Skip to main content

Abstract

This chapter presents a summary of the control approaches used to regulate the deformable mirror surface shape in AO systems. In Sect. 6.1, the different control strategies proposed in the literature to regulate the deformable mirror surface shape in AO systems are reviewed and organized into four categories, namely, classical decentralized control methods, centralized optimal control methods, distributed control methods, adaptive control methods, and others. The control problem for magnetic fluid deformable mirrors (MFDMs) is formulated in Sect. 6.2. The control system architecture for MFDM-based AO systems is first presented. Such systems typically include three major components, namely, a wavefront sensor, an MFDM wavefront corrector, and a controller. To simplify the implementation of the closed-loop control system and the testing of the performance of the proposed control algorithms, an equivalent closed-loop system configuration is formulated. The summary follows in Sect. 6.3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Auburn J, Lorell K, Mast T, Nelson J (1987) Dynamic analysis of the actively controlled segmented mirror of the W.M. Keck ten-meter telescope. IEEE Contr Syst Mag 7(6):3–10

    Article  Google Scholar 

  • Bamieh B (1997) The structure of optimal controllers of spatially-invariant distributed parameter systems. Proc IEEE Conf Decis Contr 2:1056–1061

    Google Scholar 

  • Bamieh B, Paganini F, Dahleh A (2002) Distributed control of spatially invariant systems. IEEE Trans Automat Contr 47:1091–1107

    Article  MathSciNet  Google Scholar 

  • Baudouin L, Prieur C, Guignard F, Arzelier D (2008) Robust control of a bimorph mirror for adaptive optics systems. Appl Opt 47:3637–3645

    Article  Google Scholar 

  • Castros G, Paganini F (2002) Convex synthesis of localized controllers for spatially invariant systems. Automatica 38:445–456

    Article  Google Scholar 

  • Correia C, Raynaud HF, Kulcsar C, Conan JM (2010) On the optimal reconstruction and control of adaptive optical systems with mirror dynamics. J Opt Soc Am A 27(2):333–349

    Article  Google Scholar 

  • Dessenne C, Madec P, Rousset M (1997) Modal prediction for closed loop adaptive optics. Opt Lett 22:1535–1537

    Article  Google Scholar 

  • Downie J, Goodman W (1989) Optimal wavefront control for adaptive segmented mirrors. Appl Opt 28:5326–5332

    Article  Google Scholar 

  • Ficocelli M, Ben Amara F (2012) Online tuning for retinal imaging adaptive optics systems. IEEE Trans Contr Syst Technol 20(3):747–754

    Article  Google Scholar 

  • Fraanje R, Massioni P, Verhaegen M (2010) A decomposition approach to distributed control of dynamic deformable mirrors. Int J Optomechatronics 4(3):269–284

    Article  Google Scholar 

  • Fried D (1990) Time delay induced mean square error in adaptive optics. J Opt Soc Am A 7:1224–1227

    Article  Google Scholar 

  • Gibson JS, Chang CC, Ellerbroek BL (2000) Adaptive optics: wave-front correction by use of adaptive filtering and control. Appl Opt 39:2525–2538

    Article  Google Scholar 

  • Goodman JW (2004) Introduction to Fourier optics. Roberts & Company, Colorado

    Google Scholar 

  • Hinnen K, Verhaegen M, Doelman N (2007) Exploiting the spatiotemporal correlation in adaptive optics using data-driven H2-optimal control. J Opt Soc Am A 24:1714–1725

    Article  Google Scholar 

  • Hinnen K, Verhaegen M, Doelman N (2008) A data driven H2 optimal control approach for adaptive optics. IEEE Trans Contr Syst Technol 16(3):381–389

    Article  Google Scholar 

  • Huang J, Looze D, Denis N, Castanon D, Wirth A (1995a) Dynamic modeling and identification of an adaptive optics system. In: Proceedings of the 4th IEEE conference on control applications, Albany, NY, USA, pp 456–463

    Google Scholar 

  • Huang J, Looze D, Denis N, Castanon D, Wirth A (1995b) Control design for an adaptive optics system. In: Proceedings of the conference on decision & control, New Orleans, LA, USA, pp 3753–3756

    Google Scholar 

  • Kulcsár C, Raynaud HF, Petit C, Conan JM, Viaris de Lesegno P (2006) Optimal control, observers and integrators in adaptive optics. Opt Express 14:7464–7476

    Article  Google Scholar 

  • Kulkarni J, D’Andrea R, Brandl B (2002) Application of distributed control techniques to the adaptive secondary mirror of Cornell’s large Atacama telescope. In: SPIE astronomical telescopes and instrumentation conference, vol 4839, pp 750–756

    Google Scholar 

  • Laird P, Bergamasco R, Berube V, Borra EF, Ritcey AM, Rioux M, Robitaille N, Thibault S, Lande Vieira da Silva Jr., Yockell-Lelivre H (2003) Ferrofluid-based deformable mirrors: a new approach to AO using liquid mirrors. In: Wizinowich PL, Bonaccini D (eds) Adaptive Optical System Technologies II, Proceedings of SPIE, vol. 4839, the International Society for Optical Engineering

    Google Scholar 

  • Laird P, Caron N, Rioux M, Borra EF, Ritcey AM (2006) Ferrofluid adaptive mirrors. Appl Opt 45(15):3495–3500

    Article  Google Scholar 

  • Le Roux B, Conan JM, Kulcsar C, Raynaud HF, Mugnier LM, Fusco T (2004) Optimal control law for multiconjugate adaptive optics. J Opt Soc Am A 21:1261–1276

    Article  Google Scholar 

  • Looze DP (2006) Minimum variance control structure for adaptive optics systems. J Opt Soc Am A 23:603–612

    Article  MathSciNet  Google Scholar 

  • Looze DP (2009) Linear quadratic Gaussian control for adaptive optics systems using a hybrid model. J Opt Soc Am 26(1):1–9

    Article  Google Scholar 

  • Looze DP (2010) Discrete time model for an adaptive optics system with input delay. Int J Contr 83(6):1217–1231

    Article  MathSciNet  MATH  Google Scholar 

  • Massioni P, Verhaegen M (2009) Distributed control for identical dynamically coupled system: a decomposition approach. IEEE Trans Automat Contr 54(1):124–135

    Article  MathSciNet  Google Scholar 

  • Monirabbasi S, Gibson S (2010) Adaptive control in an adaptive optics experiment. J Opt Soc Am A 27(11):A84–A96

    Article  Google Scholar 

  • Montera D, Welsh B, Roggemann C, Ruck D (1997) Prediction of wavefront sensor slope measurement with artificial neural networks. Appl Opt 36:675–681

    Article  Google Scholar 

  • Paschall R, Anderson D (1993) Linear quadratic Gaussian control of a deformable mirror adaptive optics system with time-delayed measurements. Appl Opt 32:6347–6358

    Article  Google Scholar 

  • Petit C, Conan JM, Kulcsár C, Raynaud HF (2009) Linear quadratic Gaussian control for adaptive optics and multiconjugate adaptive optics: experimental and numerical analysis. J Opt Soc Am A 26(6):1307–1324

    Article  Google Scholar 

  • Poyneer L, Veran JP (2008) Predictive wavefront control for adaptive optics with arbitrary control loop delays. J Opt Soc Am A 25(7):1486–1496

    Article  MathSciNet  Google Scholar 

  • Raynaud HF, Correia C, Kulcsar C, Conan JM (2011) Minimum variance control of astronomical adaptive systems with actuator dynamics under synchronous and asynchronous sampling. Int J Robust Nonlin Contr 21(7):768–789

    Article  MathSciNet  MATH  Google Scholar 

  • Roddier F (1999) Adaptive optics in astronomy. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Stein G, Gorinevsky DM (2005) Design of surface shape control for large two-dimensional array. IEEE Trans Contr Syst Technol 13:422–433

    Article  Google Scholar 

  • Tyson RK (2000) Adaptive optics engineering handbook. Marcel Dekker, New York

    Google Scholar 

  • Tyson RK (2011) Principles of adaptive optics. CRC Press, Boca Raton

    Google Scholar 

  • Von Bokern MA (1990) Design of a linear quadratic Gaussian control law for an adaptive optics system. MS Thesis, School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson Air Force Base, Ohio

    Google Scholar 

  • Voulgaris PG, Bianchini G, Bamieh B (2003) Optimal H2 controllers for spatially invariant systems with delayed communication requirements. Syst Contr Lett 50:347–361

    Article  MathSciNet  MATH  Google Scholar 

  • Wiberg DM, Max CE, Gavel DT (2004a) A spatial non-dynamic LQG controller: part 1, application to adaptive optics. In: Proceedings of the IEEE conference on decision and control, Atlantis, Paradise Island, Bahamas, USA, pp 3326–3332

    Google Scholar 

  • Wiberg DM, Max CE, Gavel DT (2004b) A spatial non-dynamic LQG controller: part 2, theory. In: Proceedings of the IEEE conference on decision and control, Atlantis, Paradise Island, Bahamas, USA, pp 3333–3338

    Google Scholar 

  • Zhu L, Sun P, Bartsch D, Freeman W, Fainman Y (1999) Adaptive control of a micromachines continuous-membrane deformable mirror for aberration compensation. Appl Opt 38:168–176

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhizheng Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wu, Z., Iqbal, A., Amara, F.B. (2013). Control System Design. In: Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32229-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32229-7_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32228-0

  • Online ISBN: 978-3-642-32229-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics