Skip to main content

Application of CRISPR Technology and Nanomaterials to Advance Food Supply

  • Chapter
  • First Online:
Applications of Nanotechnology in Microbiology

Abstract

Perceptive breeding of domesticated crop plants and farm animals is nothing unknown or new. Since the dawn of human agriculture our ancestors shouldered the burden to systematically identify crop plants and animals for domestication with required traits that eventually influenced human evolution, steered cultural transformations, in effect started to alter their environments, and land use to expand the distribution and density of crop plants. Centuries of such selective domestication of cultivated crop plants and forest trees coupled with advanced biological tools have armed modern-day geneticists and provided plant breeders the capacity to confer crop improvement with the flexibility in a changing environment. The recent discovery of genome editing platform—Clustered Regularly Interspaced Short Palindromic Repeats and associated proteins (CRISPR-Cas9) has proven to be an established genome editing systems in biomedical research with enormous potential in plant breeding and plant–microbe interactions. The value and efficiency of engineered CRISPR-Cas9 applications in plant systems remains to be a challenge especially with respect to gene delivery systems. Nanomaterials-enabled disease suppression approach will most certainly be a common tool in the effort to realize and endure global food security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hunter, M. C., Smith, R. G., Schipanski, M. E., Atwood, L. W., & Mortensen, D. A. (2017). Agriculture in 2050: Recalibrating targets for sustainable intensification. Bioscience, 67, 385–390. https://doi.org/10.1093/biosci/bix010

    Article  Google Scholar 

  2. Steinwand, M. A., & Ronald, P. C. (2020). Crop biotechnology and the future of food. Nature Food, 1, 273–283.

    Article  Google Scholar 

  3. Mittler, R., & Blumwald, E. (2010). Genetic engineering for modern agriculture: Challenges and perspectives. Annual Review of Plant Biology, 61, 443–462.

    Article  CAS  PubMed  Google Scholar 

  4. Ben-Ari, G., & Lavi, U. (2012). Marker-assisted selection in plant breeding. In A. Altman & P. M. Hasegawa (Eds.), Plant biotechnology and agriculture (pp. 163–184). Academic. https://doi.org/10.1016/B978-0-12-381466-1.00011-0

    Chapter  Google Scholar 

  5. Mathews, H., Narayanaswamy, B., Litz, R. E., Narayanan, K. R., Rao, P. S., & Bhatia, C. R. (1990). The promotion of Agrobacterium mediated transformation in Atropa belladonna by acetosyringone. Journal of Plant Physiology, 136, 404–409.

    Article  CAS  Google Scholar 

  6. Kohli, A., et al. (2003). Transgene integration, organization, and interaction in plants. Plant Molecular Biology, 52, 247–258.

    Article  CAS  PubMed  Google Scholar 

  7. Altpeter, F., et al. (2016). Advancing crop transformation in the era of genome editing. The Plant Cell, 28, 1510–1520.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Anand, A., & Jones, T. J. (2018). Advancing agrobacterium-based crop transformation and genome modification technology for agricultural biotechnology. Current Topics in Microbiology and Immunology, 418, 489–507. https://doi.org/10.1007/82_2018_97

    Article  CAS  PubMed  Google Scholar 

  9. Giovannini, A., Laura, M., Nesi, B., Savona, M., & Cardi, T. (2021). Genes and genome editing tools for breeding desirable phenotypes in ornamentals. Plant Cell Reports, 40, 461–478. https://doi.org/10.1007/s00299-020-02632-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dolatabadian, A., Bayer, P. E., Tirnaz, S., Hurgobin, B., Edwards, D., & Batley, J. (2020). Characterization of disease resistance genes in the Brassica napus pangenome reveals significant structural variation. Plant Biotechnology Journal, 4, 969–982. https://doi.org/10.1111/pbi.13262

    Article  CAS  Google Scholar 

  11. Feldman, A. B., Leung, H., Baraoidan, M., Elmido-Mabilangan, A., Canicosa, I., Quick, W. P., et al. (2017). Increasing leaf vein density via mutagenesis in rice results in an enhanced rate of photosynthesis, smaller cell sizes and can reduce interveinal mesophyll cell number. Frontiers in Plant Science, 8, 1–10. https://doi.org/10.3389/fpls.2017.01883

    Article  Google Scholar 

  12. Feldman, A. B., Murchie, E. H., Leung, H., Baraoidan, M., Coe, R., Yu, S. M., et al. (2014). Increasing leaf vein density by mutagenesis: Laying the foundations for C4 rice. PLoS One, 9, e94947. https://doi.org/10.1371/journal.pone.0094947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Puripunyovanich, V., Lamai, M., Limtiyayothin, M., & Orpong, P. (2022). New frontier of plant breeding using gamma irradiation and biotechnology. https://doi.org/10.5772/intechopen.104667

  14. Vergunst, A. C., Jansen, L. E., & Hooykaas, P. J. (1998). Site-specific integration of Agrobacterium T-DNA in Arabidopsis thaliana mediated by Cre recombinase. Nucleic Acids Research, 26, 2729–2734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Louwerse, J. D., et al. (2007). Stable recombinase-mediated cassette exchange in Arabidopsis using Agrobacterium tumefaciens. Plant Physiology, 145, 1282–1293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vergunst, A. C., & Hooykaas, P. J. (1998). Cre/lox-mediated site-specific integration of Agrobacterium T-DNA in Arabidopsis thaliana by transient expression of cre. Plant Molecular Biology, 38, 393–406.

    Article  CAS  PubMed  Google Scholar 

  17. Li, Z., et al. (2009). Site-specific integration of transgenes in soybean via recombinase mediated DNA cassette exchange. Plant Physiology, 151, 1087–1095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Srivastava, V., & Ow, D. W. (2002). Biolistic mediated site-specific integration in rice. Molecular Breeding, 8, 345–350.

    Article  Google Scholar 

  19. Zhang, H. M., Yang, H., Rech, E. L., Golds, T. J., Davis, A. S., Mulligan, B. J., Cocking, E. C., & Davey, M. R. (1988). Transgenic rice plants produced by electroporation-mediated plasmid uptake into protoplasts. Plant Cell Reports, 7(6), 379–384.

    Article  CAS  PubMed  Google Scholar 

  20. Liang, Z., Chen, K., Li, T., Zhang, Y., Wang, Y., Zhao, Q., et al. (2017). Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nature Communications, 8, 14261. https://doi.org/10.1038/ncomms14261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Puchta, H. (2005). The repair of double strand breaks in plants: Mechanisms and consequences for genome evolution. Journal of Experimental Botany, 56, 1–14.

    CAS  PubMed  Google Scholar 

  22. Puchta, H., & Fuser, F. (2013). Gene targeting in plants: 25 years later. The International Journal of Developmental Biology, 57, 629–637.

    Article  CAS  PubMed  Google Scholar 

  23. Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J. J., Qiu, J., et al. (2013). Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 31(8), 686–688. https://doi.org/10.1038/nbt.2650

    Article  CAS  PubMed  Google Scholar 

  24. Butt, H., et al. (2017). Efficient CRISPR/Cas9-mediated genome editing using a chimeric single-guide RNA molecule. Frontiers in Plant Science, 8.

    Google Scholar 

  25. Shi, J., et al. (2017). ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal, 15(2), 207–216.

    Article  CAS  PubMed  Google Scholar 

  26. Dahan-Meir, T., et al. (2018). Efficient in planta gene targeting in tomato using geminiviral replicons and the CRISPR/Cas9 system. The Plant Journal, 95, 5–16. https://doi.org/10.1111/tpj.13932

    Article  CAS  PubMed  Google Scholar 

  27. Hahn, F., et al. (2018). Homology-directed repair of a defective glabrous gene in Arabidopsis with Cas9-based gene targeting. Frontiers in Plant Science, 9, 424.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wright, D. A., et al. (2005). High-frequency homologous recombination in plants mediated by zinc-finger nucleases. The Plant Journal, 44(4), 693–705.

    Article  CAS  PubMed  Google Scholar 

  29. Shukla, V. K., et al. (2009). Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature, 459, 437–441.

    Article  CAS  PubMed  Google Scholar 

  30. Boch, J., et al. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 326, 1509–1512.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, Y., et al. (2013). Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiology, 161(1), 20–27.

    Article  CAS  PubMed  Google Scholar 

  32. Cermak, T., et al. (2015). High-frequency, precise modification of the tomato genome. Genome Biology, 16, 232.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Butler, N. M., et al. (2016). Gemini virus-mediated genome editing in potato (Solanum tuberosum L.) using sequence-specific nucleases. Frontiers in Plant Science, 7, 1045.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gaj, T., Gersbach, C. A., & Barbas, C. F. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 31, 397–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213), 1258096.

    Article  PubMed  Google Scholar 

  36. Zhu, H., Li, C., & Gao, C. (2020). Applications of CRISPR–Cas in agriculture and plant biotechnology. Nature Reviews. Molecular Cell Biology, 21, 661–677.

    Article  CAS  PubMed  Google Scholar 

  37. Doudna, J. A. (2020). The promise and challenge of therapeutic genome editing. Nature, 578, 229–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cai, C. Q., et al. (2009). Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant Molecular Biology, 69(6), 699–709.

    Article  CAS  PubMed  Google Scholar 

  39. Kumar, S., et al. (2015). A modular gene targeting system for sequential transgene stacking in plants. Journal of Biotechnology, 207, 12–20.

    Article  CAS  PubMed  Google Scholar 

  40. Qi, Y., et al. (2013). Increasing frequencies of site-specific mutagenesis and gene targeting in Arabidopsis by manipulating DNA repair pathways. Genome Research, 23(3), 547–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Forsyth, A., et al. (2016). Transcription activator-like effector nucleases (TALEN)-mediated targeted DNA insertion in potato plants. Frontiers in Plant Science, 7, 1572.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang, M., et al. (2017). Gene targeting by homology-directed repair in rice using a Geminivirus-based CRISPR/Cas9 system. Molecular Plant, 10(7), 1007–1010.

    Article  CAS  PubMed  Google Scholar 

  43. Gil-Humanes, J., et al. (2017). High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. The Plant Journal, 89(6), 1251–1262.

    Article  CAS  PubMed  Google Scholar 

  44. Gao, H., et al. (2020). Complex trait loci in maize enabled by CRISPR-Cas9 mediated gene insertion. Frontiers in Plant Science, 11, 535.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Miki, D., et al. (2018). CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation. Nature Communications, 9(1), 1967.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lu, Y., et al. (2020). Targeted, efficient sequence insertion and replacement in rice. Nature Biotechnology. https://doi.org/10.1038/s41587-020-0581-5

  47. Li, J., Norville, J. E., Aach, J., McCormack, M., Zhang, D., Bush, J., Church, G. M., & Sheen, J. (2013). Multiplex and homologous recombination mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology, 31(8), 688–691. https://doi.org/10.1038/nbt.2654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Miao, J., Guo, D., Zhang, J., Huang, Q., Qin, G., Zhang, X., Wan, J., Gu, H., & Qu, L. (2013). Targeted mutagenesis in rice using CRISPR-Cas system. Cell Research, 23(10), 1233–1236. https://doi.org/10.1038/cr.2013.123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhou, H., Liu, B., Weeks, D. P., Spalding, M. H., & Yang, B. (2014). Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Research, 42, 10903–10914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Barrangou, R., Coыtй-Monvoisin, A.-C., Stahl, B., Chavichvily, I., Damange, F., et al. (2013). Genomic impact ofCRISPR immunization against bacteriophages. Biochemical Society Transactions, 41, 1383–1391.

    Article  CAS  PubMed  Google Scholar 

  51. Jinek, M., Chylinski, K., Fonfara, I., et al. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brazelton, V. A., Jr., Scott, Z., Wright, D. A., Wang, Y., Liu, J., Chen, K., Yang, G., & Lawrence-Dill, C. J. (2015). A quick guide to CRISPR sgRNA design tools. GM Crops Food, 6(4), 266–276.

    Article  PubMed  Google Scholar 

  53. JiangW, Z. H., Bi, H., Fromm, M., Yang, B., & Weeks, D. P. (2013). Demonstration of CRISPR/Cas9/sgRNAmediatedtargeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research, 41, e188.

    Article  Google Scholar 

  54. Ali, Z., Abulfaraj, A., Li, L., Ghosh, N., Piatek, M., Mahjoub, A., Aouida, M., Piatek, A., Baltes, N., Voytas, D., et al. (2015). Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Molecular Plant, 8(8), 1288–1291. https://doi.org/10.1016/j.molp.2015.02.011

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, X., Liu, X., Zhang, D., Tang, H., Sun, B., Li, C., et al. (2017). Genome-wide identification of gene expression in contrasting maize inbred lines under field drought conditions reveals the significance of transcription factors in drought tolerance. PLoS One, 12(7), e0179477. https://doi.org/10.1371/journal.pone.0179477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cai, Y., Chen, L., Zhang, Y., Yuan, S., Su, Q., Sun, S., Wu, C., Yao, W., Han, T., & Hou, W. (2020). Target base editing in soybean using a modified CRISPR/Cas9 system. Plant Biotechnology Journal, 18(10), 1996–1998. https://doi.org/10.1111/pbi.13386

    Article  PubMed  PubMed Central  Google Scholar 

  57. Brooks, C., Nekrasov, V., Lippman, Z. B., & Van Eck, J. (2014). Efficient gene editing in tomato in the first generationusing the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiology, 166, 1292–1297.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Karkute, S. G., Singh, A. K., Gupta, O. P., Singh, P. M., & Singh, B. (2017). CRISPR/Cas9 mediated genome engineeringfor improvement of horticultural crops. Frontiers in Plant Science, 2017(8), 1635.

    Article  Google Scholar 

  59. Nekrasov, V., Wang, C., Win, J., Lanz, C., Weigel, D., & Kamoun, S. (2017). Rapid generation of a transgene-freepowdery mildew resistant tomato by genome deletion. Scientific Reports, 7, 482.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Andersson, M., Turesson, H., Nicolia, A., Fält, A. S., Samuelsson, M., & Hofvander, P. (2017). Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Reports, 36(1), 117–128. https://doi.org/10.1007/s00299-016-2062-3

    Article  CAS  PubMed  Google Scholar 

  61. Nishitani, C., Hirai, N., Komori, S., et al. (2016). Efficient genome editing in apple using a CRISPR/Cas9 system. Scientific Reports, 6, 31481. https://doi.org/10.1038/srep31481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lobato-GĂłmez, M., Hewitt, S., Capell, T., et al. (2021). Transgenic and genome-edited fruits: Background, constraints, benefits, and commercial opportunities. Horticulture Research, 8, 166. https://doi.org/10.1038/s41438-021-00601-3

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., et al. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 32, 947–951. https://doi.org/10.1038/nbt.2969

    Article  CAS  PubMed  Google Scholar 

  64. Chen, K., Wang, Y., Zhang, R., Zhang, H., & Gao, C. (2019). Agriculture. Annual Review of Plant Biology, 70(1), 667–697.

    Article  CAS  PubMed  Google Scholar 

  65. Li, R., Liu, C., Zhao, R., et al. (2019). CRISPR/Cas9-mediated SlNPR1 mutagenesis reduces tomato plant drought tolerance. BMC Plant Biology, 19, 38. https://doi.org/10.1186/s12870-018-1627-4

    Article  PubMed  PubMed Central  Google Scholar 

  66. Murovec, J., Gucek, K., Bohanec, B., Avbelj, M., & Jerala, R. (2018). DNA-free genome editing ofBrassica oleracea and B. RapaProtoplasts using CRISPR-Cas9Ribonucleoprotein complexes. Plant Biotechnology, 9. https://doi.org/10.3389/fpls.2018.01594

  67. Sun, B. O., et al. (2020). Color-related chlorophyll and carotenoid concentrations of Chinese kale can be altered through CRISPR/Cas9 targeted editing of the carotenoid isomerase gene. Boa CRTISO, Horticulture Research, 7, 16. https://doi.org/10.1038/s41438-020-00379-w

    Article  CAS  Google Scholar 

  68. Klimek-Chodacka, M., Oleszkiewicz, T., Lowder, L. G., et al. (2018). Efficient CRISPR/Cas9-based genome editing in carrot cells. Plant Cell Reports, 37, 575–586. https://doi.org/10.1007/s00299-018-2252-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Que, F., Hou, X. L., Wang, G. L., & Tan, G. F. (2019). Advances in research on the carrot, an important root vegetable in the Apiaceae family. Horticulture Research, 6, 69. https://doi.org/10.1038/s41438-019-0150-6

    Article  PubMed  PubMed Central  Google Scholar 

  70. Chandrasekaran, J., Brumin, M., Wolf, D., Leibman, D., Klap, C., Pearlsman, M., et al. (2016). Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Molecular Plant Pathology, 17, 1140–1153. https://doi.org/10.1111/mpp.12375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Joshi, R. K. (2019). Genome editing in chili pepper using a CRISPR/Cas9 cytidine base editing system. Asian Journal of Plant Science and Research, 9, 445.

    Google Scholar 

  72. Xu, J., Kang, B. C., Naing, A. H., Bae, S. J., Kim, J. S., Kim, H., et al. (2020). CRISPR/Cas9 mediated editing of 1aminocyclopropane1carboxylate oxidase1enhances Petunia flower longevity. Plant Biotechnology Journal, 18, 287–297. https://doi.org/10.1111/pbi.13197

    Article  CAS  PubMed  Google Scholar 

  73. Watanabe, K., Oda-Yamamizo, C., Sage-Ono, K., Ohmiya, A., & Ono, M. (2018). Alteration of flower colour in Ipomoeanil through CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 4. Transgenic Research, 27, 25–38. https://doi.org/10.1007/s11248-017-0051-0

    Article  CAS  PubMed  Google Scholar 

  74. Nishihara, M., Higuchi, A., Watanabe, A., et al. (2018). Application of the CRISPR/Cas9 system for modification of flower color in Torenia fournieri. BMC Plant Biology, 18, 331. https://doi.org/10.1186/s12870-018-1539-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yuan, M., Zhu, J., Gong, L., He, L., Lee, C., Han, S., et al. (2019). Mutagenesis of FAD2 genes in peanut with CRISPR/Cas9 based gene editing. BMC Biotechnology, 19, 24. https://doi.org/10.1186/s12896-019-0516-8

    Article  PubMed  PubMed Central  Google Scholar 

  76. Fister, A. S., et al. (2018). Transient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in Theobroma cacao. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.00268

  77. Peng, A., Chen, S., Lei, T., Xu, L., He, Y., Wu, L., et al. (2017). Engineering canker resistant plants through CRISPR/Cas9 targeted editing of the susceptibility gene CsLOB 1 promoter in citrus. Plant Biotechnology Journal, 15, 1509–1519. https://doi.org/10.1111/pbi.12733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang, Z., et al. (2018). Simultaneous editing of two copies of Gh14-3-3d confers enhanced transgene-clean plant defense against Verticillium dahliae in allotetraploid upland cotton. Frontiers in Plant Science, 9, 842. https://doi.org/10.3389/fpls.2018.00842

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wang, L., Chen, S., Peng, A., Xie, Z., He, Y., & Zou, X. (2019). CRISPR/Cas9-mediated editing of CsWRKY22 reduces susceptibility to Xanthomonas citri subsp. citri in wanjincheng orange (Citrus sinensis (L.) Osbeck). Plant Biotechnology Reports, 13, 501–510. https://doi.org/10.1007/s11816-

