Magnetic Fluid Deformable Mirrors

Chapter

Abstract

The number of new adaptive optics applications has soared during the last decade, demonstrating the need for low-cost, high-stroke deformable mirrors with a large number of actuators. Magnetic fluid deformable mirrors (MFDMs) were proposed a few years ago as an alternative to conventional membrane deformable mirrors used in wavefront correctors. Though the idea of these magnetic fluid deformable mirrors is quite recent, they have been appraised by a number of preliminary studies as a promising future technology. This chapter first presents a brief review of the MFDM development history. The operating principle and composition of MFDMs are discussed, including a brief description of important properties of magnetic fluids and metal liquid-like films (MELLFs)—the key constituents of an MFDM. The known advantages, limitations, and potential applications of this new type of deformable mirrors are also discussed, followed by an outline of the research developments presented in the following chapters.

Keywords

Magnetic Fluid Magnetite Particle Carrier Fluid Deformable Mirror Surface Deflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Borra EF (2009) Liquid mirrors in engineering. Optics & Photonics News, pp 14–17, September 2009Google Scholar
  2. Borra EF, Content R, Girard L, Szapiel S, Tremblay LM, Boily E (1992) Liquid mirrors: optical shop tests and contributions to the technology. Astrophys J 393:829–847CrossRefGoogle Scholar
  3. Borra EF, Brousseau D, Vincent A (2006) Large magnetic liquid mirrors. Astron Astrophys 446(1):389–393CrossRefGoogle Scholar
  4. Borra EF, Brousseau D, Cliche M, Parent J (2008) Aberration correction with a magnetic liquid active mirror. Mon Not R Astron Soc 391(4):1925–1930CrossRefGoogle Scholar
  5. Brousseau D, Borra EF, Ruel HJ, Parent J (2006) A magnetic liquid deformable mirror for high stroke and low order axially symmetrical aberrations. Opt Express 14:11486–11493CrossRefGoogle Scholar
  6. Brousseau D, Borra EF, Thibault S (2007) Wavefront correction with a 37–actuator ferrofluid deformable mirror. Opt Express 15:18190–18199CrossRefGoogle Scholar
  7. Brousseau D, Borra EF, Rochette M, Landry DB (2010) Linearization of the response of a 91-actuator magnetic liquid deformable mirror. Opt Express 18(8):8239–8250CrossRefGoogle Scholar
  8. Brousseau D, Drapeau J, Piché M, Borra EF (2011) Generation of Bessel beams using a magnetic liquid deformable mirror. Appl Opt 50:4005–4010CrossRefGoogle Scholar
  9. Cabanac R, Borra EF (1998) A search for peculiar objects with the NASA Orbital Debris Observatory 3-m Liquid Mirror Telescope. Astrophys J 509:309–323CrossRefGoogle Scholar
  10. Charles SW (2002) The preparation of magnetic fluids. In: Stefan Odenbach (ed) LNP 594, Springer-Verlag Berlin Heidelberg, pp 3–18Google Scholar
  11. Cowley MD, Rosensweig RE (1967) The interfacial stability of a ferromagnetic fluid. J Fluid Mech 30(4):671–688MATHCrossRefGoogle Scholar
  12. Dery JP, Borra EF, Ritcey AM (2008) Ethylene glycol based ferrofluid for the fabrication of magnetically deformable liquid mirrors. Chem Mater 20(20):6420–6426CrossRefGoogle Scholar
  13. Doble N, Williams DR (2004) The applications of MEMS technology for AO in vision science. IEEE J Sel Top Quantum Electron 10(3):629–635CrossRefGoogle Scholar
  14. Fernandez EJ, Iglesias I, Artal P (2001) Closed-loop adaptive optics in the human eye. Opt Lett 26:746–748CrossRefGoogle Scholar
  15. Gingras J, Dry JP, Yockell-Lelivre H, Borra E, Ritcey AM (2006) Surface films of silver nanoparticles for new liquid mirrors. Colloids Surf A Physicochem Eng Asp 279:79–86CrossRefGoogle Scholar
  16. Gollwitzer C, Matthies G, Richter R, Rehberg I, Tobiska L (2007) The surface topography of a magnetic fluid: a quantitative comparison between experiment and numerical simulation. J Fluid Mech 571:455–474MathSciNetMATHCrossRefGoogle Scholar
  17. Gordon KC, McGarvey JJ, Taylor KP (1989) Enhanced Raman scattering from liquid metal films formed from silver solution. J Phys Chem 93:6814CrossRefGoogle Scholar
  18. Hickson P, Mulrooney MK (1997) University of British Columbia-NASA multi-narrowband survey. I. Description and photometric properties of the survey. Astrophys J Suppl 115:35–42CrossRefGoogle Scholar
  19. Hofer H, Artal P, Singer B, Aragon JL, Williams DR (2001) Dynamics of the eye’s aberration. J Opt Soc Am A 18(3):497–505CrossRefGoogle Scholar
  20. Iqbal A, Ben Amara F (2008) Modeling and experimental evaluation of a circular magnetic-fluid deformable mirror. Int J Optomechatron 2(2):126–143CrossRefGoogle Scholar
  21. Iqbal A, Wu Z, Ben Amara F (2009) Closed-loop control of magnetic fluid deformable mirrors. Opt Express 17(21):18957–18970CrossRefGoogle Scholar
  22. Iqbal A, Wu Z, Ben Amara F (2010a) Mixed sensitivity H control of magnetic fluid deformable mirrors. IEEE/ASME Trans Mechatron 15(4):548–556CrossRefGoogle Scholar
  23. Iqbal A, Wu Z, Ben Amara F (2010b) A decentralized robust PID controller design for the shape control of a magnetic fluid deformable mirror. Int J Optomechatron 4(3):246–268CrossRefGoogle Scholar
  24. Jones TB (1988) Theory and application of ferrofluid seals. In: Berkovsky B (ed) Introduction to thermomechanics of magnetic fluids. Hemisphere, Washington, DCGoogle Scholar
  25. Laird P, Bergamasco R, Berube V, Borra EF, Ritcey AM, Rioux M, Robitaille N, Thibault S, Lande Vieira da Silva Jr., Yockell-Lelivre H (2003) Ferrofluid-based deformable mirrors: a new approach to AO using liquid mirrors. In: Wizinowich PL, Bonaccini D (eds) Adaptive Optical System Technologies II, Proceedings of SPIE, vol. 4839, the International Society for Optical EngineeringGoogle Scholar
  26. Laird P, Caron N, Rioux M, Borra EF, Ritcey AM (2006) Ferrofluid adaptive mirrors. Appl Opt 45(15):3495–3500CrossRefGoogle Scholar
  27. Maxwell GF et al (2008) Ferrofluid. http://en.wikipedia.org/wiki/Ferrofluid, Wikipedia
  28. Nakano M, Matsuura H, Dong-Ying J, Kumazawa T, Kimura S, Uozumi, Tonohata Y, Koide N, Noda K, Bian N, Akutsu P, Masuyama M, Makino K (2008) Drug delivery system using nano-magnetic fluid, ICICIC’08. In: 3rd international conference on innovative computing information and control, p 338, 18–20 June 2008Google Scholar
  29. Papal SS (1965) Low viscosity magnetic fluid obtained by colloidal suspension of magnetic particles, US Patent, 3215572Google Scholar
  30. Parent J, Thibault S (2011) Locally magnifying imager. Opt Express 19(6):5676–5689CrossRefGoogle Scholar
  31. Parent J, Borra EF, Brousseau D, Ritcey AM, Dery JP, Thibault S (2009) Dynamic response of ferrofluidic deformable mirrors. Appl Opt 48(1):1–6CrossRefGoogle Scholar
  32. Ragazzoni R, Marchetti E (1994) A liquid adaptive mirror. Astron Astrophys 283:L17–L19Google Scholar
  33. Rosensweig RE (1997) Ferrohydrodynamics. Dover Publications, MineolaGoogle Scholar
  34. Seaman A, Macpherson JB, Borra EF, Ritcey AM, Asselin D, Jerominek H, Thibault S, Campbell MC (2007) Hartmann-Shack measurements of ferrofluidic mirror dynamics. In: Photonics 575 North 2007, Proceedings of the SPIE 6796, no. 679603, Ottawa, Ontario, CanadaGoogle Scholar
  35. Shutter WH, Whitehead LA (1994) A wide sky coverage ferrofluid mercury telescope. Astrophys J 424:L139–L141CrossRefGoogle Scholar
  36. Thibault S, Brousseau D, Rioux M, Senkow S, Dery JP, Borra EF, Ritcey AM (2006) Nanoengineered ferrofluid deformable mirror: a progress report. In: Ellerbroek BL, Domenico BC (eds) Advances in adaptive optics II, Proceedings of SPIE 6272, no. 627231, Orlando, FL, USAGoogle Scholar
  37. Wood RW (1909) The mercury paraboloid as a reflecting telescope. Astrophys J 29:164–176CrossRefGoogle Scholar
  38. Wuerker R (1997) Bistatic LMT lidar alignment. Opt Eng 36:1421–1424CrossRefGoogle Scholar
  39. Yogev D, Efrima S (1988) Novel silver metal liquid-like films. J Phys Chem 92:5754–5760CrossRefGoogle Scholar
  40. Zahn M (2001) Magnetic fluid and nanoparticle applications to nanotechnology. J Nanoparticle Res 3:73–78CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Shanghai UniversityShanghaiChina, People’s Republic
  2. 2.University of TorontoTorontoCanada

Personalised recommendations