Skip to main content

Current Progress and Potential Microbial Cornucopia for Plastic Degradation

  • Chapter
  • First Online:
Advanced Strategies for Biodegradation of Plastic Polymers
  • 88 Accesses

Abstract

Plastic pollution has emerged to be the biggest global concern in the modern day. The production of large volumes and different varieties of plastics has led to their huge accumulation and contamination in environmental matrices. Along with plastics, there are additional problems posed by microplastics and related chemicals like phthalates that leach into surrounding resources, thereby polluting them and causing health hazards to living organisms. Thus, their degradation becomes an immediate concern. Although some strategies like photodegradation have been suggested to tackle plastic menace, microbial degradation has been found to be the most effective one. Several microbes have been isolated, characterized, and screened for plastic degradation. Various screening procedures provide more potent microorganisms that break down a variety of plastics by producing several specific and non-specific enzymes. These microbes constitute bacteria, fungi, and other classes like diatoms and microalgae. In-depth studies linked to potent microbes like Ideonella sakaiensis and establishment of databases like PlasticDB make the process more convenient. Further, advancements in molecular techniques like metagenomics and genetic engineering have opened doors for prospecting newer tactics against this global issue. This chapter deals with the microbial cornucopia that are capable of metabolizing various types of plastics and their allied aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akutsu, Y., Nakajima-Kambe, T., Nomura, N., & Nakahara, T. (1998). Purification and properties of a polyester polyurethane-degrading enzyme from Comamonas acidovorans TB-35. Applied and Environmental Microbiology, 64(1), 62–67.

    Article  CAS  Google Scholar 

  • Ali, M. I., Ahmed, S., Robson, G., Javed, I., Ali, N., Atiq, N., & Hameed, A. (2014). Isolation and molecular characterization of polyvinyl chloride (PVC) plastic degrading fungal isolates. Journal of Basic Microbiology, 54(1), 18–27.

    Article  CAS  Google Scholar 

  • Barcoto, M. O., & Rodrigues, A. (2022). Lessons from insect fungiculture: From microbial ecology to plastics degradation. Frontiers in Microbiology, 13, 812143.

    Article  Google Scholar 

  • Barth, M., Honak, A., Oeser, T., et al. (2016). A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films. Biotechnology Journal, 11(8), 1082–1087.

    Article  CAS  Google Scholar 

  • Batista-García, R. A., Sutton, T., Jackson, S. A., et al. (2017). Characterization of lignocellulolytic activities from fungi isolated from the deep-sea sponge Stelletta normani. PLoS One, 12(3), e0173750.

    Article  Google Scholar 

  • Bergmann, M., Collard, F., Fabres, J., et al. (2022). Plastic pollution in the Arctic. Nature Reviews Earth & Environment, 3(5), 323–337.

    Article  CAS  Google Scholar 

  • Blettler, M. C., & Mitchell, C. (2021). Dangerous traps: Macroplastic encounters affecting freshwater and terrestrial wildlife. Science of the Total Environment, 798, 149317.

    Article  CAS  Google Scholar 

  • Boll, M., Geiger, R., Junghare, M., & Schink, B. (2020). Microbial degradation of phthalates: Biochemistry and environmental implications. Environmental Microbiology Reports, 12(1), 3–15.

    Article  CAS  Google Scholar 

  • Bollinger, A., Thies, S., Knieps-Grünhagen, E., et al. (2020). A novel polyester hydrolase from the marine bacterium Pseudomonas aestusnigri–structural and functional insights. Frontiers in Microbiology, 11, 114.

    Article  Google Scholar 

  • Bolyen, E., Rideout, J. R., Dillon, M. R., et al. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852–857.

    Article  CAS  Google Scholar 

  • Brunner, I., Fischer, M., Rüthi, J., Stierli, B., & Frey, B. (2018). Ability of fungi isolated from plastic debris floating in the shoreline of a lake to degrade plastics. PLoS One, 13(8), e0202047.

    Article  Google Scholar 

  • Buchholz, P. C., Feuerriegel, G., Zhang, H., et al. (2022). Plastics degradation by hydrolytic enzymes: The plastics-active enzymes database—PAZy. Proteins: Structure, Function, and Bioinformatics, 90(7), 1443–1456.

    Article  CAS  Google Scholar 

  • Cai, L., Wang, J., Peng, J., et al. (2018). Observation of the degradation of three types of plastic pellets exposed to UV irradiation in three different environments. Science of the Total Environment, 628, 740–747.

    Article  Google Scholar 

  • Callahan, B. J., McMurdie, P. J., Rosen, M. J., et al. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581–583.

    Article  CAS  Google Scholar 

  • Carson, H. S., Nerheim, M. S., Carroll, K. A., & Eriksen, M. (2013). The plastic-associated microorganisms of the North Pacific Gyre. Marine Pollution Bulletin, 75(1–2), 126–132.

    Article  CAS  Google Scholar 

  • Caruso, F., Tedesco, P., Della Sala, G., Palma Esposito, F., Signore, M., Canese, S., et al. (2022). Science and dissemination for the UN Ocean decade outcomes: Current trends and future perspectives. Frontiers in Marine Science, 9, 863647.

    Article  Google Scholar 

  • Casabianca, S., Capellacci, S., Giacobbe, M. G., et al. (2019). Plastic-associated harmful microalgal assemblages in marine environment. Environmental Pollution, 244, 617–626.

    Article  CAS  Google Scholar 

  • Chakraborty, P., Sampath, S., Mukhopadhyay, M., Selvaraj, S., Bharat, G. K., & Nizzetto, L. (2019). Baseline investigation on plasticizers, bisphenol a, polycyclic aromatic hydrocarbons and heavy metals in the surface soil of the informal electronic waste recycling workshops and nearby open dumpsites in Indian metropolitan cities. Environmental Pollution, 248, 1036–1045.

    Article  CAS  Google Scholar 

  • Chamas, A., Moon, H., Zheng, J., et al. (2020). Degradation rates of plastics in the environment. ACS Sustainable Chemistry & Engineering, 8(9), 3494–3511.

    Article  CAS  Google Scholar 

  • Chang, B. V., Yang, C. M., Cheng, C. H., & Yuan, S. Y. (2004). Biodegradation of phthalate esters by two bacteria strains. Chemosphere, 55(4), 533–538.

    Article  CAS  Google Scholar 

  • Charnock, C. (2021). Norwegian soils and waters contain mesophilic, plastic-degrading bacteria. Microorganisms, 9(1), 94.

    Article  CAS  Google Scholar 

  • Chouhan, S., Yadav, S. K., Prakash, J., & Swati, & Singh, S. P. (2014). Effect of Bisphenol A on human health and its degradation by microorganisms: A review. Annals of Microbiology, 64, 13–21.

    Article  CAS  Google Scholar 

  • Crabbe, J. R., Campbell, J. R., Thompson, L., et al. (1994). Biodegradation of a colloidal ester-based polyurethane by soil fungi. International Biodeterioration & Biodegradation, 33(2), 103–113.

    Article  Google Scholar 

  • Das, M. P., & Kumar, S. (2015). An approach to low-density polyethylene biodegradation by bacillus amyloliquefaciens. 3 Biotech, 5(1), 81–86.

    Article  Google Scholar 

  • Dvořák, P., Nikel, P. I., Damborský, J., & de Lorenzo, V. (2017). Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology. Biotechnology Advances, 35(7), 845–866.

    Article  Google Scholar 

  • Espinosa, M. J. C., Blanco, A. C., Schmidgall, T., et al. (2020). Toward biorecycling: Isolation of a soil bacterium that grows on a polyurethane oligomer and monomer. Frontiers in Microbiology, 11, 404.

    Article  Google Scholar 

  • Feng, X., Wang, G., Neumann, K., et al. (2017). Synthesis and characterization of biodegradable poly (ether-ester) urethane acrylates for controlled drug release. Materials Science and Engineering: C, 74, 270–278.

    Article  CAS  Google Scholar 

  • Fields, R. D., Rodriguez, F., & Finn, R. K. (1974). Microbial degradation of polyesters: Polycaprolactone degraded by P. pullulans. Journal of Applied Polymer Science, 18(12), 3571–3579.

    Article  CAS  Google Scholar 

  • Fujiwara, R., Sanuki, R., Ajiro, H., et al. (2021). Direct fermentative conversion of poly (ethylene terephthalate) into poly (hydroxyalkanoate) by Ideonella sakaiensis. Scientific Reports, 11(1), 19991.

    Article  CAS  Google Scholar 

  • Gaj, T., Gersbach, C. A., & Barbas, C. F. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 31(7), 397–405.

    Article  CAS  Google Scholar 

  • Gambarini, V., Pantos, O., Kingsbury, J. M., et al. (2021). Phylogenetic distribution of plastic degrading microorganisms. mSystems, 6, e01112–e01120.

    Article  CAS  Google Scholar 

  • Gambarini, V., Pantos, O., Kingsbury, J. M., et al. (2022). PlasticDB: A database of microorganisms and proteins linked to plastic biodegradation. Database, baac008.

    Google Scholar 

  • Gan, Z., & Zhang, H. (2019). PMBD: A comprehensive plastics microbial biodegradation database. Database, baz119.

    Google Scholar 

  • Gao, R., Liu, R., & Sun, C. (2022). A marine fungus Alternaria alternata FB1 efficiently degrades polyethylene. Journal of Hazardous Materials, 431, 128617.

    Article  CAS  Google Scholar 

  • Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782.

    Article  Google Scholar 

  • Ghosal, D., Ghosh, S., Dutta, T. K., & Ahn, Y. (2016). Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review. Frontiers in Microbiology, 1369.

    Google Scholar 

  • Goel, V., Luthra, P., Kapur, G. S., & Ramakumar, S. S. V. (2021). Biodegradable/bio-plastics: Myths and realities. Journal of Polymers and the Environment, 29, 3079–3104.

    Article  CAS  Google Scholar 

  • Gong, Z., Jin, L., Yu, X., Wang, B., Hu, S., Ruan, H., et al. (2023). Biodegradation of low density polyethylene by the fungus Cladosporium sp. recovered from a landfill site. Journal of Fungi, 9(6), 605.

    Article  CAS  Google Scholar 

  • Gowthami, A., Marjuk, M. S., Raju, P., Devi, K. N., Santhanam, P., Kumar, S. D., & Perumal, P. (2023). Biodegradation efficacy of selected marine microalgae against low-density polyethylene (LDPE): An environment friendly green approach. Marine Pollution Bulletin, 190, 114889.

    Article  CAS  Google Scholar 

  • Gu, J. D., Li, J. X., & Wang, Y. Y. (2005). Biochemical pathway and degradation of phthalate ester isomers by bacteria. Water Science and Technology, 52(8), 241–248.

    Article  CAS  Google Scholar 

  • Gui, Z., Liu, G., Liu, X., Cai, R., Liu, R., & Sun, C. (2023). A deep-sea bacterium is capable of degrading polyurethane. Microbiology Spectrum, 11, e00073–e00023.

    Article  Google Scholar 

  • Guo, H., Zheng, B., Jiang, D., & Qin, W. (2017). Overexpression of a laccase with dye decolorization activity from bacillus sp. induced in Escherichia coli. Journal of Molecular Microbiology and Biotechnology, 27(4), 217–227.

    Google Scholar 

  • Han, Y. N., Wei, M., Han, F., Fang, C., Wang, D., Zhong, Y. J., et al. (2020). Greater biofilm formation and increased biodegradation of polyethylene film by a microbial consortium of Arthrobacter sp. and Streptomyces sp. Microorganisms, 8(12), 1979.

    Article  CAS  Google Scholar 

  • Hartmann, G. F., Ricachenevsky, F. K., Silveira, N. M., & Pita-Barbosa, A. (2022). Phytotoxic effects of plastic pollution in crops: What is the size of the problem? Environmental Pollution, 292, 118420.

    Article  CAS  Google Scholar 

  • Herrero Acero, E., Ribitsch, D., Dellacher, A., et al. (2013). Surface engineering of a cutinase from Thermobifida cellulosilytica for improved polyester hydrolysis. Biotechnology and Bioengineering, 110(10), 2581–2590.

    Article  CAS  Google Scholar 

  • Hou, L., Xi, J., Liu, J., Wang, P., Xu, T., Liu, T., et al. (2022). Biodegradability of polyethylene mulching film by two pseudomonas bacteria and their potential degradation mechanism. Chemosphere, 286, 131758.

    Article  CAS  Google Scholar 

  • Huerta Lwanga, E., Gertsen, H., Gooren, H., et al. (2016). Microplastics in the terrestrial ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environmental Science & Technology, 50(5), 2685–2691.

    Article  CAS  Google Scholar 

  • Ihssen, J., Reiss, R., Luchsinger, R., Thöny-Meyer, L., & Richter, M. (2015). Biochemical properties and yields of diverse bacterial laccase-like multicopper oxidases expressed in Escherichia coli. Scientific Reports, 5(1), 10465–10478.

    Article  CAS  Google Scholar 

  • Indumathi, A., & Gayathri, T. (2016). Plastic degrading ability of aspergillus oryzae isolated from the garbage dumping sites of Thanjavur, India. International Journal of Current Microbiology and Applied Sciences., 8(13), 2319–7706.

    Google Scholar 

  • Jambeck, J. R., Geyer, R., Wilcox, C., et al. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768–771.

    Article  CAS  Google Scholar 

  • Janatunaim, R. Z., & Fibriani, A. (2020). Construction and cloning of plastic-degrading recombinant enzymes (MHETase). Recent Patents on Biotechnology, 14(3), 229–234.

    Article  CAS  Google Scholar 

  • Jeon, H. J., & Kim, M. N. (2015). Functional analysis of alkane hydroxylase system derived from Pseudomonas aeruginosa E7 for low molecular weight polyethylene biodegradation. International Biodeterioration and Biodegradation, 103, 141–146.

    Article  CAS  Google Scholar 

  • Jeyakumar, D., Chirsteen, J., & Doble, M. (2013). Synergistic effects of pretreatment and blending on fungi mediated biodegradation of polypropylenes. Bioresource Technology, 148, 78–85.

    Article  CAS  Google Scholar 

  • Johnnie, D. A., Issac, R., & Prabha, M. L. (2021). Bio efficacy assay of laccase isolated and characterized from Trichoderma viride in biodegradation of low density polyethylene (LDPE) and textile industrial effluent dyes. Journal of Pure & Applied Microbiology, 15(1), 410–420.

    Article  CAS  Google Scholar 

  • Joo, S., Cho, I. J., Seo, H., et al. (2018). Structural insight into molecular mechanism of poly (ethylene terephthalate) degradation. Nature Communications, 9(1), 382.

    Article  Google Scholar 

  • Jumper, J., Evans, R., Pritzel, A., et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589.

    Article  CAS  Google Scholar 

  • Kale, S. K., Deshmukh, A. G., Dudhare, M. S., & Patil, V. B. (2015). Microbial degradation of plastic: A review. Journal of Biochemical Technology, 6(2), 952–961.

    CAS  Google Scholar 

  • Karich, A., Ullrich, R., Scheibner, K., & Hofrichter, M. (2017). Fungal unspecific peroxygenases oxidize the majority of organic EPA priority pollutants. Frontiers in Microbiology, 8, 1463–1478.

    Article  Google Scholar 

  • Kawai, F., Oda, M., Tamashiro, T., et al. (2014). A novel ca 2+−activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190. Applied Microbiology and Biotechnology, 98, 10053–10064.

    Article  CAS  Google Scholar 

  • Kay, M. J., Morton, L. H. G., & Prince, E. L. (1991). Bacterial degradation of polyester polyurethane. International Biodeterioration, 27(2), 205–222.

    Article  CAS  Google Scholar 

  • Khan, S., Ali, S. A., & Ali, A. S. (2023). Biodegradation of low density polyethylene (LDPE) by mesophilic fungus ‘Penicillium citrinum’isolated from soils of plastic waste dump yard, Bhopal, India. Environmental Technology, 44(15), 2300–2314.

    Article  CAS  Google Scholar 

  • Khatoon, N., Jamal, A., & Ali, M. I. (2019). Lignin peroxidase isoenzyme: A novel approach to biodegrade the toxic synthetic polymer waste. Environmental Technology, 40(11), 1366–1375.

    Article  CAS  Google Scholar 

  • Khoironi, A., Anggoro, S., & Sudarno. (2019). Evaluation of the interaction among microalgae Spirulina sp, plastics polyethylene terephthalate and polypropylene in freshwater environment. Journal of Ecological Engineering, 20(6), 161–173.

    Article  Google Scholar 

  • Khruengsai, S., Sripahco, T., & Pripdeevech, P. (2022). Biodegradation of polyester polyurethane by Embarria clematidis. Frontiers in Microbiology, 13, 874842.

    Article  Google Scholar 

  • Kim, J. H., Choi, S. H., Park, M. G., Park, D. H., Son, K. H., & Park, H. Y. (2022). Polyurethane biodegradation by Serratia sp. HY-72 isolated from the intestine of the Asian mantis Hierodula patellifera. Frontiers in Microbiology, 13, 1005415.

    Article  Google Scholar 

  • Kim, H. R., Lee, C., Shin, H., et al. (2023). Isolation of a polyethylene-degrading bacterium, Acinetobacter guillouiae, using a novel screening method based on a redox indicator. Heliyon, 9(5), e15731.

    Article  CAS  Google Scholar 

  • Kulkarni, S., Nene, S., & Joshi, K. (2017). Production of Hydrophobins from fungi. Process Biochemistry, 61, 1–11.

    Article  CAS  Google Scholar 

  • Kumar, R. V., Kanna, G. R., & Elumalai, S. (2017). Biodegradation of polyethylene by green photosynthetic microalgae. Journal of Bioremediation & Biodegradation, 8(381), 2.

    Google Scholar 

  • Kumar, S., Das, M. P., Rebecca, L. J., & Sharmila, S. (2013). Isolation and identification of LDPE degrading fungi from municipal solid waste. Journal of Chemical and Pharmaceutical Research, 5(3), 78–81.

    CAS  Google Scholar 

  • Kumari, A., & Chaudhary, D. R. (2020). Engineered microbes and evolving plastic bioremediation technology. In Bioremediation of pollutants (pp. 417–443). Elsevier.

    Chapter  Google Scholar 

  • Kurniawan, S. B., & Imron, M. F. (2019). The effect of tidal fluctuation on the accumulation of plastic debris in the Wonorejo River Estuary, Surabaya, Indonesia. Environmental Technology & Innovation, 15, 100420.

    Article  Google Scholar 

  • Kutmon, M., van Iersel, M. P., Bohler, A., et al. (2015). PathVisio 3: An extendable pathway analysis toolbox. PLoS Computational Biology, 11(2), e1004085.

    Article  Google Scholar 

  • Laroche, O., Pantos, O., Kingsbury, J. M., Zaiko, A., Wallbank, J., Lear, G., et al. (2023). A spatio-temporal analysis of marine diatom communities associated with pristine and aged plastics. Biofouling, 39, 1–17.

    Article  Google Scholar 

  • Liu, J., Zeng, Q., Lei, H., et al. (2023). Biodegradation of polyester polyurethane by Cladosporium sp. P7: Evaluating its degradation capacity and metabolic pathways. Journal of Hazardous Materials, 448, 130776.

    Article  CAS  Google Scholar 

  • Lin, Z., Jin, T., Xu, X., Yin, X., Zhang, D., Geng, M., et al. (2024). Screening and degradation characteristics of plastic-degrading microorganisms in film-mulched vegetable soil. International Biodeterioration & Biodegradation, 186, 105686.

    Article  CAS  Google Scholar 

  • Liu, K., Su, Z., Miao, S., et al. (2016). Enzymatic waterborne polyurethane towards a robust and environmentally friendly anti-biofouling coating. RSC Advances, 6(38), 31698–31704.

    Article  CAS  Google Scholar 

  • Lomwongsopon, P., & Varrone, C. (2022). Critical review on the progress of plastic bioupcycling technology as a potential solution for sustainable plastic waste management. Polymers, 14(22), 4996.

    Article  CAS  Google Scholar 

  • Loredo-Treviño, A., Gutiérrez-Sánchez, G., Rodríguez-Herrera, R., & Aguilar, C. N. (2012). Microbial enzymes involved in polyurethane biodegradation: A review. Journal of Polymers and the Environment, 20, 258–265.

    Article  Google Scholar 

  • Maeda, H., Yamagata, Y., Abe, K., et al. (2005). Purification and characterization of a biodegradable plasticdegrading enzyme from aspergillus oryzae. Applied Microbiology and Biotechnology, 67, 778–788.

    Article  CAS  Google Scholar 

  • Magnin, A., Pollet, E., Phalip, V., & Avérous, L. (2020). Evaluation of biological degradation of polyurethanes. Biotechnology Advances, 39, 107457.

    Article  CAS  Google Scholar 

  • Maroof, L., Iqbal, M., Farman, S., & Faisal, S. (2022). Biodegradation of low-density polyethylene (LDPE) bags by fungi isolated from waste disposal soil. Applied and Environmental Soil Science, 2022, 1–7.

    Google Scholar 

  • Matthews, S., Belcher, J. D., Tee, K. L., et al. (2017). Catalytic determinants of alkene production by the cytochrome P450 peroxygenase OleTJE. The Journal of Biological Chemistry, 292, 5128–5143.

    Article  CAS  Google Scholar 

  • Mishra, A., Gupta, J., Kumari, T., Pal, R., & Thakur, I. S. (2021). Unravelling the attributes of novel cyanobacteria Jacksonvillea sp. ISTCYN1 by draft genome sequencing. Bioresource Technology, 337, 125473.

    Article  CAS  Google Scholar 

  • Mo, Y., Lao, H. I., Au, S. W., et al. (2022). Expression, secretion and functional characterization of three laccases in E. Coli. Synthetic and Systems Biotechnology, 7(1), 474–480.

    Article  CAS  Google Scholar 

  • Montazer, Z., Habibi-Najafi, M. B., Mohebbi, M., & Oromiehei, A. (2018). Microbial degradation of UV-pretreated low-density polyethylene films by novel polyethylene-degrading bacteria isolated from plastic-dump soil. Journal of Polymers and the Environment, 26, 3613–3625.

    Article  CAS  Google Scholar 

  • Montazer, Z., Habibi Najafi, M. B., & Levin, D. B. (2019). Microbial degradation of low-density polyethylene and synthesis of polyhydroxyalkanoate polymers. Canadian Journal of Microbiology, 65(3), 224–234.

