Skip to main content

Fatty Acid Uptake by the Heart During Fasting

  • Living reference work entry
  • First Online:
Handbook of Famine, Starvation, and Nutrient Deprivation

Abstract

The heart consumes the highest energy substrates per weight in the entire body. The heart preferentially uses fatty acids (FAs) as energy-providing substrates; 60–90% of cardiac adenosine triphosphate (ATP) is derived from FA oxidation (FAO), with the remaining derived from glucose, lactate, ketone bodies, and amino acids. During fasting, FAO is increased, whereas glucose utilization is reduced. Sources of FAs in circulation are free FA (FFA) bound to albumin and two forms of triglyceride-rich lipoproteins (TGRLP), chylomicrons (CM), and very-low-density lipoproteins (VLDL). Following lipolysis of TG (triglyceride) of TGRLP on the cell surface of endothelial cells, FAs traverse the muscle-type continuous capillary layer via protein-mediated and/or nonprotein-mediated pathways. In turn, FAs bound to albumin in the interstitial space are taken up by the heart via the flip-flop mechanism, which is likely facilitated by several plasma-membrane proteins, including FAT (FA translocase)/CD36. Most FAs are utilized in the heart to generate ATP and the remaining FAs are used as TG storage, membrane phospholipid components, and lipid mediators. During fasting, FA uptake and oxidation are enhanced via transcriptional activation by peroxisome proliferator-activated receptor γ (PPARγ) in capillary endothelial cells and by PPARα and PPARγ coactivator-1α (PGC-1α) in cardiomyocytes. Inherited disorders that affect FAO compromise the function of the heart in catabolic states, such as fasting, which causes sudden infant death syndrome. This section describes the mechanisms that regulate FA uptake by the heart in the fed or fasted state as well as the effects of fasting on cardiac function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ATP:

Adenosine triphosphate

CM:

Chylomicrons

ECs:

Endothelial cells

ETC:

Electron transport chain

FABP:

Fatty acid binding protein

FAD:

Flavin adenine dinucleotide

FAO:

Fatty acid oxidation

FAT:

Fatty acid translocase

FATP:

Fatty acid transport protein

FFA:

Free fatty acid

GPIHBP1:

Glycosylphosphatidylinositol-anchored protein 1

LPL:

Lipolysis, lipoprotein lipase

Meox2:

Mesodermal homeobox-2

NAD:

Nicotinamide adenine dinucleotide

PDH:

Pyruvate dehydrogenase

PDK4:

Pyruvate dehydrogenase kinase 4

PGC-1α:

PPARγ coactivator-1α

PPAR:

Peroxisome proliferator-activated receptor

PPRE:

PPAR response elements

REE:

Resting energy expenditure

RXR:

Retinoid X receptor

TCA cycle:

Tricarboxylic acid cycle

Tcf15:

Transcription factors 15

TG:

Triglyceride

TGRLP:

TG-rich lipoproteins

VEGF-B:

Vascular endothelial growth factor-B

VLDL:

Very-low-density lipoproteins

VLDLR:

VLDL receptor

References

  • Abumrad NA, Goldberg IJ (2016) CD36 actions in the heart: lipids, calcium, inflammation, repair and more? Biochim Biophys Acta 1860:1442–1449

    Article  Google Scholar 

  • Adeyo O, Goulbourne CN, Bensadoun A et al (2012) Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 and the intravascular processing of triglyceride-rich lipoproteins. J Intern Med 272:528–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Augustus A, Yagyu H, Haemmerle G et al (2004) Cardiac-specific knock-out of lipoprotein lipase alters plasma lipoprotein triglyceride metabolism and cardiac gene expression. J Biol Chem 279:25050–25057

    Article  CAS  PubMed  Google Scholar 

  • Bharadwaj KG, Hiyama Y, Hu Y et al (2010) Chylomicron- and VLDL-derived lipids enter the heart through different pathways: in vivo evidence for receptor- and non-receptor-mediated fatty acid uptake. J Biol Chem 285:37976–37986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu AP, Wan A, Rodrigues B (2016) Cardiomyocyte-endothelial cell control of lipoprotein lipase. Biochim Biophys Acta 1860:1434–1441

    Article  Google Scholar 

  • Coppiello G, Collantes M, Sirerol-Piquer MS et al (2015) Meox2/Tcf15 heterodimers program the heart capillary endothelium for cardiac fatty acid uptake. Circulation 131:815–826

    Article  CAS  PubMed  Google Scholar 

  • Cotter DG, Schugar RC, Crawford PA (2013) Ketone body metabolism and cardiovascular disease. Am J Physiol Heart Circ Physiol 304:H1060–H1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doenst T, Nguyen TD, Abel ED (2013) Cardiac metabolism in heart failure: implications beyond ATP production. Circ Res 113:709–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans RD, Hauton D (2016) The role of triacylglycerol in cardiac energy provision. Biochim Biophys Acta 1860:1481–1491

    Article  Google Scholar 

  • Finck BN (2007) The PPAR regulatory system in cardiac physiology and disease. Cardiovasc Res 73:269–277

    Article  CAS  PubMed  Google Scholar 

  • Gallagher D, Belmonte D, Deurenberg P et al (1998) Organ-tissue mass measurement allows modeling of REE and metabolically active tissue mass. Am J Phys 275:E249–E258

    CAS  Google Scholar 

  • Glatz JF, Nabben M, Heather LC et al (2016) Regulation of the subcellular trafficking of CD36, a major determinant of cardiac fatty acid utilization. Biochim Biophys Acta 1860:1461–1471

