system model has 19 inputs and 19 outputs, and the
dimension of the state vector is truncated as 19.

The control objective is for the signal ys to track a reference signal r. It follows
that the model (8.1) to be used in the controller design can be obtained by setting
A D Ag, B2 D Bg , C1 D C2 D �Cg , and D11 D D21 D I. In the following,
the proposed multivariable PID controller design methods that yield closed-loop
systems with H1 and H2 performance are both evaluated. Consider a D 0 and
b D 0.91 first; the controller parameters of the H1 PID controller are determined
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using (8.18) by minimizing the H1 performance variable � . The singular values of
the resulting closed-loop system with the designed H1 PID controller are shown in
Fig. 8.2. In retinal imaging applications, the reference signal r usually has a low-
frequency content typically ranging from 0 to 3 Hz (Hofer et al. 2001). As seen in
Fig. 8.2, the closed-loop system with the designed H1 PID controller has a good
performance in the specified low-frequency range. Similarly, the parameters of the
H2 PID controller are determined using (8.25), (8.26), and (8.27) by minimizing the
H2 performance variable � . In the following, both PID controllers are evaluated in
the experimental setup.

The experimental setup consists mainly of an MFDM wavefront corrector, a
Shack–Hartmann-type wavefront sensor used to measure the shape of the wave-
front reflected off the MFDM, a control computer running the proposed control
algorithms, and a laser diode with 661 nm wavelength used as the reference light.
The wavefront corrector is the prototype MFDM consisting of a 60-mm-diameter,
1-mm-thick layer of EFH1 magnetic fluid, and an array of 19 electromagnetic coils
used to control the shape of the fluid surface. In the experimental evaluation, the
reference signal r(k) is given by

r.k/ D r0 C r1.k/ (8.42)
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Where r0 is a static signal chosen to represent a typical static reference wavefront
shape signal and is given as

r0 D Œ2:0; 4:0; 5:0; 1:0; 5:5; 0:5; 3:5; 8:5; 6:0; 3:0; 2:5; 2:0; 3:0; 4:0;�2:0;
� 4:0;�5:0; 1:0; 6:0�T.�m/ (8.43)

The signal r1.k/ represents the time-varying component of the wavefront
aberrations and can be represented as a low-frequency sinusoidal signal or a low-
pass filtered random signal to be consistent with the low-frequency content of the
aberrations in the eye (Hofer et al. 2001). The performance of the designed H1 PID
controller in tracking static reference signals is shown in Fig. 8.3. Figure 8.3a shows
the time history of the wavefront shape signals ys plotted alongside the reference
signals given as dotted lines. The root mean square (RMS) of the error computed
over the 19 control points is plotted in Fig. 8.3b. Figure 8.4 shows the results for
the case where the H1 PID controller is used to track a dynamic reference signal
comprising the static offset given in (8.43) plus sinusoidal signals with an amplitude
of 1 �m and a frequency of 2 Hz. For clarity only selected channels (#2, 3, 15
and 16) are shown. As can be seen in Fig. 8.3a, the closed-loop system outputs
(i.e., wavefront shape signals ys) track the static reference signals fairly well and
are rapidly driven to their steady states. The RMS of the wavefront shape error
for the static reference signal, as shown in Fig. 8.3b, has a steady-state value of
0:09˙0:05 �m. The RMS of the wavefront shape error for the sinusoidal reference
signal is shown in Fig. 8.4b. Although there is a significant ripple in the steady-
state RMS error, the average values remain around 0.15 �m. Figure 8.5 shows the
results for the case of tracking randomly varying reference signals superimposed on
the static offset signals given in (8.43). Although the controller does provide for the
successful tracking of the reference signals by the MFDM surface, the average RMS
error for this case is 0.22 �m. The controller performance with the designed H2 PID
controller is shown in Figs. 8.6 and 8.7. As can be seen in Fig. 8.7b, the RMS error
in tracking the randomly varying reference signals decreases to 0.16 �m, showing
an improvement over the H1 PID controller. The experimental results given above
show that the designed controller can effectively compensate for typical high-order
wavefront aberrations in the human eye.

8.2 Mixed-Sensitivity H1 Controller

This section presents an optimal H1 controller designed to cancel dynamic
wavefront aberrations in an MFDM-based adaptive optics system. The control
algorithm is developed using the mixed-sensitivity H1 design approach that enables
the tracking of the desired MFDM surface shape and also limits the magnitude of
the control currents applied to the MFDM actuators. Experimental results show the
performance of the closed-loop system comprising the developed controller and the
19-channel prototype MFDM.
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Fig. 8.3 Experimental tracking of the static wavefront shape with the H
1

PID controller: (a)
wavefront shape, (b) RMS error

The mixed-sensitivity H1 controller provides the desired performance in track-
ing the reference wavefront surface shapes using an MFDM and limits the current
inputs to the MFDM. The choice of the H1 controller design methodology is
motivated by the following two main considerations related to the possible use
of this controller in ophthalmic MFDM-based AO imaging systems. First, the
temporal frequency content of the aberrations in the human eye is typically limited
to within the range of 0–3 Hz. Moreover, the eye’s aberrations can be modeled as
a combination of static aberration signals, harmonic aberration signals associated
with physiological processes such the heartbeat and respiration and that can be
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Fig. 8.4 Experimental tracking of the sinusoidal dynamic wavefront shape with the H
1

PID
controller: (a) wavefront shape, (b) RMS error

represented using sinusoids, and random components. These signals can best be
dealt with using an H1 type controller to account for the mixed nature of the
aberrations (harmonic and random components) as well as for the limited frequency
content of the aberrations. The second motivation for considering an H1 type
controller is that, besides the conventional performance criterion of minimizing
the residual wavefront error, the mixed-sensitivity H1 controller design is used
to minimize the magnitude of the high-frequency components in the controller
output, that is, in the current input to the MFDM. Since the electromagnetic coils
in the MFDMs can sustain only a limited amount of current, this feature helps
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Fig. 8.5 Experimental tracking of the random dynamic wavefront shape with the H
1

PID
controller: (a) wavefront shape, (b) RMS error

with alleviating the practical problem of actuator saturation. It also contributes
toward the robustness of the closed-loop system by minimizing the controller
output in the frequency range beyond the desired closed-loop system bandwidth and
therefore helps avoid exciting unmodeled high-frequency dynamics in the wavefront
corrector. In fact, an analytical model of the MFDM presented in Chap. 4 shows
that the system model is infinite dimensional. For practical reasons, the controller
is usually designed based on a truncated model where high-frequency dynamics
are ignored. Consequently, the mixed-sensitivity H1 design method provides the

http://dx.doi.org/10.1007/978-3-642-32229-7_4
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Fig. 8.6 Experimental tracking of the static wavefront shape with the H2 PID controller: (a)
wavefront shape, (b) RMS error

means to deal with this model uncertainty in the high-frequency range. It is also
worth noting that this method can be extended to multi-objective H1 control, as
shown in this section.

8.2.1 Mixed-Sensitivity H1 Control Problem

A control system should remain stable and meet certain performance objectives
in the presence of possible uncertainties. The H1 optimization approach has been
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Fig. 8.7 Experimental tracking of the random dynamic wavefront shape with the H2 PID
controller: (a) wavefront shape, (b) RMS error

shown to be an effective and efficient robust design method for linear, time-invariant
control systems. Consider the typical closed-loop system configuration shown in
Fig. 8.8, where G is the plant, K the controller to be designed, r the reference
input, y the system output, u the control signal, e the performance error signal, d
the disturbance signal, and n the measurement noise, respectively. The input–output
relationships are then given by
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K G
r + 

-

+ + 

+ + 

e u

d

y

n

Fig. 8.8 A closed-loop feedback configuration involving the plant G and controller K

y D .I C GK/�1GKr C .I C GK/�1d � .I C GK/�1GKn

u D K.I C GK/�1r � K.I C GK/�1d � K.I C GK/�1n

e D .I C GK/�1r � .I C GK/�1d � .I C GK/�1n

The usual performance specifications, such as tracking, disturbance attenuation
and noise rejection, can be optimized by minimizing the H1 norm of corresponding

transfer function matrices. For example, minimizing
�
�
�.I C GK/�1

�
�
�1 can achieve

good tracking and good disturbance attenuation; minimizing
�
��K.I C GK/�1

�
��1

can achieve less control energy; minimizing
�
�
�.I C GK/�1GK

�
�
�1 can achieve

good noise rejection. Let S WD .I C GK/�1 denote the sensitivity function and
T WD .I C GK/�1GK the complementary sensitivity function. It is easy to obtain a
relationship T D I � S. In general, weighting functions would be used in the above
minimization to meet the design specifications. For instance, instead of minimizing
the sensitivity function S, the following optimization problem will be formulated:

min
K

kWeSWdk1

where We is chosen to tailor the tracking requirement and is usually a high-gain
low-pass filter type and Wd can be regarded as a generator that characterizes all
relevant disturbances in the case considered. The weighting functions are usually
stable and of minimum phase.

Mixed-sensitivity H1 control problem is solved by shaping the corresponding
transfer functions S, KS, and T together, where usually the sensitivity function S
is shaped along with KS or the complementary sensitivity function T. Consider the
regulation problem where it is desired to reject a disturbance d entering at the plant
output or track a reference r and assume that the measurement noise is relatively
insignificant. For this problem, it makes sense to shape the closed-loop transfer
functions S along with KS (see Fig. 8.9). Recall that S is the transfer function
between d and the output and KS the transfer function between d and the control
signals; therefore, in order to achieve good disturbance rejection, it is important to
include KS as a mechanism for limiting the size and bandwidth of the controller
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Fig. 8.9 S/KS mixed sensitivity optimization configuration

K

Σ

w z

u y

Fig. 8.10 The standard H
1

configuration

and the control energy used. The size of KS is also important for robust stability
with respect to plant model uncertainties modeled as additive plant perturbations.
Therefore, it is useful in practice to minimize

min
K

�
��
�

WeSWd

WuKSWd

�
��
�

1
(8.44)

where Wu is a high-pass filter with a crossover frequency approximately equal
to that of the desired closed-loop system bandwidth. This cost function can also
be interpreted as the design objectives of nominal performances including good
tracking and disturbance attenuation, and robust stabilization with regard to additive
perturbations.

In order to adopt a unified solution procedure, the above cost function (8.44)
can be formulated in the standard H1 configuration as in Fig. 8.10, where all the
external inputs are denoted by w, z denotes the output signals to be minimized that
include both performance and robustness, y is the vector of measurements available
to the controller K, and u is the vector of control signals.† is called the generalized
plant or interconnected system. The objective is to find a stabilizing controller K
to minimize the H1 norm of the transfer function from w to z. Partitioning the
interconnected system † as

† D
	

P11 P12
P21 P22




it follows then that

z D
h
P11 C P12K.I � P22K/

�1P21
i

w

DW Fl .†;K/w
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where Fl .†;K/ is defined as the lower linear fractional transformation of† and K.
The H1 optimization problem (8.44) now is equivalent to

min
K

kFl .†;K/k1 (8.45)

We can consider the disturbance d as a single exogenous input w and define an

error signal z D
	

z1
z2



D
	

Wuu
Wee



, e D d � ys, y D e, and u D u. Then the

interconnected system † can be presented as

† D
2

4
0 Wu

WeWd �WeG
WeWd �WeG

3

5

The system of Fig. 8.10 can be described by

	
z
y



D
X	

w
u




D
	

P11 P12
P21 P22


 	
w
u




D
2

4
0 Wu

WeWd �WeG
WeWd �WeG

3

5
	

w
u




and

u D Ky

Let the state space description of the generalized system † in Fig. 8.10 be
given by

† W
8
<

:

x.k C 1/ D Ax.k/C B1w.k/C B2u.k/
z.k/ D C1x.k/C D11w.k/C D12u.k/
y.k/ D C2x.k/C D21w.k/

(8.46)

which is simply presented as

† W D
2

4
A B1 B2
C1 D11 D12

C2 D21 0

3

5

WD
"

A B
C D

#
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where x 2 Rn is the state vector, w 2 Rm1 the exogenous input vector, u 2 Rm2

the control input vector, z D
	

z1
z2



2 R

p1 the error vector, and y 2 R
p2 the

measurement vector, with p1 	 m2, and p2 � m1. According to performance

variable z1 and z2, C1, D11 and D12 can be further divided as C1 D
	

C11

C12



,

D11 D
	

D111

D112



, and D12 D

	
D121

D122



.

8.2.2 Controller Design Based on Algebraic Riccati Equations

The most general and widely used algorithms for H1 controller design in a state-
space setting have been developed by Glover and Doyle (Zhou et al. 1995) and have
been derived based on two algebraic Riccati equations (ARE). In the following, the
algorithm for H1 controller design for discrete-time systems is presented (Gu et
al. 2005; Zhou et al. 1995). The control problem is to find an internally stabilizing
controller K such that for a prespecified positive value � (representing a bound
on the performance level of the closed-loop system), the following performance is
satisfied:

kFl .†;K/k1 < � (8.47)

Consider the following discrete-time Riccati equation

X D
	

C1

0


T 	
Ip1 0
0 ��2Im1


 	
C1

0



C ATXA � LTR�1L (8.48)

where

R D
	

D11 D12

Im1 0


T 	
Ip1 0
0 ��2Im1


 	
D11 D12

Im1 0



C BTXB DW

	
R1 RT

2

R2 R3




L D
	

D11 D12

Im1 0


T 	
Ip1 0
0 ��2Im1


 	
C1

0



C BTXA DW

	
L1
L2




Assume that there exist a matrix V12 2 Rm2�m2 such that

VT
12V12 D R3

and a matrix V21 2 R
m1�m1 such that

N D R1 � RT
2R�1

3 R2 < 0

VT
21V21 D ��2N
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Define the matrices

where

F D L1 � RT
2R�1

3 L2

Let Y be the solution to the following discrete-time Riccati equation:

Y D BY JBT
Y C AY YAT

Y � MSMT (8.49)

where

J D
	

Im1 0
0 ��2Im2




S D DY JDT
Y C CY YCT

Y DW
	

S1 S2
ST
2 S3




M D BY JDT
Y C AY YCT

Y DW � M1 M2

�

Consider the following assumptions for the generalized system (8.46).

A1: .A;B2/ is stabilizable and .C2;A/ is detectable:

A2:

	
A � ej!I B2

C1 D12



has full column rank for all ! 2 Œ0; 2�/.

A3:

	
A � ej!I B1

C2 D21



has full row rank for all ! 2 Œ0; 2�/.

Based on the above assumptions, the algorithm for the design of an H1
controller is summarized as follows:

General H1 algorithm: For the general control configuration of Fig. 8.10 des-
cribed by equation (8.46), with Assumptions A1 to A3, there exists a stabilizing
controller K such that kFl .†;K/k1 < � if and only if

(i) There exists a solution to the Riccati equation (8.48) satisfying

X 	 0 and N < 0

such that A � BR�1L is asymptotically stable.
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(ii) There exists a solution to the Riccati equation (8.49) satisfying

Y 	 0 and S1 � S2S�1
3 ST

2 < 0

such that AY � MS�1CY is asymptotically stable.

The optimal controller is then given by

Kc WD
"

Ac Bc
Cc Dc

#

; (8.50)

where

Ac D AY � B2V�1
12

�
CY1 � S2S�1

3 CY 2

� � M2S�1
3 CY 2

Bc D �B2V�1
12 S2S�1

3 C M2S�1
3

Cc D �V�1
12

�
CY1 � S2S�1

3 CY 2

�

Dc D �V�1
12 S2S�1

3

Kc is the so-called central H1 controller that is widely used in practice and has
the same state-space dimension of the plant †.

The above algorithm can be used only when the bound � on the closed-loop
system performance is known. Therefore, an optimal value of � cannot be obtained
directly. One way to achieve the minimum value of � to within a specified tolerance
is by performing bisection search on � until its value is sufficiently accurate.
However, when � is approaching its minimum value, the problem would become
more and more ill conditioned numerically. Hence, the solution thus obtained might
be very unreliable. Furthermore, singular H1 problems (those violating (A1)–(A3))
require regularization by small perturbation which makes the algorithm even more
complicated. In recent years, linear matrix inequalities (LMIs) have emerged as
powerful tool to approach control problems that appear hard if impossible to solve
in an analytic fashion. Currently, several commercial and noncommercial software
packages are available, which allow a simple coding of general LMI problems to
solve typical control problems in a numerically efficient manner. In comparison
with the Riccati method for H1 problems, the LMI approach is applicable to any
plant and does not involve � -iterations to find the optimal solution. Rather, the H1
performance is directly optimized by solving properly formulated LMIs. The LMI-
based approach usually involves more unknown variables to be determined and
consequently results in a heavier computational burden, especially for systems with
large state-space dimension. In the following, the controller design method based
on the LMI approach is briefly presented.
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8.2.3 Controller Design Based on the LMI Approach

Consider a dynamical output feedback controller K as

†K W
�

&.k C 1/ D Ac&.k/C Bcy.k/
u.k/ D Cc& C Dcy.k/

(8.51)

With the plant † and controller K defined as above, the closed-loop system is
given by the state-space equation

†cl W
�

xcl.k C 1/ D Aclxcl.k/C Bclw.k/
z.k/ D Cclxcl.k/C Dclw.k/

(8.52)

where

"
Acl Bcl

Ccl Dcl

#

D
2

4
A C B2DcC2 B2Cc B1 C B2DcD21

BcC2 Ac BcD21

C1 C D12DcC2 D12Cc D11 C D12DcD21

3

5 :

Based on the bounded real lemma, it is well known that Acl is stable and the H1
norm of †cl is smaller than � if and only if there exists a symmetric P such that

2

6
6
4

�P PAcl PBcl 0
AT

clP �P 0 CT
cl

BT
clP 0 ��I DT

cl

0 Ccl Dcl ��I

3

7
7
5 < 0 (8.53)

P > 0 (8.54)

However, matrix inequality (8.53) is nonlinear in the unknown variables Ac,
Bc, Cc, and P and cannot be solved directly using the available LMI tools. In
the following, with the proper change of variables and congruence transformation,
(8.53) can be transformed into an LMI optimization problem (Scherer et al. 1997).
Let n be the number of states of A and m be the number of states of Ac. Partition P
and P�1 as

P D
	

Y N
NT •



; P�1 D

	
X M

MT •



;

where X and Y are n � n symmetric matrices. Define …1 WD
	

X I
MT 0



, …2 WD

	
I Y
0 NT



, and
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8
ˆ̂<

ˆ̂
:

OA WD NAcMT C NBcC2X C YB2CcMT C Y .A C B2DcC2/X
OB WD NBc C YB2Dc

OC WD CcMT C DcC2X
OD WD Dc

(8.55)

Then the following identities can be obtained:

…T
1PAcl…1 D …T

2Acl…1 D
"

AX C B2 OC A C B2 ODC2

OA YA C OBC2

#

…T
1PBcl D …T

2Bcl D
	

B1 C B2 ODD21

YB1 C OBD21




Ccl…1 D
h

C1X C D12
OC C1 C D12

ODC2

i

…T
1P…1 D …T

1…2 D
	

X I
I Y




Perform congruence transformation on (8.53) and (8.54) with diag .…1;…1; I; I/
and…1, respectively; (8.53) and (8.54) are then transformed to

2

6
66
6
6
6
66
6
4

�X I AX C B2C A C B2 ODC2 B1 C B2 ODD21 0
 �Y OA YA C OBC2 YB1 C OBD21 0

  �X I 0
�

C1X C D12
OC
T

   �Y 0
�

C1 C D12
ODC2

T

    ��I DT
cl

     ��I

3

7
77
7
7
7
77
7
5

< 0

(8.56)
	

X I
I Y



> 0 (8.57)

(8.56) and (8.57) are linear in the unknown variables X, Y, OA, OB, OC, OD, and � ,
which can be solved efficiently using the available LMI tools. After solving LMIs
of (8.56) and (8.57), nonsingular matrices M and N to satisfying MNT D I � XY
can be found first; then the controller K is constructed as follows:

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

Dc WD OD
Cc WD

� OC � DcC2X


M�T

Bc WD N�1
� OB � YB2Dc



Ac WD N�1
� OA � NBcC2X � YB2CcMT � Y .A C B2DcC2/X


M�T

(8.58)
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Then based on (8.56), (8.57), and (8.58), we can obtain the controller K such that
(8.45) is solved.

8.2.4 Some Modifications to the Controller Synthesis

8.2.4.1 Regional Pole Constraint

By properly selecting the weight functions for the mixed-sensitivity H1 control,
we can obtain the desired H1 performance. However, the closed-loop system
may possess an unacceptable dynamic response. It is well known that pure H1
synthesis can enforce closed-loop stability; however, it does not allow for direct
placement of the closed-loop poles in more specific regions, in which the pole
location is usually related to the time response and transient behavior of the feedback
system. Therefore, it is often desirable to impose additional damping and clustering
constraints on the closed-loop dynamics. In this case, a regional pole constraint can
be imposed on the closed-loop system, and pole assignment can also be expressed
as LMI constraints on the Lyapunov matrix P. LMI constraints can be used for any
region < of the complex plane that can be defined as

< D ˚
z 2 C W L C zM C NzMT < 0

�
(8.59)

Where L D LT and M are fixed real matrices. < is a convex region in the complex
plane and can be easily formulated for special cases including vertical strips, disks,
horizontal strips, conic sectors, ellipsoids, and arbitrary intersections thereof (more
details can be found in Chilali and Gahinet (1996)). Then the matrix Acl in (8.52)
has all its eigenvalues in the LMI region < if and only if some LMIs involving Acl

are solvable, as presented in the following theorem:

Theorem 8.6 (Chilali and Gahinet 1996) The matrix Acl has all its eigenvalues

in the LMI region
n
z 2 C W �lij Cmij z Cmji Nz

�
ij
< 0

o
if and only if there exists a

matrix P > 0 such that

�
lijP CmijAT

clP CmjiPAcl
�
ij
< 0 (8.60)

�

Using the congruence transformation with …1, (8.60) can be transformed to the
LMI constraint
2

4lij

	
X I
I Y



Cmij

"
AXCB2 OC ACB2 ODC2

OA YAC OBC2

#T

Cmji

"
AXCB2 OC ACB2 ODC2

OA YAC OBC2

#3

5

ij

< 0
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This inequality then can be included with (8.56) and (8.57) to enforce the
eigenvalues of Acl be contained in the desired LMI region (8.59).

8.2.4.2 Synthesis with Integral Control

It should be noted that the H1 design frameworks do not in general produce integral
control. However, for adaptive optics system, it is useful to include the integral
function in the controller in order to track a constant reference (or to cancel a static
aberration). There are several ways to achieve the integral design. One approach is
to introduce an integral in the performance weight We . Then the transfer function
between w and z1 is given by

z1 D We.I C PK/�1Wdw

Now if the resulting controller K stabilizes the plant P and makes the H1 norm
between w and z1 finite, then K must have a pole at zero which is the zero of the
sensitivity function. The problem with this approach is that the weight functions
used in the mixed-sensitivity H1 control design must all be stable. If they are not,
Assumption A1 in Sect. 8.2.2 is not satisfied because the zero pole of We becomes
an uncontrollable pole of the feedback system, and the general H1 algorithm is
not applicable. Therefore, we need to approximate the integral control with a small
perturbation. For example, we can approximate 1 =s as 1 =s C " , 0 < " � 1, based
on which the weight function We can then be formulated both in continuous or
discrete-time domain.

Another way to produce the integral control is to reformulate the problem by
properly adding the integral into the feedback loop directly (Zhou et al. 1995).
This can be achieved by expressing the controller as K D MiK1 where Mi is a
preselected diagonal function with integral terms along the main diagonal and K1
is the H1 controller designed for a new plant obtained by cascading the function
Mi with the old plant.

8.2.4.3 Synthesis with H2 Performance

In many real-world applications, standard H1 synthesis cannot adequately capture
all design specifications. For instance, noise attenuation or regulation against
random disturbances is more naturally expressed in H2 or LQG terms. This makes
mixedH1=H2 multi-objective synthesis highly desirable in practice, and LMI the-
ory offers powerful tools to attack such problems. The control problem is sketched
in Fig. 8.11. The output channel z1 is associated with the H1 performance, while
the channel z2 is associated with the H2 performance. For system (8.46), if the
disturbance w is the random signal, for example, the random aberration caused
by the turbulent air in the astronomic adaptive optics system, then it is natural to
consider the H2 performance for the performance error e, which is argumented
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/H2 synthesis

as z2 in (8.46). In order to cast the control design problem into a mixed H1=H2

multi-objective synthesis problem, redefine z1 D z1 and z2 D z2, and then the
closed-loop system (8.52) can be reformulated as

†cl W
8
<

:

xcl.k C 1/ D Aclxcl.k/C Bclw.k/	
z1.k/
z2.k/



D
	

Ccl1

Ccl2



xcl.k/C

	
Dcl1

Dcl2



w.k/

where

	
Ccl1

Ccl2



D
	

C11 C D121DcC2 D121Cc

C12 C D122DcC2 D122Cc



and

	
Dcl1

Dcl2



D
	

D111 C D121DcD21

D112 C D122DcD21



.

Then the mixed H1=H2 multi-objective suboptimal problem can be solved based
on the following linear matrix inequalities (Gahinet et al. 1995).

Mixed H1=H2 multi-objective problem:

OP1:Minimizing ˛�2 C .1 � ˛/ T race .Q/ over P, Q, Ac, Bc, Cc, Dc, and � ,
satisfying

2

66
4

�P PAcl PBcl 0
AT

clP �P 0 CT
cl1

BT
clP 0 ��I DT

cl1

0 Ccl1 Dcl1 ��I

3

77
5 < 0 (8.61)

2

4
�P PAT

cl 0
AclP �P Bcl

0 BT
cl �I

3

5 < 0 (8.62)

2

4
P 0 PCT

cl2

0 I DT
cl2

Ccl2P Dcl2 Q

3

5 > 0 (8.63)

P > 0 (8.64)

Trace .Q/ < �0 (8.65)

� < �0 (8.66)
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Fig. 8.12 Closed-loop system structure for mixed sensitivity H
1

controller design

where �0 and �0 are preset optimal performance values and ˛ 2 .0; 1/.
Since the above matrix inequalities are nonlinear in the unknown parameters

P, Q, Ac, Bc, Cc, Dc, and � , the similar procedure as in Sect. 8.2.3 can be
used to transform the above matrix inequalities into LMIs. Using the congruence
transformation with diag .…1;…1; I; I/, diag .…1;…1; I/, .…1; I; I/, and …1 on
(8.61), (8.62), (8.63), and (8.64), respectively, the OP1 problem is then transformed
to an optimization problem in LMIs and can be solved effectively.

8.2.5 The MFDM Surface Shape Control
with the Mixed-Sensitivity H1 Controller

In order to design an effective controller that minimizes the shape error e in
the closed-loop adaptive optics system, a loop-shaping approach is used where
weighting functions are employed to guide the optimization process which yields
the desired controller parameters. The closed-loop system used in the controller
design process is shown in Fig. 8.12, where G is the discretized augmented plant
model representing the wavefront corrector and the sensor. The diagonal matrices
We and Wu are the weighting functions which influence the selection of the desired
controller parameters. The weighting function We D weI, where we is a scalar
low-pass filter, is used to shape the closed-loop sensitivity function Sc, that is, the
transfer function from the input signal r to the performance variable e in the closed-
loop system, and expressed as

Sc D .I C FGK/�1 (8.67)

The low pass filter we is selected to have a relatively large gain in the frequency
range covering the common wavefront aberrations in the human eye, that is, 0–3 Hz.
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The weighting function Wu D wuI is such that wu is a scalar high-pass filter with
a corner frequency approximately equal to the desired closed-loop bandwidth of
3 Hz. The weighting function also contributes toward the robustness of the closed-
loop system by minimizing the controller output in the frequency range beyond the
desired closed-loop system bandwidth. The diagonal matrix F D f I, where f is a
scalar low-pass filter, is introduced before the controller K and is used to attenuate
the high-frequency measurement noise in the measurement signal being fed to
the controller. The integrator shown in Fig. 8.12 is introduced to ensure that the
error in tracking static reference signals is driven to zero. The incorporation of the
integral action into the controller can also be realized by including integrators into
the weighting function We. This approach requires approximating the integrators
with stable functions since the weight function must be stable. To avoid these
approximations and to realize practically acceptable fast transient responses in the
closed-loop system, the integrators are explicitly included in the controller. With the
integrator block included, the overall controller becomes

K D z

z � 1
K1

where K1 is the H1 controller to be discussed in the following. The successful
tracking of the reference r by the closed-loop system can be achieved if the
maximum singular value of the sensitivity function Sc is made small over a desired
frequency range. In order to limit the input currents to the plant and increase the
robustness of the closed-loop system, the transfer function from the reference signal
r to the weighted controller output Qu is included in the transfer function to be shaped,
hence the mixed-sensitivity design approach. With the structure of the closed-loop
system selected as described above, the mixed-sensitivity H1 controller design
problem is formulated as follows:

min
K

�
��
�

	
WeScF

WuKScF


���
�

1
(8.68)

where WeScF and WuKScF are the transfer functions from r to Qe and from r to Qu,
respectively. The controller is obtained by minimizing the H1 norm of the transfer
function from the reference signals (i.e., the reference wavefront shape r) to the
weighted wavefront shape error Qe and the weighted controller output Qu.

Let the state-space representations of We, Wu, and F be We W
	

Awe Bwe

Cwe Dwe



,

Wu W
	

Awu Bwu

Cwu Dwu



, F W

	
Af Bf
Cf Df



and that of the integral term z

z�1I be

	
Ai Bi
Ci Di



.

Define the weighted performance variable as z D � QeT QuT
�T

. Then the problem

of minimizing the H1 norm of the mixed-sensitivity function

	
WeScF

WuKScF



with

respect to the parameters of the controller K1 can be properly formulated by
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∞K

∑ êû

r zFig. 8.13 Block diagram of
the closed-loop system
rearranged in a standard
feedback configuration

rearranging the closed-loop system as shown in Fig. 8.13. The open-loop system

† from
�

rT OuT
�T

to
h

zT Oe T
iT

, as shown in Fig. 8.13, can be written in state-space

form as

† W

8
ˆ̂
<

ˆ̂
:

Qx.k C 1/ D AQx.k/C B1r.k/C B2 Ou.k/
z.k/ D C1 Qx.k/C D11r.k/C D12 Ou.k/
Oe.k/ D C2 Qx.k/C D21r.k/C D22 Ou.k/

(8.69)

where

A D

2

66
6
6
6
4

Ag BgCi 0 0 0
0 Ai 0 0 0

�Bf Cg 0 Af 0 0
0 BwuCi 0 Awu 0

�BweDf Cg 0 BweCf 0 Awe

3

77
7
7
7
5

B1 D

2

66
6
6
6
4

0
0

Bf
0

BweDf

3

77
7
7
7
5
; B2 D

2

66
6
6
6
4

BgDi

Bi
0

BwuDi

0

3

77
7
7
7
5

C1 D
	�DweDf Cg 0 DweCf 0 Cwe

0 DwuCi 0 Cwu 0




D11 D
	

DweDf

0



; D12 D

	
0

DwuDi




C2 D ��Df Cg 0 Cf 0 0
�
; D21 D Df ; D22 D 0

Since the sampling period for the closed-loop system is 0.0345 s, the weighting
function We is selected such that it acts as a low-pass filter with bandwidth of 3 Hz
equal to that of the expected reference signals and is given by
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Fig. 8.14 Magnitude plots of we, wu, and f

we.z/ D z2 C 2z C 1

13:99z2 � 15:6z C 5:605
(8.70)

The filter f is selected as a low-pass filter with cutoff frequency at 5 Hz and is
given by

f .z/ D z2 C 2z C 1

6:108z2 � 3:518z C 1:41
(8.71)

The weight function Wu is selected such that

wu.z/ D 3:717z � 3:717

z � 0:487 (8.72)

which represents a high-pass filter with a corner frequency of 3.2 Hz. The bode
magnitude plots of the functions we, wu, and f are shown in Fig. 8.14.

With the closed-loop system represented as shown in Fig. 8.13, and with the
necessary weights selected as above, the H1 controller synthesis problem is solved
based on LMIs using the Matlab Robust Control Toolbox function dhinflmi. For
a plant model based on the prototype MFDM with 19 input electromagnetic
coils arranged in a circular pattern and the mirror surface deflections measured
immediately above the center of each of the 19 electromagnetic coils (i.e., L D
M D 19), the controller design algorithm provides a controller with an H1
performance �min D 0:776. The maximum singular values of the transfer functions
ScF and KScF are plotted in Fig. 8.15. It can be seen that the sensitivity of
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Fig. 8.15 Maximum singular values of ScF and KScF

the closed-loop system is attenuated in the desired low-frequency range. Also the
controller output is attenuated in the high-frequency range, thereby increasing the
robustness of the closed-loop system.

The H1 controller is implemented by incorporating the controller into the
closed-loop system as shown in Fig. 8.12. The augmented plant G represents the
actual system comprising the mirror and the sensor. The evaluation of the perfor-
mance of the resulting closed-loop system is conducted by separately considering
reference signals that are commonly present in the eye’s aberrations, namely, static,
harmonic (sinusoidal), and random signals. For a typical static reference wavefront
shape signal r0 given as

r0 D Œ2:0; 4:0; 5:0; 1:0; 5:5; 0:5; 3:5; 8:5; 6:0; 3:0; 2:5; 2:0; 3:0; 4:0;�2:0;
� 4:0;�5:0; 1:0; 6:0�T.�m/

The controller performance is shown in Fig. 8.16 where only selected channels
(#2, 4, 8, and 17) are shown. As can be seen in Fig. 8.16a, the wavefront shape
measurements ys track the static reference signals fairly well, and the measurements
are rapidly driven to their steady-states. The RMS of the wavefront shape error is
shown in Fig. 8.16b and has a steady state value of 0:09˙ 0:05 �m. In order to test
the performance of the closed-loop system in tracking dynamic wavefront shapes,
the reference signals

r.k/ D r0 C r0.k/ .�m/
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Fig. 8.16 Experimental results on the tracking of the static wavefront shape: (a) wavefront shape,
(b) RMS error

are used where r0 is the static component and r0 is a sinusoidally varying signal
superimposed on the static component. The dynamic component r0 is defined as
follows:

r0.k/ D Œsin.fok C 
1/; sin.fok C 
2/; : : : ; sin.fok C 
19/�
T

where fo D 0:65 radians are the frequency of the sinusoidal signals and 
m; m D
1; 2; :::; 19 are the phases of the signals chosen randomly such that 0 < 
m < �

2
. The

2 �m peak-to-valley dynamic reference wavefront shape signals are superimposed
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Fig. 8.17 Experimental results on the tracking of the sinusoidal wavefront shape: (a) wavefront
shape, (b) RMS error

on the static offset r0 to represent the aberrations in the eye, which almost always
have a large static component. The performance of the designed controller in
ensuring the tracking of the dynamic reference signals by the wavefront shape
measurements ys is presented in Fig. 8.17. The wavefront shape measurements ys

are plotted in Fig. 8.17a where the corresponding reference wavefront shape signals
r are shown using dotted lines. The RMS of the corresponding wavefront shape error
is plotted in Fig. 8.17b. As can be observed from the results shown in Fig. 8.17, the
measured wavefront shape follows the reference shape fairly well.
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In order to test the performance of the closed-loop system in tracking generalized
dynamic wavefront shapes, the following reference signals are used:

r.k/ D r0 C Zc.k/

Where r0 is the static component and Z is the matrix of Zernike mode shapes
computed at the 19 output points coinciding with the location of electromagnetic
coils in the optical pupil. The Zernike coefficients c(k) determine the magnitude of
the resulting reference shape and are chosen as:

c.k/ D Frs.k/

where Fr D frI is a low-pass filter with fr D we as given in (8.70) and s.k/ is a
random signal. The low-pass filter Fr limits the frequency content of the coefficients
c(k) to the range of frequencies present in the wavefront shapes presented by a
typically aberrated human eye. The power of the random signals s(k) is chosen such
that the signals corresponding to different Zernike modes are scaled according to
the dynamics of the typically aberrated eye. The experimental results for tracking
of the generalized dynamic reference wavefront shape are given in Fig. 8.18. The
wavefront shape measurements ys are plotted in Fig. 8.18a where the corresponding
reference wavefront shape signals are shown using dotted lines. The RMS of the
wavefront shape error is plotted in Fig. 8.18b. Although there are fluctuations in
the RMS error values, the average RMS error still remains less than 0.5 �m, and the
measured wavefront shape follows the reference shape fairly well. The experimental
results given above show that the designed controller can effectively compensate for
static as well as dynamic high-order wavefront aberrations.

8.3 Summary

In this chapter, two centralized optimal control algorithms are proposed for the
surface shape control problem of MFDMs. The first control algorithm based on
properly formulated LMIs is developed to design multivariable PID controllers in
the discrete-time domain. Controller designs that yield closed-loop systems with
H1 and H2 performance specifications are investigated. Corresponding controllers
are determined based on solving properly formulated linear matrix inequalities.
The latter are obtained directly from different tuning constraints by introducing
slack variables with special structure. The proposed design methods are verified
to design PID controllers for a magnetic fluid deformable mirror which is used to
track desired wavefront shapes in adaptive optics systems. The performance of the
controllers is experimentally evaluated using a closed-loop adaptive optics system
comprising the developed controllers and a novel 19-channel prototype magnetic
fluid deformable mirror. The experimental results indicate the closed-loop system
allows for the successful tracking of static and dynamic wavefronts typically present
in the human eye.
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Fig. 8.18 Experimental results on the tracking of the generalized wavefront shape: (a) wavefront
shape, (b) RMS error

The second control algorithm offering an H1 performance in tracking dynamic
wavefront shapes using a magnetic fluid deformable mirror is also presented. A
mixed-sensitivity H1 controller design approach is used to provide the desired
tracking performance, limit the input currents, and enhance the robustness of the
closed-loop system. The performance of the control algorithm is experimentally
evaluated using a closed-loop adaptive optics system comprising the developed
controller and a 19-channel prototype magnetic fluid deformable mirror. The closed-
loop system was experimentally shown to provide successful tracking of dynamic
wavefront shapes having a frequency content that is consistent with that of the
human eye aberrations.
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9.1 Conclusions

Liquid deformable mirrors represent an emerging and promising technology and
offer a major intrinsic advantage over solid mirrors, such as the extremely smooth
surfaces, the high strokes that can be easily produced, the low cost per actuator,
and the ease of scalability. Mercury-based liquid mirrors can yield high reflective
paraboloidal surface by rotation and have been successfully used to carry out astro-
nomical surveys. However, mercury mirrors have a number of major disadvantages.
First, the rotating liquid can only produce parabolic shapes and will also be limited
by winds generated by the rotation of the mirror itself. Second, mercury suffers
from serious limitations when it is desired to deform its surface electromagnetically,
and it is very difficult to obtain a stable mercury-based ferrofluid due to its
chemical properties. Third, the high density of mercury necessitates very large
electromagnetic forces to achieve even minimum required surface deflections,
which means prohibitively large currents running through the electromagnetic coils
used to generate the magnetic field. Confronted with these limitations of mercury,
researchers came up with an innovative new technology that utilized the concept
of ferrofluid deformation shaped with magnetic fields. Borra et al. (2006, 2008) at
Laval University have pioneered and experimented with ferrofluidic mirrors coated
with a metal liquid-like film (MELLF) to produce complex surface shapes. These
mirrors are inexpensive and are capable of generating large deformations. However,
the early generation of MFDMs had a major inconvenience in that the surface
deformations of the liquid depend on the square of the applied magnetic vector field,
which requires novel complicated control algorithms and precludes the possibility
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of directly using any linear control algorithms. In this backdrop, the closed-loop
operation of the MFDMs is a difficult task and brings forward the control of the
mirror as the most pressing requirement that needs to be addressed before they can
be considered for practical applications. The research results presented in this book
aim at facilitating the fulfillment of these requirements.

In this book, a dynamic model of a magnetic fluid deformable mirror and
effective methods to control the surface shape of the mirror have been developed and
validated experimentally. A significant development presented in this book is related
to the proposed design of the mirror. It has been verified analytically as well as
experimentally that the proposed design enables the use of linear control algorithms
to control the mirror surface, which was otherwise not possible. The modified design
also permits large surface displacements using very small electromagnetic coils.
These features of the modified design are expected to open new opportunities for
MFDMs in different applications. For example, the contributed work is expected to
help realize the concept of an MFDM-based retinal imaging adaptive optics system
in the future. The important developments presented in this book are summarized as
follows:

• An accurate analytical model of the dynamics of an MFDM surface shape has
been presented. The model represents the MFDM as an MIMO system with the
currents applied to the array of electromagnetic coils as the input signals and the
deflections of mirror surface provided by the model as the output signals. The
model is derived by solving a coupled system of fluid-electromagnetic governing
equations and is presented in state-space form. The model was experimentally
validated using a prototype MFDM. It was demonstrated that the model can be
used in the simulation of the response of the mirror as well as in the design of
surface shape controllers for the mirror.

• A novel design of an MFDM, which linearizes the response of the surface shape
of the mirror, has been presented. The proposed design features a uniform vertical
magnetic field, which is superimposed on the magnetic field of the array of
coils conventionally used to control the surface shape. The design change, which
was prompted by the findings of the analytical work undertaken to develop
the model of the response of the mirror, was implemented using a Helmholtz
coil. The effectiveness of the proposed design in linearizing the response of the
mirror surface shape was experimentally demonstrated. It was also shown that the
proposed change in the design of an MFDM results in a significant amplification
of the deflections of the mirror surface and allows for the bidirectional control
of the mirror surface. These enhanced features facilitate the control of the mirror
surface shape and also open new application avenues for these mirrors.

• The first-ever successful use of an MFDM in a closed-loop system has been
reported. Two types of control algorithms are developed to control the surface
shape of an MFDM, and their performance is experimentally evaluated. The
classical decentralized control methods are first investigated, where two decen-
tralized PID control algorithms are proposed to control the surface shape of
a magnetic fluid deformable mirror in a closed-loop adaptive optics system.
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A decentralized proportional-plus-integral (PI) controller is designed based on
the static decoupling of the plant model using the plant DC gain. To overcome
stability robustness issues and minimize the effect of the model uncertainties,
especially in the high-frequency range, a decentralized robust proportional-
integral-derivative (PID) controller is further developed. These two control
algorithms provide good performance in removing static or very slowly changing
aberrations. However, the simulation and experimental verifications show that
the decentralized PID control algorithms have limited capabilities in dealing
with fast-changing aberrations. To overcome this limitation, two centralized
optimal control algorithms, including a multivariable PID controller and a mixed-
sensitivity H1 controller, are proposed for the MFDM. The centralized optimal
control algorithms allow for the tracking of generalized dynamic surface shapes.
The closed-loop system was experimentally shown to provide successful tracking
of dynamic wavefront shapes having a frequency content that is consistent with
that of the human eye aberrations.

9.2 Perspectives

The scope of the study presented in this book was limited to the development of an
analytical model for the MFDM and the novel modification in the conceptual design
of an MFDM, as well as to the design of surface shape controllers for the mirror. The
effectiveness of this new conceptual design approach for MFDMs has recently been
further verified by Brousseau et al. (2011, 2010) and Parent and Thibault (2011).
Achievement of these goals has certainly brought the MFDMs much closer to their
deployment in practical AO systems. However, there are other aspects of MFDMs
that will have to be addressed before they can be finally used practically in clinical
or astronomical applications. The following are the important recommendations for
future work to be carried out on MFDMs:

• Size Reduction. As stated in Sect. 2.3, one of the important requirements of
ophthalmic AO systems is that the deformable mirror should be comparable to
a dilated eye’s pupil in size. Due to time and resource constraints, the prototype
MFDM presented in this book could not be fabricated as per the size requirement
of the ophthalmic AO systems. Development of a new prototype that meets the
size requirements is recommended. The dynamics of the mirror, particularly
the effects of linearization and surface tension, should be validated in the
miniaturized device. Since a design using conventional coils is not likely to
provide the required actuator density, the possibility of using microfabricated
arrays of coils should be explored.

• Study of effects of the reflective film. The dynamic model presented in this book
is based on the assumption that the nanoscale film that acts as a reflective coating
on the surface of the MFDM does not have any significant effect on the dynamics
of the mirror. Although this prospect has been construed in previous studies as

http://dx.doi.org/10.1007/978-3-642-32229-7_2
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well (Brousseau et al. 2006), it needs to be verified experimentally. It is therefore
recommended that the effects of the reflective film on the dynamics and control
of the mirror be studied and experimentally validated.

• Enhancement of bandwidth. Although the MFDM presented in this book meets
the closed-loop bandwidth requirements of ophthalmic AO systems, it does so
marginally. In order for the MFDMs to find a place in practical applications,
their response speed will have to be improved substantially. One approach to
increase the response speed is by increasing the viscosity of the magnetic fluid
along with an overdrive technique (Parent et al. 2009). This approach should be
experimentally tested using the proposed MFDM design, and its impact on the
response speed in the closed-loop system should be ascertained.

• Physical properties of ferrofluid. The ferrofluidic mirror can produce large
deformations using large magnetic field; however, the increasing magnitude of
the magnetic field will increase the risk of hitting the limit imposed by the
Rosensweig instability. Fortunately, the limit of Rosensweig instability depends
greatly on the physical parameters of the ferrofluid. It might be possible to
synthesize a ferrofluid that has physical characteristics that do not show the
instability. However, this prediction needs to be further studied and examined.

• Design of effective coil actuators. It is possible for the magnetic fluid deformable
mirror to generate deformations having very large amplitudes, such that time-
varying concave or convex mirrors with directly added aberration compensation
can be made. As an example tested by Brousseau et al. (2006), by applying a
sufficiently high current to concentric coils, a 5-cm-diameter spherical mirror
can be easily made, and the additional defocus or spherical compensation can be
further realized by modifying the currents in the coils. However, for large mirrors,
the extremely large currents need high-voltage supply and huge power consump-
tion. The large amount of heat generated by the coils could also deteriorate the
image quality. The possible solutions are to use superconducting quantum wires
or wires spun from carbon nanotubes (Borra 2009), while considerable research
efforts need to be seen.

• Tiltability of the ferrofluidic mirror. The magnetic fluid deformable mirror could
not be tilted, let alone be used facing down. Borra et al. (2008) had made a simple
experiment by putting an MELLF-coated ferrofluid on a permanent magnet, and
no obvious surface shape changes had been observed by turning it upside down.
Changing the inclination of such a mirror would introduce a slight changing
wedge into the surface, which could be eliminated by additional current-carrying
wires of the mirror. The experiment confirmed that further examination of the
implications of tilting this kind of mirror needs to be investigated. The tiltability
would render MFDMs far more versatile and increase the appeal of these
inexpensive devices in more optical system applications.

Magnetic fluid deformable mirrors are characterized by their robustness, low
fabrication costs, and ease of maintenance. With additional research and devel-
opment work, this type of mirrors could be practically used in the near future in
AO applications such as ophthalmology, astronomy, photolithography, imaging, and
projection.
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Derivation of the Analytical Model

A.1 Free Surface Kinematics

In the Cartesian coordinate system, for example, the surface can be represented
using z D .x; y/. Accordingly, the expression z�.x; y/ D C represents contours
having the same shape as the surface but displaced by magnitude C, and the gradient
r Œz �  .x; y/� yields a vector normal to the surface. Therefore, the unit normal
vector can be

bn D � .@=@x/bi � .@=@y/bj Cbk (A1)

The mean curvature � of a surface can be found using

� D 1
2
r � On (A2)

Employing the linearized form (A1) of the unit normal vector, (A2) simplifies to

� D �1
2

�
@2

@x2
C @2

@y2

�
(A3)

The deflection of a fluid surface can be related to the motion of the adjacent fluid
using what is commonly known as the kinematic condition. The condition is derived
as follows.
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When the shape of the fluid surface changes with time, the location of any point
on the surface may be expressed as

z D  .x; y; t / (A4)

The corresponding Monge function can be written as

F .x; y; z; t / D z �  .x; y; t / (A5)

For any point on the surface .z D /,

DF

Dt
D @F

@t
C V � rF D 0 (A6)

where D
Dt

D @
@t

C V � r is an operator referred to as the material derivative and

V D VxOi C VyOj C Vz Ok is the velocity of the fluid particle constituting the surface.
Since rF defines a vector-oriented normal to the surface, using (A1), condition
(A6) yields

�@
@t

C Vx

�
� @
@x

�
C Vy

�
� @
@y

�
C Vz D 0 (A7)

which can be rearranged to

Vz D @

@t
C Vx

@

@x
C Vy

@

@y
(A8)

Ignoring higher-order terms, (A8) can be written as

Vz D @

@t
(A9)

The condition (A9) states that, at any point on the free surface of a fluid, the rate
of deflection of the surface is equal to the vertical component of the fluid velocity at
that point.

A.2 Surface Dynamic Condition

The balance of interfacial stress at the free surface of an incompressible, inviscid
magnetic fluid that is exposed to air (considered to be non-magnetizable material)
yields the following dynamic condition at the surface:

p C ps C pm C pn D pa C pc (A10)

where

p D Thermodynamic pressure of the fluid

ps D Magnetostrictive pressure D�0
Z H

0

�

�
@M

@�

�
dH
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pm D Fluid � magnetic pressure D�0
Z H

0

M dH

pn D Magnetic normal traction D1

2
�0.M � On/2

pc D Capillary pressure D 2��

pa D Thermodynamic pressure of the air (A11)

In the definition of the magnetostrictive pressure ps, � D ��1 is the volume
density. This type of pressure arises from any volume change brought about by the
applied magnetic field and, for the incompressible liquid carriers, can be neglected,
that is,

ps � 0 (A12)

The fluid-magnetic pressure pm in a linearly magnetizable fluid .M D 	H/ can
be evaluated as follows:

pm D �0

Z H

0

M dH

D �0	

Z H

0

HdH

D 1

2
�0	H

2

D 1

2
�0	 .H � H/

(A13)

Similarly, the normal traction pn can be evaluated as

pn D 1

2
�0.M � On/2

D 1

2
�0	

2.H � On/2 (A14)

Using (A11), (A12), and (A13), the free surface dynamic condition (A10) can be
written as

p C �0	

2

�
.H � H/C 	.H � On/2


D pa C 2�� (A15)

The condition specifies a jump in the thermodynamic pressure above and below
the interface of two fluids. In ordinary fluids, this jump in the pressure is determined
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by surface tension of the fluid. As seen in (A15), in case of the magnetic fluids, the
magnetic field also contributes toward the difference of the pressure.

A.3 Simplification of the Fluid Dynamic Equations

For convenience, the equations governing the fluid dynamic phenomena in the
magnetic fluids are reproduced as follows:

r � V D 0 (A16)

�

�
@V
@t

C V � rV
�

D �r .p C ps C pm/C �r2V C �g C �0MrH (A17)

Consider the following:

(a) The application of magnetic field produces no appreciable change in the
volume of the incompressible magnetic fluids. Therefore, the contribution of
the magnetostrictive pressure toward the momentum balance can be ignored,
that is,

rps � 0 (A18)

(b) Using the definition of pm,

rpm D r
�
�0

Z H

0

M dH

�
(A19)

Considering that the magnetization M depends only on magnetic field H and
that the magnetic permeability�o remains constant, the right-hand side of (A19)
can be written as

r
�
�0

Z H

0

M dH

�
D �0MrH (A20)

It follows from (A19) and (A20) that

�rpm C �0MrH D 0 (A21)

(c) If the fluid is assumed to be nonviscous, that is, � D 0, then the viscous force
term in (A17) is identically zero:

�r2V D 0 (A22)
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(d) Choosing a coordinate system with the gravitational force acting opposite to
the z-axis and using the fact that the gravitational field is conservative, the
gravitational acceleration vector can be written as

g D r .�gz/ (A23)

(e) Assuming that fluid is initially static and that the applied magnetic field results
in only small perturbations of the fluid velocity, the term V �rV in (A17), which
is nonlinear in V, can be ignored, that is,

V � rV � 0 (A24)

Applying the assumptions/simplifications (A18), (A21), (A22), (A23), and
(A24), the momentum equation (A17) can be written as

�

�
@V
@t

�
D �r .p C �gz/ (A25)

A further assumption of an irrotational flow implies that

r � V D 0 (A26)

Making use of a known vector identity, (A16) and (A26) allow the velocity V to
be written as

V D �rˆ (A27)

such that ˆ satisfies the Laplace equation

r2ˆ D 0 (A28)

The substitution of (A27) in (A25) yields

r
�

��@ˆ
@t

C p C �gz

�
D 0 (A29)

The integration of (A29) gives

��@ˆ
@t

C p C �gz D c.t/ (A30)

where c.t/ is the constant of integration and can be lumped into the potential
ˆ.x; y; z; t/ resulting in

��@ˆ
@t

C p C �gz D 0 (A31)
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Note that the four equations governing the fluid field (the scalar equation (A16)
and the three vector equations (A17)) have been reduced to two scalar equations
(A28) and (A31), with two unknowns p and ˆ.

A.4 Perturbation Analysis

The magnetic fluid layer in an initial equilibrium state is perturbed by the input
magnetic field applied at the bottom of the layer. Assuming that the applied field
results in small perturbations of the field variables, the perturbed part of the
equations governing the fluid flow is extracted as follows.

Equilibrium State

The initial equilibrium state of the magnetic fluid layer is characterized by

 D 0

� D 0

On D Ok
V D V0 D �rˆ0 D 0

H D H0 D �r‰0 D Œ0; 0;H0�
T D

	
0; 0;

B0

�


T

Ha D Ha
0 D �r‰a

0 D �
0; 0;H a

0

�T D
	
0; 0;

B0

�0


T

(A32)

where ˆ0, ‰0, and ‰a
0 have been introduced as the scalar potentials corresponding

to the initial velocity V0 and the magnetic fields H0 and Ha
0, respectively. Using

(A32), the surface dynamic equation (A15) can be written as follows:

��@ˆ0
@t

C �g � �0	

2

�
.r‰0 � r‰0/C 	

�
r‰0 � Ok

2�C pa C 2�k D 0

Namely,

��@ˆ0
@t

� �0	 .1C 	/

2
H2
0 C pa D 0 (A33)

It may be noted that the pressure pa above the interface has been considered to
be constant.
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Perturbed State

The application of the input magnetic potential results in

On D � @
@x

Oi � @

@y
Oj C Ok

� D �1
2

�
@2

@x2
C @2

@y2

�

V D �rˆ D V0 C v

H D �r‰ D H0 C h

Ha D �r‰a D Ha
0 C ha

(A34)

where v, h, and ha are small perturbations andˆ; ‰ and‰a are the scalar potentials.
Since the velocity potential ˆ obeys the Laplace equation (4.10), it can be written
as a linear summation of the potentials corresponding to the component velocities.
Therefore,

ˆ D ˆ0 C 
 (A35)

where 
 is the velocity potential corresponding to the perturbation velocity compo-
nent v which can be written as

v D �r
 (A36)

such that

r2
 D 0 (A37)

Similarly, since the magnetic potentials‰ and‰a too obey the Laplace equations
(4.13) and (4.15), respectively, they can be written as

‰ D ‰0 C  (A38)

‰a D ‰a
0 C  a (A39)

where  and  a are the magnetic potentials corresponding to perturbations h and
ha which can be written as

h D �r 

D �@ 
@x

Oi � @ 

@y
Oj � @ 

@z
Ok

(A40)

4.10
4.13
4.15
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ha D �r a

D �@ 
a

@x
Oi � @ a

@y
Oj � @ a

@z
Ok

(A41)

such that

r2 D 0 (A42)

r2 a D 0 (A43)

Using (A34), the surface dynamic equation (A15) may be written for the
perturbed state as follows:
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(A44)

Introducing (A35), (A38), and (A39), and keeping the first-order terms only,
(A44) can be simplified to
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which, using (A33), reduces to
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Since

B0 D �H0

D �0 .1C 	/H0

(A47)

(A46) may be written as

��@

@t

C �g C 	B0
@ 

@z
� �

�
@2

@x2
C @2

@y2

�
D 0 (A48)
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This equation, along with the Laplace equations (A37), (A42), and (A43),
describe the dynamics of the surface deflection .

A.5 Solution of Laplace Equations

For convenience, the Laplace equations to be solved are reproduced as follows:

r2
 D 0 for � h < z <  (A49)

r2 a D 0 for  < z (A50)

r2 D 0 for � h < z <  (A51)

We assume the following solutions for the surface deflection  and the Laplace
equations given above:

 .x; y; t / D Q.t/E .x; y/ (A52)


 .x; y; z; t / D Q
 .z; t / E .x; y/ (A53)

 a .x; y; z; t / D Q a .z; t / E .x; y/ (A54)

 .x; y; z; t / D Q .z; t / E .x; y/ (A55)

where

E .x; y/ D e�i.kxxCkyy/ (A56)

Equation (A49) is solved using the following boundary conditions:

�@

@z

D @

@t
at z D  (A57)

�@

@z

D 0 at z D �h (A58)

Further separating the variables, the assumed solution 
 is written as


 .x; y; z; t / D Z.z/T .t/E .x; y/ (A59)
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and is substituted into (A49), resulting in the following ordinary differential
equation (ODE):

d2Z

dz2
�
�
k2x C k2y


Z D 0 (A60)

The differential equation (A60) has a general solution of the form

Z D Ae�kz C Bekz (A61)

where

k D
q
k2x C k2y (A62)

and where A and B are constants of integration that can be determined using
the boundary conditions (A57) and (A58). Using the general solution (A61) and
lumping T in (A59) into A and B, 
 can now be written as


 .x; y; z; t / D �
A.t/e�kz C B.t/ekz

�
E .x; y/ (A63)

Applying the boundary condition (A57) and (A58), and solving simultaneously
for A.t/ and B.t/, we obtain

A.t/ D � 1
k

e�kh

ekh � e�kh
d Q
dt

(A64)

B.t/ D � 1
k

ekh

ekh � e�kh
d Q
dt

(A65)

where (A57) has been evaluated at z D 0 instead of z D . Substituting forA.t/ and
B.t/ using (A64) and (A65), it follows from (A63) that


 .x; y; z; t / D � 1
k

cosh .k .z C h//

sinh .kh/

d Q.t/
dt

E .x; y/ (A66)

Equations (A50) and (A51) are solved for the magnetic potentials  a and  
using the boundary conditions

On � .H � Ha/ D 0 at z D  (A67)

On � .B � Ba/ D 0 at z D  (A68)

lim
z!1 a < 1: (A69)
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 D
JX

jD1
 j .t/ı

2
�
x � xj

� �
y � yj

�
at z D �h (A70)

Using (A34), (A40), and (A41), the boundary conditions (A67) and (A68) can
be written more concisely as

@ a

@x
� @ 

@x
� 	

�
B0
@

@x
D 0 at z D  (A71)

�0
@ a

@z
D �

@ 

@z
at z D  (A72)

where only linear terms have been retained and, as needed, only one component
of the vector equation (A67) has been used. Using the assumed solutions (A54) and
(A55), a similar exercise as done for the velocity potential 
 .x; y; z; t / above results
in the following general solutions for  a .x; y; z; t / and  .x; y; z; t /:

 a .x; y; z; t / D �
A.t/e�kz C B.t/ekz

�
E .x; y/ (A73)

 .x; y; z; t / D �
C.t/e�kz CD.t/ekz

�
E .x; y/ (A74)

where A.t/; B.t/; C.t/ and D.t/ are integration constants to be determined using
the boundary conditions (A70), (A71), and (A72). Condition (A69) can be satisfied
only if B.t/ D 0. The boundary condition (A72) results in

D.t/ � C.t/ D ��0
�
A.t/ (A75)

where the condition has been evaluated at z D 0 instead of z D . Similarly, the
application of (A71) yields

C.t/CD.t/ D A.t/ � 	

�
B0 Q (A76)

Simultaneous solution of (A75) and (A76) yields

C.t/ D 1

2

	
A.t/

�
1C �0

�

�
� 	

�
B0 Q



(A77)

D.t/ D 1

2

	
A.t/

�
1 � �0

�

�
� 	

�
B0 Q



(A78)
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Substituting (A77) and (A78) into (A74) and making use of known hyperbolic
identities,  aand  can be written in terms of A.t/ as follows:

 a .x; y; z; t / D A.t/e�kzE .x; y/ (A79)

 .x; y; z; t / D
�
A.t/

�
cosh.kz/ � �0

�
sinh .kz/

�
� 	

�
B0 Q.t/ cosh.kz/

�
E .x; y/

(A80)

The remaining unknownA.t/ can be evaluated using the last boundary condition
(A70). Note that the only magnetic field variable required for the evaluation of the
surface dynamic equation (4.25) is .@ =@z/ at z D , which is obtained using (A80)
as follows:

@ 

@z

ˇ̌
ˇ
ˇ
zD0

D �A.t/�0
�
kE .x; y/ (A81)

In what follows, A.t/ will be evaluated using the input magnetic potential (A70)
as a boundary condition on  . In order to be able to apply the condition, the
admissible values of kx and ky will be determined first. To that end, we apply the
physically plausible boundary condition in the horizontal plane that the components
of the velocity and magnetic fields normal to the container walls must be zero.
Considering that the boundary condition must hold for all z and t, and for all mode
numbers kx and ky , the condition translates to

@E

@x
D 0 at x D 0; Lx (A82)

and

@E

@y
D 0 at y D 0; Ly (A83)

These conditions are satisfied by the mode shapes

E D cos.kxx/ cos.kyy/ (A84)

with the following characteristic equations:

sin kxx D 0 at x D Lx (A85)

sin kyy D 0 at y D Ly (A86)

4.25
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Equations (A85) and (A86) can be satisfied by multiple discrete values of kx and
ky , respectively, which are written in series form as follows:

kx D .m � 1/ �

Lx
; m D 1; 2; : : :

ky D .n � 1/ �

Ly
; n D 1; 2; : : :

(A87)

The discrete nature of kx , ky , and k — and of the variables dependent on
these parameters — is indicated by writing them henceforth as km, kn, and kmn,
respectively.