    Article  CAS  Google Scholar 

  • Munir, E., Harefa, R. S. M., Priyani, N., & Suryanto, D. (2018, March). Plastic degrading fungi Trichoderma viride and aspergillus nomius isolated from local landfill soil in Medan. In IOP conference series: Earth and environmental science (Vol. 126, No. 1, p. 012145). IOP Publishing.

    Google Scholar 

  • Ndahebwa Muhonja, C., Magoma, G., Imbuga, M., & Makonde, H. M. (2018). Molecular characterization of low-density polyethene (LDPE) degrading bacteria and fungi from Dandora dumpsite, Nairobi, Kenya. International Journal of Microbiology, 2018.

    Google Scholar 

  • Nakajima-Kambe, T., Onuma, F., Kimpara, N., & Nakahara, T. (1995). Isolation and characterization of a bacterium which utilizes polyester polyurethane as a sole carbon and nitrogen source. FEMS Microbiology Letters, 129(1), 39–42.

    Article  CAS  Google Scholar 

  • Nakamiya, K., Ooi, T., & Kinoshita, S. (1997). Non-heme hydroquinone peroxidase from Azotobacter beijerinckii HM121. Journal of Fermentation and Bioengineering, 84(1), 14–21.

    Article  CAS  Google Scholar 

  • Nanda, S., Sahu, S., & Abraham, J. (2010). Studies on the biodegradation of natural and synthetic polyethylene by Pseudomonas spp. Journal of Applied Sciences and Environmental Management, 14(2).

    Google Scholar 

  • Nandakumar, A., Chuah, J. A., & Sudesh, K. (2021). Bioplastics: A boon or bane? Renewable and Sustainable Energy Reviews, 147, 111237.

    Article  CAS  Google Scholar 

  • Oberbeckmann, S., Osborn, A. M., & Duhaime, M. B. (2016). Microbes on a bottle: Substrate, season and geography influence community composition of microbes colonizing marine plastic debris. PLoS One, 11(8), e0159289.

    Article  Google Scholar 

  • Ojha, N., Pradhan, N., Singh, S., et al. (2017). Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization. Scientific Reports, 7(1), 39515.

    Article  CAS  Google Scholar 

  • Olicón-Hernández, D. R., González-López, J., & Aranda, E. (2017). Overview on the biochemical potential of filamentous fungi to degrade pharmaceutical compounds. Frontiers in Microbiology, 8, 1792–1809.

    Article  Google Scholar 

  • Oluwoye, I., Machuca, L. L., Higgins, S., et al. (2023). Degradation and lifetime prediction of plastics in subsea and offshore infrastructures. Science of the Total Environment, 166719.

    Google Scholar 

  • Orhan, Y., & Büyükgüngör, H. (2000). Enhancement of biodegradability of disposable polyethylene in controlled biological soil. International Biodeterioration & Biodegradation, 45(1–2), 49–55.

    Article  CAS  Google Scholar 

  • Osman, M., Satti, S. M., Luqman, A., Hasan, F., Shah, Z., & Shah, A. A. (2018). Degradation of polyester polyurethane by aspergillus sp. strain S45 isolated from soil. Journal of Polymers and the Environment, 26, 301–310.

    Article  CAS  Google Scholar 

  • Palm, G. J., Reisky, L., Böttcher, D., et al. (2019). Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate. Nature Communications, 10(1), 1717.

    Article  Google Scholar 

  • Pathak, V. M. (2017). Review on the current status of polymer degradation: A microbial approach. Bioresources and Bioprocessing, 4(1), 1–31.

    Article  Google Scholar 

  • Patil, R., & Bagde, U. S. (2012). Isolation of polyvinyl chloride degrading bacterial strains from environmental samples using enrichment culture technique. African Journal of Biotechnology, 11(31), 7947–7956.

    CAS  Google Scholar 

  • Penkhrue, W., Khanongnuch, C., Masaki, K., et al. (2015). Isolation and screening of biopolymer-degrading microorganisms from northern Thailand. World Journal of Microbiology and Biotechnology, 31, 1431–1442.

    Article  CAS  Google Scholar 

  • Pinnell, L. J., Conkle, J. L., & Turner, J. W. (2022). Microbial succession during the degradation of bioplastic in coastal marine sediment favors sulfate reducing microorganisms. Frontiers in Marine Science, 9, 945822.

    Article  Google Scholar 

  • Plastics Europe. Plastics – The facts. (2018). Technical report, Plastic Europe, Brussels, Belgium, https://www.plasticseurope.org/application/files/6315/4510/9658/Plastics_the_facts_2018_AF_web.pdf. Last accessed 28/07/2023.

  • Plastics Europe. (2021). Plastics – The facts 2021. Available at https://plasticseurope.org/

  • Pramila, R., & Ramesh, K. V. (2011). Biodegradation of low-density polyethylene (LDPE) by fungi isolated from marine water a SEM analysis. African Journal of Microbiology Research, 5(28), 5013–5018.

    Article  CAS  Google Scholar 

  • Priya, A., Dutta, K., & Daverey, A. (2022). A comprehensive biotechnological and molecular insight into plastic degradation by microbial community. Journal of Chemical Technology & Biotechnology, 97(2), 381–390.

    Article  CAS  Google Scholar 

  • Puranik, S., Shukla, L., Kundu, A., et al. (2023). Exploring potent fungal isolates from sanitary landfill soil for in vitro degradation of dibutyl phthalate. Journal of Fungi, 9(1), 125.

    Article  CAS  Google Scholar 

  • Rani, A., & Singh, P. (2017). Screening of polyethylene degrading fungi from polyethylene dump site. International Journal of ChemTech Research, 10(3), 699–704.

    CAS  Google Scholar 

  • Renstad, R., Karlsson, S., & Albertsson, A. C. (1999). The influence of processing induced differences in molecular structure on the biological and non-biological degradation of poly (3-hydroxybutyrate-co-3-hydroxyvalerate), P (3-HB-co-3-HV). Polymer Degradation and Stability, 63(2), 201–211.

    Article  CAS  Google Scholar 

  • Ru, J., Huo, Y., & Yang, Y. (2020). Microbial degradation and valorization of plastic wastes. Frontiers in Microbiology, 11, 442.

    Article  Google Scholar 

  • Russell, J. R., Huang, J., Anand, P., et al. (2011). Biodegradation of polyester polyurethane by endophytic fungi. Applied and Environmental Microbiology, 77(17), 6076–6084.

    Article  CAS  Google Scholar 

  • Rüthi, J., Cerri, M., Brunner, I., et al. (2023). Discovery of plastic-degrading microbial strains isolated from the alpine and Arctic terrestrial plastisphere. Frontiers in Microbiology, 14, 1178474.

    Article  Google Scholar 

  • Sakti, A. D., Sembiring, E., Rohayani, P., et al. (2023). Identification of illegally dumped plastic waste in a highly polluted river in Indonesia using Sentinel-2 satellite imagery. Scientific Reports, 13(1), 5039.

    Article  CAS  Google Scholar 

  • Sakhalkar, S., & Mishra, R. L. (2013). Screening and identification of soil fungi with potential of plastic degrading ability. Indian Journal of Applied Research, 3(12), 1–3.

    Google Scholar 

  • Sánchez, C. (2009). Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnology Advances, 27(2), 185–194.

    Article  Google Scholar 

  • Sangale, M. K., Shahnawaz, M., & Ade, A. B. (2019). Potential of fungi isolated from the dumping sites mangrove rhizosphere soil to degrade polythene. Scientific Reports, 9(1), 5390.

    Article  Google Scholar 

  • Sanniyasi, E., Gopal, R. K., Gunasekar, D. K., & Raj, P. P. (2021). Biodegradation of low-density polyethylene (LDPE) sheet by microalga, Uronema africanum Borge. Scientific Reports, 11(1), 17233.

    Article  CAS  Google Scholar 

  • Santo, M., Weitsman, R., & Sivan, A. (2013). The role of the copper-binding enzyme, laccase, in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. International Biodeterioration and Biodegradation, 84, 204–210.

    Article  CAS  Google Scholar 

  • Sarkhel, R., Sengupta, S., Das, P., & Bhowal, A. (2020). Comparative biodegradation study of polymer from plastic bottle waste using novel isolated bacteria and fungi from marine source. Journal of Polymer Research, 27, 1–8.

    Article  Google Scholar 

  • Schmit, J. P., & Mueller, G. M. (2007). An estimate of the lower limit of global fungal diversity. Biodiversity and Conservation, 16, 99–111.

    Article  Google Scholar 

  • Schmidt, J., Wei, R., Oeser, T., et al. (2017). Degradation of polyester polyurethane by bacterial polyester hydrolases. Polymers, 9(2), 65.

    Article  Google Scholar 

  • Schwartz, M., Perrot, T., Aubert, E., et al. (2018). Molecular recognition of wood polyphenols by phase II detoxification enzymes of the white rot Trametes versicolor. Scientific Reports, 8(1), 8472–8483.

    Article  Google Scholar 

  • Seo, H., Kim, S., Son, H. F., et al. (2019). Production of extracellular PETase from Ideonella sakaiensis using sec-dependent signal peptides in E. coli. Biochemical and Biophysical Research Communications, 508(1), 250–255.

    Article  CAS  Google Scholar 

  • Sevilla, M. E., Garcia, M. D., Perez-Castillo, Y., et al. (2023). Degradation of PET bottles by an engineered Ideonella sakaiensis PETase. Polymers, 15(7), 1779.

    Article  CAS  Google Scholar 

  • Shah, Z., Gulzar, M., Hasan, F., & Shah, A. A. (2016). Degradation of polyester polyurethane by an indigenously developed consortium of Pseudomonas and bacillus species isolated from soil. Polymer Degradation and Stability, 134, 349–356.

    Article  CAS  Google Scholar 

  • Sharma, J., Gurung, T., Upadhyay, A., Nandy, K., Agnihotri, P., & Mitra, A. K. (2014). Isolation and characterization of plastic degrading bacteria from soil collected from the dumping grounds of an industrial area. International Journal of Advanced and Innovative Research, 3(3), 225–232.

    Google Scholar 

  • Sharma, N., Kumar, V., Maitra, S. S., Lakkaboyana, S. K., & Khantong, S. (2021). DBP biodegradation kinetics by Acinetobacter sp. 33F in pristine agricultural soil. Environmental Technology & Innovation, 21, 101240.

    Article  CAS  Google Scholar 

  • Sheik, S., Chandrashekar, K. R., Swaroop, K., & Somashekarappa, H. M. (2015). Biodegradation of gamma irradiated low density polyethylene and polypropylene by endophytic fungi. International Biodeterioration & Biodegradation, 105, 21–29.

    Article  CAS  Google Scholar 

  • Shi, L., Liu, H., Gao, S., Weng, Y., & Zhu, L. (2021). Enhanced extracellular production of is PETase in Escherichia coli via engineering of the pelB signal peptide. Journal of Agricultural and Food Chemistry, 69(7), 2245–2252.

    Article  CAS  Google Scholar 

  • Shimao, M., Saimoto, H., Kato, N., & Sakazawa, C. (1983). Properties and roles of bacterial symbionts of polyvinyl alcohol-utilizing mixed cultures. Applied and Environmental Microbiology, 46(3), 605–610.

    Article  CAS  Google Scholar 

  • Singh, G., Singh, A. K., & Bhatt, K. (2016). Biodegradation of polythenes by bacteria isolated from soil. International Journal of Research and Development in Pharmacy & Life Sciences, 5(2), 2056–2062.

    CAS  Google Scholar 

  • Skariyachan, S., Megha, M., Kini, M. N., et al. (2015). Selection and screening of microbial consortia for efficient and ecofriendly degradation of plastic garbage collected from urban and rural areas of Bangalore, India. Environmental Monitoring and Assessment, 187, 4174.

    Article  Google Scholar 

  • Son, H. F., Cho, I. J., Joo, S., et al. (2019). Rational protein engineering of thermo-stable PETase from Ideonella sakaiensis for highly efficient PET degradation. ACS Catalysis, 9(4), 3519–3526.

    Article  CAS  Google Scholar 

  • Soud, S. A. (2019). Biodegradation of polyethylene LDPE plastic waste using locally isolated Streptomyces sp. Journal of Pharmaceutical Sciences and Research, 11(4), 1333–1339.

    CAS  Google Scholar 

  • Sowmya, H. V., Ramalingappa, K., & M., & Thippeswamy, B. (2015). Degradation of polyethylene by Penicillium simplicissimum isolated from local dumpsite of Shivamogga district. Environment, Development and Sustainability, 17, 731–745.

    Article  Google Scholar 

  • Srikanth, M., Sandeep, T. S. R. S., Sucharitha, K., & Godi, S. (2022). Biodegradation of plastic polymers by fungi: A brief review. Bioresources and Bioprocessing, 9(1), 42.

    Article  Google Scholar 

  • Su, Y., Qi, H., Hou, Y., et al. (2022). Combined effects of microplastics and benzo [a] pyrene on the marine diatom Chaetoceros muelleri. Frontiers in Marine Science, 8, 779321.

    Article  Google Scholar 

  • Sulaiman, S., Yamato, S., Kanaya, E., et al. (2012). Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. Applied and Environmental Microbiology, 78(5), 1556–1562.

    Article  CAS  Google Scholar 

  • Sun, Y., Wu, M., Zang, J., Du, L., Huang, M., Chen, C., & Wang, J. (2023). Plastisphere microbiome: Methodology, diversity, and functionality. iMeta, 2(2), e101.

    Article  Google Scholar 

  • Taghavi, N., Singhal, N., Zhuang, W. Q., & Baroutian, S. (2021). Degradation of plastic waste using stimulated and naturally occurring microbial strains. Chemosphere, 263, 127975.

    Article  CAS  Google Scholar 

  • Takamoto, T., Shirasaka, H., Uyama, H., & Kobayashi, S. (2001). Lipase-catalyzed hydrolytic degradation of polyurethane in organic solvent. Chemistry Letters, 30(6), 492–493.

    Article  Google Scholar 

  • Takei, D., Washio, K., & Morikawa, M. (2008). Identification of alkane hydroxylase genes in Rhodococcus sp. strain TMP2 that degrades a branched alkane. Biotechnology Letters, 30, 1447–1452.

    Article  CAS  Google Scholar 

  • Tanasupawat, S., Takehana, T., Yoshida, S., et al. (2016). Ideonella sakaiensis sp. nov., isolated from a microbial consortium that degrades poly (ethylene terephthalate). International Journal of Systematic and Evolutionary Microbiology, 66(8), 2813–2818.

    Article  CAS  Google Scholar 

  • Tokiwa, Y., & Suzuki, T. (1977). Hydrolysis of polyesters by lipases. Nature, 270(5632), 76–78.

    Article  CAS  Google Scholar 

  • Tseng, W. S., Lee, M. J., Wu, J. A., Kuo, S. L., Chang, S. L., Huang, S. J., & Liu, C. T. (2023). Poly (butylene adipate-co-terephthalate) biodegradation by Purpureocillium lilacinum strain BA1S. Applied Microbiology and Biotechnology, 107(19), 6057–6070.

    Article  CAS  Google Scholar 

  • UniProt Consortium. (2019). UniProt: A worldwide hub of protein knowledge. Nucleic Acids Research, 47(D1), D506–D515.

    Article  Google Scholar 

  • Usha, R., Sangeetha, T., & Palaniswamy, M. (2011). Screening of polyethylene degrading microorganisms from garbage soil. Libyan Agriculture Research Center Journal International, 2(4), 200–204.

    Google Scholar 

  • Vaksmaa, A., Hernando-Morales, V., Zeghal, E., & Niemann, H. (2021). Microbial degradation of marine plastics: Current state and future prospects. Biotechnology for sustainable environment, 1, 111–154.

    Google Scholar 

  • Vermeiren, P., Muñoz, C. C., & Ikejima, K. (2016). Sources and sinks of plastic debris in estuaries: A conceptual model integrating biological, physical and chemical distribution mechanisms. Marine Pollution Bulletin, 113(1–2), 7–16.

    Article  CAS  Google Scholar 

  • Vidiella, B., & Solé, R. (2022). Ecological firewalls for synthetic biology. Iscience, 25(7), 104658.

    Article  Google Scholar 

  • Viljakainen, V. R., & Hug, L. A. (2021). New approaches for the characterization of plastic-associated microbial communities and the discovery of plastic-degrading microorganisms and enzymes. Computational and Structural Biotechnology Journal, 19, 6191–6200.

    Article  CAS  Google Scholar 

  • Vingiani, G. M., Leone, S., De Luca, D., Borra, M., Dobson, A. D., Ianora, A., et al. (2022). First identification and characterization of detoxifying plastic-degrading DBP hydrolases in the marine diatom Cylindrotheca closterium. Science of the Total Environment, 812, 152535.

    Article  CAS  Google Scholar 

  • Wallace, N. E., Adams, M. C., Chafin, A. C., et al. (2020). The highly crystalline PET found in plastic water bottles does not support the growth of the PETase-producing bacterium Ideonella sakaiensis. Environmental Microbiology Reports, 12(5), 578–582.