    Article  CAS  Google Scholar 

  80. Breyer, D., Kopertekh, L., & Reheul, D. (2014). Alternatives to antibiotic resistance marker genes for in vitro selection of genetically modified plants – Scientific developments, current use, operational access, and biosafety considerations. Critical Reviews in Plant Sciences, 33, 286–330. https://doi.org/10.1080/07352689.2013.870422

    Article  CAS  Google Scholar 

  81. Yau, Y. Y., & Stewart, C. N. (2013). Less is more: Strategies to remove marker genes from transgenic plants. BMC Biotechnology, 13, 36. https://doi.org/10.1186/1472-6750-13-36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Li, C., Nguyen, V., Liu, J., Fu, W., Chen, C., Yu, K., et al. (2019). Mutagenesis of seed storage protein genes in Soybean using CRISPR/Cas9. BMC Research Notes, 12, 176. https://doi.org/10.1186/s13104-019-4207-2

    Article  PubMed  PubMed Central  Google Scholar 

  83. Voytas, D. F., & Gao, C. (2014). Precision genome engineering and agriculture: Opportunities and regulatory challenges. PLoS Biology, 12, e1001877. https://doi.org/10.1371/journal.pbio.1001877

    Article  PubMed  PubMed Central  Google Scholar 

  84. Sauer, N. J., Narváez-Vásquez, J., Mozoruk, J., Miller, R. B., Warburg, Z. J., & Woodward, M. J. (2016). Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants. Plant Physiology, 170, 1917–1928. https://doi.org/10.1104/pp.15.01696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li, C., Zong, Y., Wang, Y., Jin, S., Zhang, D., Song, Q., et al. (2018). Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biology, 19, 59. https://doi.org/10.1186/s13059-018-1443-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cantos, C., Francisco, Trijatmiko, K. R., Slamet-Loedin, I., & Chadha-Mohanty, P. K. (2014). Identification of “safe harbor” loci in indica rice genome by harnessing the property of zinc-finger nucleases to induce DNA damage and repair. Frontiers in Plant Science, 2014(5), 302. https://doi.org/10.3389/fpls.2014.00302

    Article  Google Scholar 

  87. Xu, R., Li, H., Qin, R., Wang, L., Li, L., Wei, P., et al. (2014). Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Rice, 7, 5. https://doi.org/10.1186/s12284-014-0005-6

    Article  PubMed  PubMed Central  Google Scholar 

  88. Albert, N. W., et al. (2014). A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. The Plant Cell, 26(3), 962–980. https://doi.org/10.1105/tpc.113.122069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lloyd, A., Brockman, A., Aguirre, L., Campbell, A., Bean, A., Cantero, A., et al. (2017). Advances in the MYB–bHLH–WD repeat (MBW) pigment regulatory model: Addition of a WRKY factor and co-option of an anthocyanin MYB for betalain regulation. Plant & Cell Physiology, 58, 1431–1441. https://doi.org/10.1093/pcp/pcx075

    Article  CAS  Google Scholar 

  90. D’Halluin, K., Vanderstraeten, C., Stals, E., Cornelissen, M., & Ruiter, R. (2008). Homologous recombination: A basis for targeted genome optimization in crop species such as maize. Plant Biotechnology Journal, 6, 93–102. https://doi.org/10.1111/J.1467-7652.2007.0035.X

    Article  PubMed  Google Scholar 

  91. Padmaja, G. (1995). Cyanide detoxification in cassava for food and feed uses. Critical Reviews in Food Science and Nutrition, 35, 299–339. https://doi.org/10.1080/10408399509527703

    Article  CAS  PubMed  Google Scholar 

  92. Hannoufa, A., Pillai, B. V. S., & Chellamma, S. (2014). Genetic enhancement of Brassica napus seed quality. Transgenic Research, 23, 39–52. https://doi.org/10.1007/s11248-013-9742-3

    Article  CAS  PubMed  Google Scholar 

  93. Pham, A. T., Shannon, J. G., & Bilyeu, K. D. (2012). Combinations of mutant FAD2 and FAD3 genes to produce high oleic acid and low linolenic acid soybean oil. Theoretical and Applied Genetics, 125, 503–515. https://doi.org/10.1007/s00122-012-1849-z

    Article  CAS  PubMed  Google Scholar 

  94. Hinge, V., Patil, H., & Nadaf, A. (2015). Comparative characterization of aroma volatiles and related gene expression analysis at vegetative and mature stages in basmati and non-basmati rice (Oryza sativa L.) cultivars. Applied Biochemistry and Biotechnology, 178, 619–639. https://doi.org/10.1007/s12010-015-1898-2

    Article  CAS  PubMed  Google Scholar 

  95. Liang, Z., Zhang, K., Chen, K., & Gao, C. (2014). Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. Journal of Genetics and Genomics, 41, 63–68. https://doi.org/10.1016/j.jgg.2013.12.001

    Article  CAS  PubMed  Google Scholar 

  96. Svitashev, S., Young, J. K., Schwartz, C., Gao, H., Falco, S. C., & Cigan, A. M. (2015). Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiology, 169, 931–945. https://doi.org/10.1104/pp.15.00793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Feng, C., Su, H., Bai, H., Wang, R., Liu, Y., Guo, X., et al. (2018). High efficiency genome editing using a dmc1 promoter controlled CRISPR/Cas9 system in maize. Plant Biotechnology Journal, 16, 1848–1857. https://doi.org/10.1111/pbi.12920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gao, J., Wang, G., Ma, S., Xie, X., Wu, X., & Xia, Q. (2015). CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Molecular Biology, 87, 99–110. https://doi.org/10.1007/s11103-014-0263-0

    Article  CAS  PubMed  Google Scholar 

  99. Hyun, Y., Kim, J., Cho, S. W., Choi, Y., Kim, J. S., & Coupland, G. (2015). Site-directed mutagenesis in Arabidopsis thaliana using dividing tissue-targeted RGEN of the CRISPR/Cas system to generate heritable null alleles. Planta, 241, 271–284. https://doi.org/10.1007/s00425-014-2180-5

    Article  CAS  PubMed  Google Scholar 

  100. Ma, X., Zhang, Q., Zhu, Q., Liu, W., Chen, Y., Qiu, R., et al. (2015). A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant, 8, 1274–1284. https://doi.org/10.1016/j.molp.2015.04.007

    Article  CAS  PubMed  Google Scholar 

  101. Endo, M., Mikami, M., & Toki, S. (2015). Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant & Cell Physiology, 56, 41–47.

    Article  CAS  Google Scholar 

  102. Dort EN, Tanguay, P., and Hamelin, R. C. CRISPR/Cas9 gene editing: An unexplored frontier for forest pathology. Frontiers in Plant Science 2020; 11:1126. Doi:https://doi.org/10.3389/fpls.2020.01126.

  103. Zhang, H., et al. (2014). The CRISPR/C as9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnology Journal, 12, 797–807. https://doi.org/10.1111/pbi.12200

    Article  CAS  PubMed  Google Scholar 

  104. Wang, F., Wang, C., Liu, P., Lei, C., Hao, W., & Gao, Y. (2016). Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One, 11, e0154027. https://doi.org/10.1371/journal.pone.0154027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Fan, D., Liu, T., Li, C., Jiao, B., Li, S., Hou, Y., et al. (2015). Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Scientific Reports, 5, 12217–12223. https://doi.org/10.1038/srep12217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. El-Mounadi, K., Morales-Floriano, M. L., & Garcia-Ruiz, H. (2020). Principles, applications, and biosafety of plant genome editing using CRISPR-Cas9. Frontiers in Plant Science, 11, 56. https://doi.org/10.3389/fpls.2020.00056

    Article  PubMed  PubMed Central  Google Scholar 

  107. Mahmudul Hassan, M. D., Yuan, G., Chen, J.-G., Tuskan, G. A., & Yang, X. (2020). Prime editing technology and its prospects for future applications in plant biology research. BioDesign Research. https://doi.org/10.34133/2020/9350905

  108. Wolter, F., & Puchta, H. (2018). Application of CRISPR/Cas to understand cis- and trans-regulatory elements in plants. Methods in Molecular Biology, 1830, 23–40.

    Article  CAS  PubMed  Google Scholar 

  109. Koenig, D., et al. (2013). Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. Proceedings of the National Academy of Sciences of the United States of America, 110(28), E2655–E2662.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Gómez-Porras, J. L., Riaño-Pachón, D. M., Dreyer, I., et al. (2007). Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice. BMC Genomics, 8, 260. https://doi.org/10.1186/1471-2164-8-260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Biłas, R., Szafran, K., Hnatuszko-Konka, K., & Kononowicz, A. (2016). Cis-regulatory elements used to control gene expression in plants. Plant Cell, Tissue and Organ Culture (PCTOC), 127(2), 269–287.

    Article  Google Scholar 

  112. Yin, K., & Qiu, J. L. (2019). Genome editing for plant disease resis-tance: Applications and perspectives. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 374(1767), Article 20180322.

    Article  PubMed  Google Scholar 

  113. Van Schie, C. C. N., & Takken, F. L. W. (2014). Susceptibility genes 101: How to be a good host. Annual Review of Phytopathology, 52(1), 551–581.

    Article  PubMed  Google Scholar 

  114. Cubeta, M. A., Thomas, E., Dean, R. A., Jabaji, S., Neate, S., Tavantzis, S., Toda, T., Vilgalys, R., Narayanaswamy, B., Fedorova-Abrams, N., Pakala, S., Zafar, N., Joardar, V., Losada, L., & William, C. N. (2014). Genome sequences of the plant pathogenic fungus Rhizoctonia solani anastomosis group 3 strain Rhs1AP and a protoplast derived strain Rhs1AP-123E with a reduced nuclear complement. Genome Announcements, 2(5), e01072–e01014.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Demirer, G. S., et al. (2019). High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nature Nanotechnology, 14, 456–464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Baltes, N. J., Gil-Humanes, J., Cermak, T., Atkins, P. A., & Voytas, P. F. (2014). DNA replicons for plant genome engineering. The Plant Cell, 26, 151–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Maher, F. M., et al. (2020). Plant gene editing through de novo induction of meristems. Nature Biotechnology, 38, 84–89.

    Article  CAS  PubMed  Google Scholar 

  118. Law, S. S. A., Liou, G., Nagai, Y., Giménez-Dejoz, J., Tateishi, A., Tsuchiya, K., Kodama, Y., Fujigaya, T., & Numata, K. (2022). Polymer-coated carbon nanotube hybrids with functional peptides for gene delivery into plant mitochondria. Nature Communications, 13, 2417. https://doi.org/10.1038/s41467-022-30185-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Van, O. M., et al. (2016). DNA repair profiling reveals nonrandom outcomes at cas9-mediated breaks. Molecular Cell, 63, 633–646.

    Article  Google Scholar 

  120. Subramanian, K. S., Manikandan, A., Thirunavukkarasu, M., & Rahale, C. S. (2015). Nano-fertilizers for balanced crop nutrition. In M. Rai, C. Ribeiro, L. Mattoso, & N. Duran (Eds.), Nanotechnologies in food and agriculture. Springer. https://doi.org/10.1007/978-3-319-14024-7_3

    Chapter  Google Scholar 

  121. Elnahal, A. S. M., El-Saadony, M. T., Saad, A. M., et al. (2022). The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: A review. European Journal of Plant Pathology, 162, 759–792.

    Article  Google Scholar 

  122. Wang, Y., Wang, S., Sun, J., Dai, H., Zhang, B., Xiang, W., Hu, Z., Li, P., Yang, J., & Zhang, W. (2021). Nanobubbles promote nutrient utilization and plant growth in rice by upregulating nutrient uptake genes and stimulating growth hormone production. Science of the Total Environment, 800, 149627.

    Article  CAS  PubMed  Google Scholar 

  123. Ma, Z., Ma, L., & Zhou, J. (2023). Applications of CRISPR/Cas genome editing in economically important fruit crops: recent advances and future directions. Molecular Horticulture, 3, 1. https://doi.org/10.1186/s43897-023-00049-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yuliya, V., Deryabin, A., Popov, V., Lev, D., & Moshkov, I. (2022). Priming with gold nanoparticles leads to changes in the photosynthetic apparatus and improves the cold tolerance of wheat. Biochemistry, 145–155.

    Google Scholar 

  125. Ahmad, A., Hashmi, S. S., Palma, J. M., & Corpas, F. J. (2022). Influence of metallic, metallic oxide, and organic nanoparticles on plant physiology. Chemosphere, 290, 133–329. https://doi.org/10.1016/j.chemosphere.2021.133329

    Article  CAS  Google Scholar 

  126. Liu, J., Fu, C., Li, G., Khan, M. N., & Wu, H. (2021). ROS Homeostasis and Plant Salt Tolerance: Plant Nano biotechnology updates. Sustainability, 13(6), 3552. https://doi.org/10.3390/su13063552

    Article  CAS  Google Scholar 

  127. Naderi, M., & Danesh-Shahraki, A. (2013). Nanofertilizers and their roles in sustainable agriculture. International Journal of Agriculture Research and Crop Sciences, 5(19), 2229–2232.

    Google Scholar 

  128. Mittal, D., Kaur, G., Singh, P., Yadav, K., & Ali, S. A. (2020). Nanoparticle-based sustainable agriculture and food science: Recent advances and future outlook. Frontiers in Nanotechnology, 2, 10. https://doi.org/10.3389/fnano.2020.579954

    Article  Google Scholar 

  129. Yadav, A. N. (2021). Nanotechnology for agro-environmental. Journal Of Applied Biology & Biotechnology, 9(4), i–vi. https://doi.org/10.7324/JABB.2021.94edsustainability

    Article  Google Scholar 

  130. Toksha, B., Sonawale, V. A. L. M., Vanarase, A., Bornare, D., Tonde, S., Hazra, C., Kundu, D., Satdive, A., Tayde, S., & Chatterjee, A. (2021). Nanofertilizers: A review on synthesis and impact of their use on crop yield and environment. Environmental Technology & Innovation, 24, 101986. https://doi.org/10.1016/j.eti.2021.101986

    Article  CAS  Google Scholar 

  131. Seifi, T., & Kamali, K. R. (2021). Anti-pathogenic activity of graphene nanomaterials: A review. Colloids and Surfaces B: Biointerfaces, 199, 111509. ISSN: 0927-7765. https://doi.org/10.1016/j.colsurfb.2020.111509

    Article  CAS  PubMed  Google Scholar 

  132. Que, Q., Chilton, M. D., Elumalai, S., Zhong, H., Dong, S., & Shi, L. (2019). Repurposing macromolecule delivery tools for plant genetic modification in the era of precision genome engineering. In S. Kumar, P. Barone, & M. Smith (Eds.), Transgenic plants. Methods in molecular biology (Vol. 1864). Humana Press. https://doi.org/10.1007/978-1-4939-8778-8_1

    Chapter  Google Scholar 

  133. Lv, J., Christie, P., & Zhang, S. (2019). Uptake, translocation, and transformation of metal-based nanoparticles in plants: Recent advances and methodological challenges. Environmental Science. Nano, 6, 41–59.

    Article  CAS  Google Scholar 

  134. Ahmar, S., Mahmood, T., Fiaz, S., Mora-Poblete, F., Sohaib, M. S., Shafique, Sohaib, M. S., & Jung, K. H. (2021). Advantage of nanotechnology-based genome editing system and its application in crop improvement. https://doi.org/10.3389/fpls.2021.663849

  135. Zhao, X., Meng, Z., et al. (2017). Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nature Plants, 3, 956–964. https://doi.org/10.1038/s41477-017-0063-z

    Article  CAS  PubMed  Google Scholar 

  136. Yuzhi, H., et al. (2013). Magnetic gold nanoparticles as a vehicle for fluorescein isothiocyanate and DNA delivery into plant cells. Botany, 91, 457–466.

    Article  Google Scholar 

  137. Banerjee, K., Pramanik, P., Maity, A., Joshi, D. C., Wani, S. H., & Krishnan, P. (2019). Chapter 4: Methods of using nanomaterials to plant systems and their delivery to plants (mode of entry, uptake, translocation, accumulation, biotransformation and barriers). In M. Ghorbanpour & S. H. Wani (Eds.), Advances in phytonanotechnology (pp. 123–152). Academic. https://doi.org/10.1016/B978-0-12-815322-2.00005-5

    Chapter  Google Scholar 

  138. Yan, Y., Zhu, X., Yu, Y., Li, C., Zhang, Z., & Wang, F. (2022 Feb). Nanotechnology strategies for plant genetic engineering. Advanced Materials, 34(7), e2106945. https://doi.org/10.1002/adma.202106945

    Article  CAS  PubMed  Google Scholar 

  139. Kwak, S.-Y., Lew, T. T. S., Sweeney, C. J., Koman, V. B., Wong, M. H., Bohmert-Tatarev, K., Snell, K. D., Seo, J. S., Chua, N.-H., & Strano, M. S. (2019). Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nature Nanotechnology, 14, 447–455. https://doi.org/10.1038/s41565-019-0375-4

    Article  CAS  PubMed  Google Scholar 

  140. Schwartz, S. H., Hendrix, B., Hoffer, P., Sanders, R. A., & Zheng, W. (2020). Carbon dots for efficient small interfering RNA delivery and gene silencing in plants. Plant Physiology, 184, 647–657. https://doi.org/10.1104/pp.20.00733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Demirer, G. S., et al. (2021). Nanotechnology to advance CRISPR–Cas genetic engineering of plants. Nature Nanotechnology. https://doi.org/10.1038/s41565-021-00854-y

  142. Kelich, P., Jeong, S., Navarro, N., Adams, J., Sun, X., Zhao, H., Landry, M. P., & Vuković, L. (2022). Discovery of DNA–carbon nanotube sensors for serotonin with machine learning and near-infrared fluorescence spectroscopy. ACS Nano, 16, 736–745. https://doi.org/10.1021/acsnano.1c08271

    Article  CAS  PubMed  Google Scholar 

  143. Maurer, A. (2017). Syngenta acquires non-exclusive license to use CRISPR-Cas9 gene-editing for agriculture applications. Press Release, November 3, 2017. https://www.ncbiotech.org/news/syngenta-acquires-non-exclusivelicense-use-crispr-cas9-gene-editing-agriculture-applications.

  144. Miao, C., Xiao, L., Hua, K., Zou, C., Zhao, Y., et al. (2018). Mutations in a subfamily of abscisic acid receptor genespromote rice growth and productivity. Proceedings. National Academy of Sciences. United States of America, 115, 6058–6063. https://doi.org/10.1073/pnas.1804774115

    Article  CAS  Google Scholar 

  145. Bomgardner, M. M. (2017). A new toolbox for better crops. Chemical and Engineering News, 95, 30–34.

    Google Scholar 

  146. Gao, H., Gadlage, M. J., Lafitte, H. R., et al. (2020). Superior field performance of waxy corn engineered using CRISPR–Cas9. Nature Biotechnology, 38, 579–581. https://doi.org/10.1038/s41587-020-0444-0

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narayanaswamy Bharathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bharathan, N., Turarbekova, Z. (2023). Application of CRISPR Technology and Nanomaterials to Advance Food Supply. In: Chaughule, R.S., Lokur, A.S. (eds) Applications of Nanotechnology in Microbiology. Springer, Cham. https://doi.org/10.1007/978-3-031-49933-3_7

Download citation

Publish with us

Policies and ethics