Using (A80), the total magnetic potential at any point in the magnetic fluid can
now be written as

 D
1X

mD1

1X

nD1

��
Amn

�
cosh.kmnz/ � �0

�
sinh .kmnz/

�
� 	

�
B0 Qmn cosh.kmnz/

�
Emn

�

(A88)

However, the magnetic potential at the bottom of the fluid layer is specified by
the boundary condition (A70). It follows from the comparison of conditions (A70)
and (A88) (evaluated at z D �h) that

1X

mD1

1X

nD1

��
Amn

�
cosh.kmnz/��o

�
sinh .kmnz/

�
�	
�
B0 Qmn cosh.kmnz/

�
Emn

�

zD�h

D
JX

jD1
 j ı

2
�
x�xj

� �
y�yj

�

(A89)

In order to determine the constants Amn, we multiply both sides of (A89) with
cos.k0

mx/ cos.k0
ny/, such that

k0
m D .m0 � 1/ �

Lx
; m0 D 1; 2; : : :

k0
n D .n0 � 1/ �

Ly
; n0 D 1; 2; : : : ; (A90)



292 Appendix A

and integrate w.r.t. x and y over the domain 0 < x < Lx , 0 < y < Ly .
The orthogonality of the mode shapes Emn results in

Z Lx

0

cos.kmx/ cos.k0
mx/dx D

8
ˆ̂<

ˆ̂
:

0 m ¤ m0

Lx m D m0 D 1
Lx
2

m D m0 > 1

Z Ly

0

cos.kny/ cos.k0
ny/dy D

8
ˆ̂
<

ˆ̂
:

0 n ¤ n0

Ly n D n0 D 1
Ly
2

n D n0 > 1
(A91)

which allows to write the constants Amn as

Amn D 1

cosh .kmnh/C �0
�

sinh .kmnh/

�
0

@ 	

�0
B0 cosh .kmnh/ Qmn C cmcn

LxLy

JX

jD1
 j cos

�
kmxj

�
cos

�
knyj

�
1

A (A92)

where

cm D
�
1 form D 1

2 for m > 1

cn D
�
1 for n D 1

2 for n > 1 (A93)

Substituting Amn from (A92) into (A79) and (A80), the magnetic potentials  a

and  are fully determined, thus completing the solution of the Laplace equations
(A49), (A50), and (A51).
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Model Parameters

The parameters of the analytical model given in (4.102) are presented in this section.
The model is given by

Px D Ax C Bu

y D Cx (B.1)

For M D 4, N D 4, the system order Nd D 2N.2M C 1/ D 72. The system
matrix A 2 R

Nd�Nd can be obtained using the following diagonal entries:

� !2mn � 10�4 D
�0:026; �0:163; �0:513; �1:221; �0:071; �0:071; �0:296; �0:296;
�0:802; �0:802; �1:745; �1:745; �0:138; �0:138; �0:476; �0:476;

�1:171; �1:171; �2:381; �2:381; �0:233; �0:233; �0:714; �0:714; �1:629; �1:629;
�3:137; �3:137; �0:362; �0:362; �1:017; �1:017; �2:184; �2:184; �4:018; �4:018

and

� !2dmn � 10�2 D
�0:138; �0:727; �1:787; �3:318; �0:350; �0:350; �1:174; �1:174; �2:470
�2:470; �4:236; �4:236; �0:629; �0:629; �1:691; �1:691; �3:222; �3:222
�5:224; �5:224; �0:971; �0:971; �2:273; �2:273 �4:042; �4:042; �6:280
�6:280; �1:374; �1:374; �2:921; �2:921; �4:929; �4:929; �7:404; �7:404
The matrices B 2 R

Nd�L and C 2 R
M�Nd , where L and M are the number of

inputs and outputs, respectively, are produced using the following block matrices:

Z. Wu et al., Modeling and Control of Magnetic Fluid Deformable Mirrors
for Adaptive Optics Systems, DOI 10.1007/978-3-642-32229-7,
© Springer-Verlag Berlin Heidelberg 2013

293

4.102


294 Appendix B

B D
	
B11 B12
B21 B22



� 103

C D �
C11 C12 C13 C14 C15

�

The block matrices are given on the following pages:
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Modal Reconstruction of the Wavefront Shape

The wavefront slope data provided by the WFS is used to reconstruct the wavefront
shape. Any appropriate set of 2D basis functions may be used for the reconstruc-
tion purpose. A standard reconstruction algorithm using Zernike mode shapes is
described in the following.

Assume that for any wavefront profile  .x; y/ measured by the SHWS, the
wavefront slope readings are available at K lenslets subapertures. The wavefront
slope readings can be assembled into a vector s 2 R2K as

s D �
s1x; s1y ; s2x; s2y; : : : ; skx; sky; : : : ; sKx; sKy

�T
(C.1)

where
�
skx; sky

�
is the local average slope of the wavefront,  .x; y/, at the kth

lenslet, and can be computed as follows:

skx D

’

k

@.x;y/

@x
dxdy

’

k

dxdy
D �xsk

f

sky D

’

k

@.x;y/

@y
dxdy

’

k

dxdy
D �ysk

f
(C.2)
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Here, f is the focal length of the lenslet, and�xsk and�ysk are the displacement
of the sensor focal spots in the horizontal and vertical directions, respectively, from
the center of the lenslet k.

For any number J of Zernike modes specified for the reconstruction of the
wavefront shape, the reconstruction matrix QZ 2 R2K�J is given as

QZ D

2

6
6
6
6
66
6
6
6
66
6
6
4

Z11x � � � Zj1x � � � ZJ1x

Z11y � � � Zj1y � � � ZJ1y
:::

: : :
:::

: : :
:::

Z1kx � � � Zjkx � � � ZJkx
Z1ky � � � Zjky � � � ZJky
:::

: : :
:::

: : :
:::

Z1Kx � � � ZjKx � � � ZJKx
Z1Ky � � � ZjKy � � � ZJKy

3

7
7
7
7
77
7
7
7
77
7
7
5

where

Zjkx D

’

k

@Zj .x;y/

@x
dxdy

’

k

dxdy

Zjky D

’

k

@Zj .x;y/

@y
dxdy

’

k

dxdy

are the average slopes of the jth Zernike mode .j D 1; 2; : : : ; J / at the kth lenslet
.k D 1; 2; : : : ; K/. The wavefront constructed from the measured slope vector, s, is

c D QZ�s (C.3)

where QZ� 2 RJ�2K is the pseudo-inverse of the reconstruction matrix QZ and
c D Œc1; c2; : : : ; cJ �

T is the vector of the reconstructed Zernike coefficients for
the measured wavefront  .x; y/. The set of Zernike coefficients can be used to
estimate the wavefront displacement at any point in the pupil. For a given set
of points .xm; ym/, m D 1; 2; : : : ;M a vector of wavefront displacements, y D
Œy1; y2; : : : ; ym; : : : ; yM �

T , may be computed as

y D Zc (C.4)
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where Z 2 RM�J is the matrix of Zernike mode shapes computed at the specified
points .xm; ym/:

Z D

2

6
6
6
6
6
6
4

Z11 � � � Z1j � � � Z1J
:::

: : :
:::

: : :
:::

Zm1 � � � Zmj � � � ZmJ
:::

: : :
:::

: : :
:::

ZM1 � � � ZMj � � � ZMJ

3

7
7
7
7
7
7
5

Zmj being the jth Zernike mode shape computed at .xm; ym/.
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Alignment Procedure

In this Appendix, the design of optical setup used in the AO system proposed in
Chap. 5 is presented. The steps necessary to calculate the focal lengths and positions
of the various lenses are presented. A schematic of the system can be seen in
Fig. D.1, where Li represents lens i. In the rest of this Appendix, fi is used to
represent the focal length of lens i. A collimated laser light, which has a wavelength
of 661 nm, leaves the laser at a diameter of hl and travels through a set of lenses 1
and 2, used to magnify the laser light to match the pupil size of the eye, he . The laser
light is directed into the eye using a pellicle beam splitter and reflects off the retina.
The light beam leaves the eye at a diameter of he and travels through lens 3 and lens
4. Lenses 3 and 4 are used to magnify the laser light diameter to match the active
surface area of the DM, hm. The laser light reflects off the DM and passes through
lenses 5 and 6, which magnifies the light beam to match the aperture of the wave-
front sensor, hs . The light beam then travels from lens 6 to the wavefront sensor.

With respect to the AO system described above, this section begins by discussing
the computations necessary to create a general two-lens optical relay telescope used
throughout the AO system and then applies these steps to assemble the entire AO
system. The first-order Gaussian (or paraxial) theory is used to determine the focal
lengths and placement of different lenses in the AO system. In the following, a brief
discussion of geometrical optics and paraxial theory is first presented (Hetch 2002).
Figure D.2 depicts a wave from point source S on a spherical interface of radius r
centered at C. The ray (SA) will be refracted at the interface toward the optical axis.
Assume that at some point P, it will cross the axis, as will all other rays incident at
the same angle �i . Fermat’s principle maintains that the optical path length (OPL)

Z. Wu et al., Modeling and Control of Magnetic Fluid Deformable Mirrors
for Adaptive Optics Systems, DOI 10.1007/978-3-642-32229-7,
© Springer-Verlag Berlin Heidelberg 2013
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Fig. D.1 Schematic of the experimental AO system used in the laboratory

Fig. D.2 Refraction at a spherical interface
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will be stationary, that is, its derivative with respect to the position variable ' (see
Fig. D.2) will be zero. For the light ray in question,

.OPL/ D n1l0 C n2li (D1)

where ni is the index of refraction of medium i. Using the law of cosines in triangles
SAC and ACP along with the fact that

cos' D � cos .180� '/

l0 D
h
r2 C .s0 C r/2 � 2r .s0 C r/ cos'

i1=2

li D
h
r2 C .si C r/2 � 2r .si C r/ cos'

i1=2

The OPL can be rewritten as

.OPL/ D n1

h
r2 C .s0 C r/2 � 2r .s0 C r/ cos'

i1=2

C n2

h
r2 C .si C r/2 � 2r .si C r/ cos'

i1=2

From Fig. D.2, it can be seen that point A moves at the end of a fixed radius r, '
is the position variable, and therefore setting d.OPL/

d' D 0, via Fermat’s principle

n1r .s0 C r/ sin'

2l0
� n2r .si � r/ sin'

2li
D 0

from which it follows

nl

l0
C n2

li
D 1

r

�
n2si

li
� n1s0

l0

�
(D2)

This relationship must hold among the parameters for a ray going from S to P by
way of refraction at the spherical interface. It is known that if A is moved to a new
location by changing ', the new light ray will not intercept the optical axis at P. The
approximations used to represent li and l0 are vital in the following calculations.
Recall the following approximations:

cos' D 1 � '2

2Š
C '4

4Š
� '6

6Š
C � � �

and

sin ' D ' � '3

3Š
C '5

5Š
� '7

7Š
C � � �
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Fig. D.3 Two thin lenses separated by a distance f1 C f2

If small values for ' are assumed (i.e., A is close to V), cos' � 1. The expression
for li and l0 yields l0 � s0, li � si , and (D2) can be approximated as

n1

l0
C n2

li
D n2 � n1

r
(D3)

This approximation is the foundation of what is called first-order theory (simi-
larly third-order theory uses the approximation sin ' D ' � .'3=3Š/). Light rays
that arrive at a shallow angle with respect to the optical axis (such that ' and
h are appropriately small) are known as paraxial rays. The emerging wavefront
segments corresponding to these paraxial rays are essentially spherical and will form
a “perfect” image at its center P located at si . It should be noted that equation (D3)
is independent of the location of A over a small area about the optical axis, called
the paraxial region. Under this approximation, the analysis is known as first-order,
paraxial, or Gaussian optics. If the optical system is well corrected, an incident
spherical wave will emerge in a form closely resembling a spherical wave. As the
system becomes free of defects, it more closely resembles first-order theory. Use of
paraxial analysis provides a convenient measure of the quality of an optical system.

The discussion begins by describing the relay telescope consisting of lenses 3 and
4. In order to ensure a collimated beam is directed toward the DM with a diameter of
hm, first-order Gaussian (or paraxial) theory is used to determine the focal lengths
and placement of lenses 3 and 4. The focal lengths and placements of lenses 1, 2,
5, and 6 can then be determined in a similar way. Figure D.3 shows two thin lenses
separated by a distance d and are used to magnify a collimated beam of light from a
diameter he to a diameter hm. In order to magnify the beam of light from a diameter
he to a diameter hm, the following magnifications are required:

MT D hm

he
(D4)
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Since the distance between the lenses must be equal to the sum of their
focal lengths in order to collimate the beam traversing between the lenses, the
magnification can also be related to the ratio of the focal lengths. From the geometry
of the light rays shown in Fig. D.3, it is apparent that

hm

f4
D he

f3
(D5)

Using the ratio in equation (D5), the magnification can be rewritten as

MT D hm

he
D f4

f3
(D6)

In order for the collimated incident light ray, traveling from the eye to lens 3, to
remain collimated when it travels from lens 4 to the DM, two conditions must be
satisfied:

(i) The pupil of the eye, the DM, and the wavefront sensors lenslet array must be
in conjugate planes.

(ii) The distance d between the two lenses must equal f3 C f4.

Using equation (D6), the specifications for the components in the AO system can
be calculated as follows. The focal lengths of lenses 3 and 4 can be chosen based on
the magnification needed for the laser light leaving the eye and directed toward the
DM, MT1:

MT1 D f3

f4
D he

hm
(D7)

The distance between the lenses 3 and 4 in Fig. D.1 is chosen as

S5 D f3 C f4 (D8)

The distances S4 and S6 are chosen to be f3 and f4, respectively. This is done
to satisfy condition (i). Similarly, the focal lengths of lenses 5 and 6 can be chosen
based on the magnification needed for the laser light leaving the DM and directed
toward the wavefront sensor,MT2:

MT2 D f5

f6
D hm

hs
(D9)

The distance between lenses 5 and 6, Fig. D.1, is chosen as

S8 D f5 C f6 (D10)

The distances S7 and S9 must be chosen equal be to f5 and f6, respectively,
in order to satisfy condition (i). Next, the focal lengths of lenses 1 and 2, shown
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Fig. D.4 Ray of light entering the lens

in Fig. D.1, can be chosen based on the magnification needed for the laser light
entering the eye. Namely,

MT3 D f1

f2
D hl

he
(D11)

The distance between lenses 1 and 2 is chosen as

S2 D f1 C f2 (D12)

The distances S1 and S3 (where S3 D S31 C S32) are chosen according to the
boundary conditions

(1) S4 C S5 C S6 < OpWidth and .S7 C S8 C S9/ sin .90� �/ < OpWidth
(2) ..S7 C S8 C S9/ cos .90 � �//C S1 C S2 C S3 < OpLen

where OpWidth and OpLen are the width and length of the optical table holding
the AO system and � is the angle of tilt of the DM in Fig. D.1. Next, given that
the first-order Gaussian theory only holds within the paraxial region, the following
conditions must be satisfied:

(iii) That the angle ˇ in Fig. D.4 between the incident ray entering a lens and the
optical axis must be small.

(iv) The incident ray should be close to the optical axis.

Given assumptions (iii) and (iv), the diameter of the lenses should be chosen at
least two to three times larger than the diameter of the beam propagating through
the lenses. For example,


1 D 3hl


2 D 3he

3 D 3he

4 D 3hm

5 D 3hm


6 D 3hs

(D13)
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Fig. D.5 AO system experimental setup, showing the path of light from the eye to the DM

Table D.1 Lenses used in
the experimental AO system

Lens Diameter (mm) Focal length (mm)

1 12.50 40:00

2 50.80 200:00

3 25.40 100:00

4 50.80 400:00

5 50.80 300:00

6 12.50 50:00

Table D.2 The diameter of
the laser light in the AO
system

Laser position Diameter (mm)

hl 1.1
he 5.5
hm 22
hs 3.6

where 
i is the diameter of lens i. The height of the optical path, Op, can be seen
in Fig. D.5, which shows the path of light from the eye to the DM. The height can
be set at the time of the development of the optical setup since the post holders and
mounts offer adjustable heights.
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Therefore, given the above information, a method for choosing the lenses for the
AO experimental setup in the laboratory can be written in a series of general steps
as follows:

(1) Separate the setup into optical paths.
(2) Determine he ,hm,hs , and hl .
(3) Determine the magnification needed to achieve the diameters in step 2, using

equations (D7), (D9), and (D11).
(4) Determine the diameter of each of the lenses using equation (D13).
(5) Find the focal length of an appropriate lens in a vendor’s catalogue.
(6) Calculate distances S1, S2, S3, S4, S5, S6, S7, S8, and S9 using equations (D8),

(D10), and (D12) with condition (i) and boundary conditions (1) and (2).

It should be noted that the angle � in Fig. D.1 should be as small as possible
to minimize any distortion of the image reflecting from the DM to the wavefront
sensor. The lenses used in the AO system presented in Chap. 5 were chosen using
steps (1)–(6). The results are summarized in Table D.1. The diameter of the laser
light as it passes through the AO system is shown in Table D.2.

http://dx.doi.org/10.1007/978-3-642-32229-7_5
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Additive model uncertainty, 200
Algebraic Riccati equation, 206, 254
Alignment, 142, 305
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B
Bandwidth, 130
Basis function, 47
Bernoulli equation, 9
Bessel’s equation, 113
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Boundary conditions, 13, 105, 112
Butterworth filter, 210

C
Cartesian geometry, 99
Centralized control, 68, 172
Circular geometry, 109
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Complementary sensitivity function,

251
Conformal, 20
Congruence transformation, 36, 257
Conjugate plane, 141, 309
Continuous time, 20
Controllability Gramians, 23
Convex, 259
Coupling, 131, 190

D
Damping, 108, 116
DC gain, 119, 149, 192
Decentralized control, 67, 166, 194
Decoupling, 189
Deformable mirror

continuous, 63
segmented, 62

Discrete time, 20, 229
Distributed control, 68, 177

E
Eigenvalue, 38, 234

F
Fluid-magnetic pressure, 11, 100
Free surface kinematics, 279
Fried parameter, 177
Full-width-at-half-maximum, 56

G
Generalized H2 controller, 241

H
Helmholtz coil, 129, 132
High-order, 57, 213
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Induced norm, 25
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Induced norm (cont.)
H

1

norm, 26, 236, 251
H2 norm, 26, 202, 238
l2 norm, 25, 199

Induction field, 7

J
Jones’ model, 148

K
Kinematic condition, 17, 101, 111

L
Laplace equation, 103, 287
Linear fractional transformation, 29, 253
Linearization, 161
Linear matrix inequality, 33
Linear quadratic Gaussian, 28, 173
Linear quadratic regulator, 28
Linear time invariant, 19
Liquid mirror telescope, 81
Lyapunov equation, 23

M
Magnetic field, 7, 100
Magnetic fluid, 85
Magnetization, 7, 101
Magnetostrictive, 11, 100
Maxwell coil, 132
Maxwell’s equation, 12, 100
Metal liquid-like film, 83, 90
Mixed H2/H

1

multi-objective, 202, 261
Mixed sensitivity, 183, 245
Modal compensation, 168
Mode numbers, 105
Mode shapes, 106, 114
Modulation transfer function, 56
Monge function, 280
Multiple-input multiple-output, 19, 228

N
Nonlinear, 85, 102, 205

O
Observability Gramians, 23
Open loop, 17

Ophthalmic, 72, 94
Optical coherence tomography, 72
Optical path length, 46, 305
Optical transfer function, 56
Optimal, 67, 228
Orthogonality, 106, 114

P
Pade approximation, 21, 199
Pencil, 39
Perturbation, 103, 110, 284
Point spread function, 54, 211
Pole clustering constraint, 235
Positive definite, 34
Potential(s), 101, 283
Proportional-integral-derivative, 198, 228
Proportional-plus-integral, 194
Pseudo-inverse, 168, 302
Pupil plane metrics, 53

R
Radial modes, 121
Reconstruction, 301
Retinal imaging, 70
Robustness, 31, 201
Robust stability, 33, 201
Root mean square, 54
Rosensweig instability, 87

S
Scanning laser ophthalmoscopy, 71
Schur complement, 37, 205
Seidel series, 50
Sensitivity function, 202, 251
Shack–Hartman, 60, 138
Single-input single-output, 19
Singular value(s), 202, 244, 265
Singular value decomposition, 230
Small-gain theorem, 32
Spatial light modulator, 62
Spatially-invariant systems, 178
State space model, 109, 118
Static output feedback, 204, 228
Steady-state response, 151
Strehl ratio, 56, 165
Stroke, 91
Suboptimal, 206, 261
Super-luminescent diode, 137
Superposition, 162, 182
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Surface curvature, 8
Surface dynamic equation, 101, 280
Surface tension, 160
Surfactant, 86, 89
Synthesis, 88, 202, 231
System identification, 147
System state variable, 19

T
Thermodynamic, 100
Tustin transformation, 21

U
Uncertainty, 249
Uniform magnetic field, 128

V
van der Waals, 87, 89

W
Wavefront, 45

corrector, 62
sensor, 60

Weighting functions, 251

Z
Zernike coefficients, 212, 302
Zernike polynomials, 51
Zero-order hold, 19, 175
Zonal compensation, 169
Z transform, 20
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