    Article  CAS  Google Scholar 

  • Wang, W., Leung, A. O. W., Chu, L. H., et al. (2018). Phthalates contamination in China: Status, trends and human exposure-with an emphasis on oral intake. Environmental Pollution, 238, 771–782.

    Article  CAS  Google Scholar 

  • Wang, J., Youkharibache, P., Zhang, D., et al. (2020). iCn3D, a web-based 3D viewer for sharing 1D/2D/3D representations of biomolecular structures. Bioinformatics, 36(1), 131–135.

    Article  CAS  Google Scholar 

  • Wang, D., Zhang, P., Yan, M., et al. (2022). Degradation mechanism and properties of debris of photocatalytically degradable plastics LDPE-TiO2 vary with environments. Polymer Degradation and Stability, 195, 109806.

    Article  CAS  Google Scholar 

  • Watanabe, M., Kawai, F., Shibata, M., et al. (2003). Computational method for analysis of polyethylene biodegradation. Journal of Computational and Applied Mathematics, 161, 133–144.

    Article  Google Scholar 

  • Wei, R., & Wierckx, N. (2021). Microbial degradation of plastics. Frontiers in Microbiology, 12, 635621.

    Article  Google Scholar 

  • Wilkes, R. A., & Aristilde, L. (2017). Degradation and metabolism of synthetic plastics and associated products by pseudomonas sp.: Capabilities and challenges. Journal of Applied Microbiology, 123(3), 582–593.

    Article  CAS  Google Scholar 

  • Wong, J. K. H., Lee, K. K., Tang, K. H. D., & Yap, P. S. (2020). Microplastics in the freshwater and terrestrial environments: Prevalence, fates, impacts and sustainable solutions. Science of the Total Environment, 719, 137512.

    Article  CAS  Google Scholar 

  • Wright, R. J., Bosch, R., Gibson, M. I., & Christie-Oleza, J. A. (2020). Plasticizer degradation by marine bacterial isolates: A proteogenomic and metabolomic characterization. Environmental Science & Technology, 54(4), 2244–2256.

    Article  CAS  Google Scholar 

  • Wu, H., Liu, Q., Sun, W., Lu, Y., Qi, Y., & Zhang, H. (2023). Biodegradability of polyethylene mulch film by Bacillus paramycoides. Chemosphere, 311, 136978.

    Article  CAS  Google Scholar 

  • Wufuer, R., Li, W., Wang, S., & Duo, J. (2022). Isolation and degradation characteristics of PBAT film degrading bacteria. International Journal of Environmental Research and Public Health, 19(24), 17087.

    Article  CAS  Google Scholar 

  • Yadav, V., Dhanger, S., & Sharma, J. (2022). Microplastics accumulation in agricultural soil: Evidence for the presence, potential effects, extraction, and current bioremediation approaches. Journal of Applied Biology and Biotechnology, 10(2), 38–47.

    Article  CAS  Google Scholar 

  • Yoon, M. G., Jeon, J. H., & Kim, M. N. (2012). Biodegradation of polyethylene by a soil bacterium and AlkB cloned recombinant cell. Journal of Bioremediation & Biodegradation, 3, 145.

    CAS  Google Scholar 

  • Yoshida, S., Hiraga, K., Takehana, T., et al. (2016). A bacterium that degrades and assimilates poly (ethylene terephthalate). Science, 351(6278), 1196–1199.

    Article  CAS  Google Scholar 

  • Yu, J., Sun, L., Ma, C., et al. (2016). Thermal degradation of PVC: A review. Waste Management, 48, 300–314.

    Article  CAS  Google Scholar 

  • Zahra, S., Abbas, S. S., Mahsa, M. T., & Mohsen, N. (2010). Biodegradation of low-density polyethylene (LDPE) by isolated fungi in solid waste medium. Waste Management, 30(3), 396–401.

    Article  CAS  Google Scholar 

  • Zeghal, E., Vaksmaa, A., Vielfaure, H., Boekhout, T., & Niemann, H. (2021). The potential role of marine fungi in plastic degradation–a review. Frontiers in Marine Science, 8, 738877–738894.

    Article  Google Scholar 

  • Zhang, F., Ding, Z., Gong, H., & Chi, J. (2019). Effects of microphytobenthos Cylindrotheca closterium on the fate of di-n-butyl phthalate in an aquatic microcosm. Marine Pollution Bulletin, 140, 101–106.

    Article  CAS  Google Scholar 

  • Zhang, Y., Lin, Y., Gou, H., et al. (2022a). Screening of polyethylene-degrading bacteria from Rhyzopertha Dominica and evaluation of its key enzymes degrading polyethylene. Polymers, 14(23), 5127.

    Article  CAS  Google Scholar 

  • Zhang, K., Hu, J., Yang, S., Xu, W., et al. (2022b). Biodegradation of polyester polyurethane by the marine fungus Cladosporium halotolerans 6UPA1. Journal of Hazardous Materials, 437, 129406.

    Article  CAS  Google Scholar 

  • Zhang, N., Ding, M., & Yuan, Y. (2022c). Current advances in biodegradation of polyolefins. Microorganisms, 10(8), 1537.

    Article  CAS  Google Scholar 

  • Zylstra, E. R. (2013). Accumulation of wind-dispersed trash in desert environments. Journal of Arid Environments, 89, 13–15.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Puranik, S., Shylla, A., Manoj, M., Vijaysri, D. (2024). Current Progress and Potential Microbial Cornucopia for Plastic Degradation. In: Soni, R., Debbarma, P., Suyal, D.C., Goel, R. (eds) Advanced Strategies for Biodegradation of Plastic Polymers. Springer, Cham. https://doi.org/10.1007/978-3-031-55661-6_3

Download citation

Publish with us

Policies and ethics