    Article  Google Scholar 

  • Goldberg IJ, Trent CM, Schulze PC (2012) Lipid metabolism and toxicity in the heart. Cell Metab 15:805–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goto K, Iso T, Hanaoka H et al (2013) Peroxisome proliferator-activated receptor-gamma in capillary endothelia promotes fatty acid uptake by heart during long-term fasting. J Am Heart Assoc 2:e004861

    Article  PubMed  PubMed Central  Google Scholar 

  • Hagberg CE, Falkevall A, Wang X et al (2010) Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 464:917–921

    Article  CAS  PubMed  Google Scholar 

  • Houten SM, Wanders RJ (2010) A general introduction to the biochemistry of mitochondrial fatty acid beta-oxidation. J Inherit Metab Dis 33:469–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hue L, Taegtmeyer H (2009) The Randle cycle revisited: a new head for an old hat. Am J Physiol Endocrinol Metab 297:E578–E591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huss JM, Kelly DP (2004) Nuclear receptor signaling and cardiac energetics. Circ Res 95:568–578

    Article  CAS  PubMed  Google Scholar 

  • Iso T, Maeda K, Hanaoka H et al (2013) Capillary endothelial fatty acid binding proteins 4 and 5 play a critical role in fatty acid uptake in heart and skeletal muscle. Arterioscler Thromb Vasc Biol 33:2549–2557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanda T, Brown JD, Orasanu G et al (2009) PPARgamma in the endothelium regulates metabolic responses to high-fat diet in mice. J Clin Invest 119:110–124

    CAS  PubMed  Google Scholar 

  • Kolwicz SC Jr, Purohit S, Tian R (2013) Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res 113:603–616

    Article  CAS  PubMed  Google Scholar 

  • Levak-Frank S, Hofmann W, Weinstock PH et al (1999) Induced mutant mouse lines that express lipoprotein lipase in cardiac muscle, but not in skeletal muscle and adipose tissue, have normal plasma triglyceride and high-density lipoprotein-cholesterol levels. Proc Natl Acad Sci 96:3165–3170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopaschuk GD, Ussher JR, Folmes CD et al (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90:207–258

    Article  CAS  PubMed  Google Scholar 

  • Love-Gregory L, Abumrad NA (2011) CD36 genetics and the metabolic complications of obesity. Curr Opin Clin Nutr Metab Care 14:527–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marray RK (ed) (2009) Harper's illustrated biochemistry, 28th edn. McGraw-Hill, New York

    Google Scholar 

  • Merkel M, Eckel RH, Goldberg IJ (2002) Lipoprotein lipase: genetics, lipid uptake, and regulation. J Lipid Res 43:1997–2006

    Google Scholar 

  • Neculai D, Schwake M, Ravichandran M et al (2013) Structure of LIMP-2 provides functional insights with implications for SR-BI and CD36. Nature 504:172–176

    Article  CAS  PubMed  Google Scholar 

  • Patni N, Ahmad Z, Wilson DP (2000) Genetics and dyslipidemia. In: De Groot LJ, Chrousos G, Dungan K et al (eds) Endotext. South Dartmouth. https://www.ncbi.nlm.nih.gov/books/NBK395584/

  • Rowe GC, Jiang A, Arany Z (2010) PGC-1 coactivators in cardiac development and disease. Circ Res 107:825–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samarel AM, Parmacek MS, Magid NM et al (1987) Protein synthesis and degradation during starvation-induced cardiac atrophy in rabbits. Circ Res 60:933–941

    Article  CAS  PubMed  Google Scholar 

  • Spiekerkoetter U, Wood PA (2010) Mitochondrial fatty acid oxidation disorders: pathophysiological studies in mouse models. J Inherit Metab Dis 33:539–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanley WC, Meadows SR, Kivilo KM et al (2003) Beta-Hydroxybutyrate inhibits myocardial fatty acid oxidation in vivo independent of changes in malonyl-CoA content. Am J Physiol Heart Circ Physiol 285:H1626–H1631

    Article  CAS  PubMed  Google Scholar 

  • Suzuki J, Shen WJ, Nelson BD et al (2002) Cardiac gene expression profile and lipid accumulation in response to starvation. Am J Physiol Endocrinol Metab 283:E94–E102

    Article  CAS  PubMed  Google Scholar 

  • Taegtmeyer H, Young ME, Lopaschuk GD et al (2016) Assessing cardiac metabolism: a scientific statement from the American Heart Association. Circ Res 118:1659–1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Vusse GJ, van Bilsen M, Glatz JF (2000) Cardiac fatty acid uptake and transport in health and disease. Cardiovasc Res 45:279–293

    Article  PubMed  Google Scholar 

  • Wagenmakers AJ, Strauss JA, Shepherd SO et al (2016) Increased muscle blood supply and transendothelial nutrient and insulin transport induced by food intake and exercise: effect of obesity and ageing. J Physiol 594:2207–2222

    Article  CAS  PubMed  Google Scholar 

  • Webb JG, Kiess MC, Chan-Yan CC (1986) Malnutrition and the heart. Can Med Assoc J 135:753–758

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Iso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Iso, T., Kurabayashi, M. (2017). Fatty Acid Uptake by the Heart During Fasting. In: Preedy, V., Patel, V. (eds) Handbook of Famine, Starvation, and Nutrient Deprivation. Springer, Cham. https://doi.org/10.1007/978-3-319-40007-5_13-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40007-5_13-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40007-5

  • Online ISBN: 978-3-319-40007-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics