Skip to main content
Log in

Genetic enhancement of Brassica napus seed quality

  • Review
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The ultimate value of the Brassica napus (canola) seed is derived from the oil fraction, which has long been recognized for its premium dietary attributes, including its low level of saturated fatty acids, high content of monounsaturated fatty acids, and favorable omega-3 fatty acid profile. However, the protein (meal) portion of the seed has also received favorable attention for its essential amino acids, including abundance of sulfur-containing amino acids, such that B. napus protein is being contemplated for large scale use in livestock and fish feed formulations. Efforts to optimize the composition of B. napus oil and protein fractions are well documented; therefore, this article will review research concerned with optimizing secondary metabolites that affect the quality of seed oil and meal, from undesirable anti-nutritional factors to highl value beneficial products. The biological, agronomic, and economic values attributed to secondary metabolites have brought much needed attention to those in Brassica oilseeds and other crops. This review focuses on increasing levels of beneficial endogenous secondary metabolites (such as carotenoids, choline and tochopherols) and decreasing undesirable antinutritional factors (glucosinolates, sinapine and phytate). Molecular genetic approaches are given emphasis relative to classical breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ajjawi I, Shintani D (2004) Engineered plants with elevated vitamin E: a nutraceutical success story. Trends Biotechnol 22:104–107

    CAS  PubMed  Google Scholar 

  • Akhov L, Ashe P, Tan Y, Datla R, Selvaraj G (2009) Proanthocyanidin biosynthesis in the seed coat of yellow-seeded, canola quality Brassica napus YN01-429 is constrained at the committed step catalyzed by dihydroflavonol 4-reductase. Botany 87:616–625

    CAS  Google Scholar 

  • Akihisa T, Kokke WCMC, Tamura T (1992) Naturally occurring sterols and related compounds from plants. In: Patterson GW, Nes WD (eds) Physiology and biochemistry of sterols. American Oil Chemists’ Society, Champaign, pp 172–228

    Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000(408):796–815

    Google Scholar 

  • Badone FC, Cassani E, Landoni M, Doria E, Panzeri D, Lago C, Mesiti F, Nielsen E, Pilu R (2010) The low phytic acid1-241 (lpa1-241) maize mutation alters the accumulation of anthocyanin pigment in the kernel. Planta 23:1189–1199

    Google Scholar 

  • Barker GC, Larson TR, Graham IA, Lynn JR, King GJ (2007) Novel insights into seed fatty acid synthesis and modification pathways from genetic diversity and quantitative trait loci analysis of the Brassica C genome. Plant Physiol 144:1827–1842

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bell JM (1995) Meal and by-product utilization in animal nutrition. In: Kimber D, McGregor DI (eds) Brassica oilseeds, production and utilization. CAB International, Oxon, UK, pp 301–337

    Google Scholar 

  • Bhinu VS, Schäfer UA, Li R, Huang J, Hannoufa A (2009a) Targeted modulation of sinapine biosynthesis pathway for seed quality improvement in Brassica napus. Transgenic Res 18:31–44

    CAS  PubMed  Google Scholar 

  • Bhinu VS, Li R, Huang J, Kaminskyj S, Sharpe A, Hannoufa A (2009b) Perturbation of lignin biosynthesis in Brassica napus (canola) plants using RNAi. Can J Plant Sci 89:441–453

    CAS  Google Scholar 

  • Bjeldanes L, Kim JY, Grose K, Bartholomew J, Bradfield C (1991) Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro and in vivo: comparisons with 2,3,7,8-tetrachloro-p-dioxin. Proc Natl Acad Sci USA 88:9543–9547

    CAS  PubMed  Google Scholar 

  • Blair R, Reichert RD (1984) Carbohydrate and phenolic constituents in a comprehensive range of rapeseed and canola fractions: nutritional significance for animals. J Sci Food Agric 35:29–35

    CAS  PubMed  Google Scholar 

  • Booij-James IS, Dube SK, Jansen MAK, Edelman M, Mattoo AK (2000) Ultraviolet-B radiation impacts light-mediated turnover of the photosystem II reaction center heterodimer in Arabidopsis mutants altered in phenolic metabolism. Plant Physiol 124:1275–1283

    CAS  PubMed Central  PubMed  Google Scholar 

  • Botella-Pavía P, Rodríguez-Concepción M (2006) Carotenoid biotechnology in plants for nutritionally improved foods. Physiol Plant 126:369–381

    Google Scholar 

  • Brader G, Tas E, Palva ET (2001) Jasmonate-dependent induction of indole glucosinolates in Arabidopsis by culture filtrates of the nonspecific pathogen Erwinia carotovora. Plant Physiol 126:849–860

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burgess A, Saini S, Weng YQ, Aubert I (2009) Stimulation of choline acetyltransferase by C3d, a neural cell adhesion molecule ligand. J Neurosci Res 87:609–616

    CAS  PubMed  Google Scholar 

  • Castle LA, Siehl DL, Gorton R, Patten PA, Chen YH, Bertain S, Cho HJ, Duck N, Wong J, Liu D, Lassner MW (2004) Discovery and directed evolution of a glyphosate tolerance gene. Science 304:1151–1154

    CAS  PubMed  Google Scholar 

  • Cazzonelli CI, Yin K, Pogson BJ (2009) Potential implications for epigenetic regulation of carotenoid biosynthesis during root and shoot development. Plant Signal Behav 4:339–341

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chavadej S, Brisson N, McNeil JN, Luca VD (1994) Redirection of tryptophan leads to production of low indole glucosinolate canola. Proc Nati Acad Sci USA 91:2166–2170

    CAS  Google Scholar 

  • Cheung F, Trick M, Drou N, Lim YP, Park JY, Kwon SJ, Kim JA, Scott R, Pires JC, Paterson AH, Town C, Bancroft I (2009) Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. Plant Cell 21:1912–1928

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chung DW, Pruzinská A, Hörtensteiner S, Ort DR (2006) The role of pheophorbide a oxygenase expression and activity in the canola green seed problem. Plant Physiol 142:88–97

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chung YH, Brown NE, Martinez CM, Cassidy TW, Varga GA (2009) Effects of rumen-protected choline and dry propylene glycol on feed intake and blood parameters for Holstein dairy cows in early lactation. J Dairy Sci 92:2729–2736

    CAS  PubMed  Google Scholar 

  • Clauss K, Roepenack-Lahaye E, Bottcher C, Roth MR, Welti R (2011) Overexpression of sinapine esterase BnSCE3 in oilseed rape seeds triggers global changes in seed metabolism. Plant Physiol 155:1127–1145

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dahlén JAH (1973) Chlorophyll content monitoring of Swedish rapeseed and significance in oil quality. J Am Oil Chem Soc 50:312A–327A

    Google Scholar 

  • Davuluri GR, van Tuinen A, Fraser PD, Manfredonia A, Newman R, Burgess D, Brummell DA, King SR, Palys J, Uhlig J, Bramley PM, Pennings HM, Bowler C (2005) Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat Biotechnol 23:890–895

    CAS  PubMed  Google Scholar 

  • Deng X, Scarth R (1998) Temperature effects on fatty acid composition during development of low-linolenic oilseed rape (Brassica napus L.). J Am Oil Chem Soc 75:759–766

    CAS  Google Scholar 

  • Diretto G, Tavazza R, Welsch R, Pizzichini D, Mourgues F, Papacchioli V, Beyer P, Giuliano G (2006) Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase. BMC Plant Biol 6:13

    PubMed Central  PubMed  Google Scholar 

  • Eastmond PJ, Rawsthorne S (1998) Comparison of the metabolic properties of plastids isolated from developing leaves or embryos of Brassica napus L. J Exp Bot 49:1105–1111

    CAS  Google Scholar 

  • Eastmond P, Koláčná L, Rawsthorne S (1996) Photosynthesis by developing embryos of oilseed rape (Brassica napus L.). J Exp Bot 47:1763–1769

    CAS  Google Scholar 

  • Enami HR (2011) A review of using canola/rapeseed meal in aquaculture feeding. J Fish Aqua Sci 6:22–36

    CAS  Google Scholar 

  • Faraji A (2012) Oil concentration in canola (Brassica napus L.) as a function of environmental conditions during seed filling period. Int J Plant Prod 6:267–278

    Google Scholar 

  • Fenwick GR, Heaney RK, Mullin WJ (1983) Glucosinolates and their breakdown products in food and food plants. Crit Rev Food Sci Nutr 18:123–201

    CAS  PubMed  Google Scholar 

  • Frankel EN (2005) Lipid oxidation, 2nd edn. The Oily Press, Bridgewater

    Google Scholar 

  • Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265

    CAS  PubMed  Google Scholar 

  • Fritsche S, Wang X, Li J, Stich B, Kopisch-Obuch FJ, Endrigkeit J, Leckband G, Dreyer F, Friedt W, Meng J, Jung C (2012) A candidate gene-based association study of tocopherol content and composition in rapeseed (Brassica napus). Front Plant Sci 3:129

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fujisawa M, Takita E, Harada H, Sakurai N, Suzuki N, Suzuki H, Ohyama K, Shibata D, Misawa N (2009) Pathway engineering of Brassica napus seeds using multiple key enzymes involved in ketocarotenoid formation. J Exp Bot 60:1319–3132

    CAS  PubMed  Google Scholar 

  • Georges F, Das S, Ray H, Bock C, Nokhrina K, Kolla VA, Keller W (2009) Over-expression of Brassica napus phosphatidylinositol-phospholipase C2 in canola induces significant changes in gene expression and phytohormone distribution patterns, enhances drought tolerance and promotes early flowering and maturation. Plant, Cell Environ 32:1664–1681

    CAS  Google Scholar 

  • Gland A, Röbbelen G, Thies W (1981) Variation of alkenyl glucosinolates in seeds of Brassica species. Z Pflanzenzüchtg 87:96–110

    CAS  Google Scholar 

  • Gruber MY, Xu N, Grenkow LF, Onyilagha J, Soroka JJ, Westcott ND, Hegedus DD (2009) Responses of the crucifer flea beetle to Brassica volatiles in an olfactometer. Environ Entomol 38:1467–1479

    CAS  PubMed  Google Scholar 

  • Hamama AA, Bhardwaj HL, Starner DE (2003) Genotype and growing location effects on phytosterols in canola oil. J Am Oil Chem Soc 80:1121–1126

    CAS  Google Scholar 

  • Harloff HJ, Lemcke S, Mittasch J, Frolov A, Wu JG, Dreyer F, Leckband G, Jung C (2012) A mutation screening platform for rapeseed (Brassica napus L.) and the detection of sinapine biosynthesis mutants. Theor Appl Genet 124:957–969

    CAS  PubMed  Google Scholar 

  • Heinemann T, Kullal-Ublick GA, Pietruck B, von Bergmann K (1991) Mechanisms of action of plant sterols on inhibition of cholesterol absorption: comparison of sitosterol and sitosatanol. Eur J Clin Phramacol 40(S1):59–63

    Google Scholar 

  • Huang J, Rozwadowski K, Bhinu V-S, Schäfer UA, Hannoufa A (2008) Manipulation of sinapine, choline and betaine accumulation in Arabidopsis seed: towards improving the nutritional value of the meal and enhancing the seed agronomic traits. Plant Physiol Biochem 46:647–654

    CAS  PubMed  Google Scholar 

  • Huang J, Bhinu VS, Li X, Dallal Bashi Z, Zhou R, Hannoufa A (2009) Pleiotropic changes in Arabidopsis f5 h and sct mutants revealed by large-scale gene expression and metabolite analysis. Planta 230:1057–1069

    CAS  PubMed  Google Scholar 

  • Husken A, Baumert A, Strack D, Becker HC, Möllers C, Milkowski C (2005) Reduction of sinapate ester content in transgenic oilseed rape (Brassica napus) by dsRNAi-based suppression of BnSGT1 gene expression. Mol Breed 16:127–138

    Google Scholar 

  • Ismail F, Vaisey-Genser M, Fyfe B (1981) Bitterness and astringency of sinapine and its components. J Food Sci 46:1241–1244

    CAS  Google Scholar 

  • Ito VM, Batistella CB, Maciel MR, Filho MR (2007) Optimization of tocopherol concentration process from sobean oil deodorized distillate using response surface methodology. Appl Biochem Biotechnol 137–140:885–896

    PubMed  Google Scholar 

  • Jarrige R (1980) Chemical methods for predicting the energy and protein value of forages. Ann Zootech 29HS: 299–323

    Google Scholar 

  • Jovanovic M, Cuperlovic M (1977) Nutritive value of rumen contents for monogastric animals. Anim Feed Sci Technol 2:351–360

    CAS  Google Scholar 

  • Jung MY, Yoon SH, Min DB (1989) Effects of processing steps on the contents of minor compounds and oxidation of soybean oil. J Am Oil Chem Soc 66:118–120

    Google Scholar 

  • Kamal-Eldin A, Appelqvist LA (1996) The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31:671–701

    CAS  PubMed  Google Scholar 

  • Khajali F, Slominski BA (2012) Factors that affect the nutritive value of canola meal for poultry. Poult Sci 91:2564–2575

    CAS  PubMed  Google Scholar 

  • Kimber D, McGregor DI (1995) Brassica oilseeds, production and utilization. CAB International, Wallingford, Oxon, OX 10 8 DE, UK

  • King SP, Badger MR, Furbank RT (1998) CO2 refixation characteristics of developing canola seeds and silique wall. Aust J Plant Phys 25:377–386

    CAS  Google Scholar 

  • Kumar R, Raclaru M, Schüsseler T, Gruber J, Sadre R, Lühs W, Zarhloul KM, Friedt W, Enders D, Frentzen M, Weier D (2005) Characterisation of plant tocopherol cyclases and their overexpression in transgenic Brassica napus seeds. FEBS Lett 579:1357–1364

    CAS  PubMed  Google Scholar 

  • Kurek I, Chang TK, Bertain SM, Madrigal A, Liu L, Lassner M, Zhu G (2007) Enhanced thermostability of Arabidopsis Rubisco activase improve photosynthesis and growth rates under moderate heat stress. Plant Cell 19:3230–3241

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ling W, Jones J (1995) Dietary phytosterols: a review of metabolism, benefits and side effects. Life Sci 57:195–206

    CAS  PubMed  Google Scholar 

  • Maenz DD, Newkirk RW, Classen HL, Thiessen DL, Drew MD, Lahti TL (2003) The nutritional value of rapeseed protein concentrate (MCN BioProducts Inc.—CanPro-IP65) for rainbow trout. In Proceedings of the 11th International Rapeseed Congress, Copenhagen, Denmark, FO6, Feed, 1234–1236

  • Mikkelsen MD, Petersen BL, Olsen CE, Halkier BA (2002) Biosynthesis and metabolic engineering of glucosinolates. Amino Acids 22:279–295

    CAS  PubMed  Google Scholar 

  • Mikkelsen MD, Petersen BL, Glawischnig E, Jensen AB, Andreasson E, Halkier BA (2003) Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways. Plant Physiol 131:298–308

    CAS  PubMed Central  PubMed  Google Scholar 

  • Milkowski C, Strack D (2004) Serine carboxypeptidase-like acyltransferases. Phytochemistry 65:517–524

    CAS  PubMed  Google Scholar 

  • Milkowski C, Strack D (2010) Sinapate esters in brassicaceous plants: biochemistry, molecular biology, evolution and metabolic engineering. Planta 232:19–35

    CAS  PubMed  Google Scholar 

  • Mittasch J, Böttcher C, Frolov A, Strack D, Milkowski C (2013) Reprogramming the phenylpropanoid metabolism in seeds of Brassica napus by suppressing the orthologs of reduced epidermal fluorescence1. Plant Physiol. doi:10.1104/pp.113.215491

    PubMed  Google Scholar 

  • Nagy R, Grob H, Weder B, Green P, Klein M, Frelet-Barrand A, Schjoerring JK, Brearley C, Martinoia E (2009) The Arabidopsis ATP-binding cassette protein AtMRP5/AtABCC5 is a high affinity inositol hexakisphosphate transporter involved in guard cell signaling and phytate storage. J Biol Chem 284:33614–33622

    CAS  PubMed  Google Scholar 

  • Naik PS, Chanemougasoundharam A, Khurana SMP, Kalloo G (2003) Genetic manipulation of carotenoid pathway in higher plants. Curr Sci 85:1423–1430

    CAS  Google Scholar 

  • Nair RB, Joy RW 4th, Kurylo E, Shi X, Schnaider J, Datla RS, Keller WA, Selvaraj G (2000) Identification of a CYP84 family of cytochrome P450-dependent mono-oxygenase genes in Brassica napus and perturbation of their expression for engineering sinapine reduction in the seeds. Plant Physiol 123:1623–1634

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nishizaki T, Tsuge K, Itaya M, Doi N, Yanagawa H (2007) Metabolic engineering of carotenoid biosynthesis in Escherichia coli by ordered gene assembly in Bacillus subtilis. Appl Environ Micorbiol 73:1355–1361

    CAS  Google Scholar 

  • Parkin IA, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    CAS  PubMed  Google Scholar 

  • Pearson AW, Butler EJ, Curtis RF, Fenwick GR, Hobson-Frohock A, Land DG (1979) Rapeseed meal and egg taint: demonstration of the metabolic defect in male and female chicks. Vet Rec 104:318–319

    CAS  PubMed  Google Scholar 

  • Pearson AW, Butler EJ, Fenwick RG (1980) Rapeseed meal and egg taint: the role of sinapine. J Sci Food Agric 31:898–904

    CAS  PubMed  Google Scholar 

  • Pogson B, McDonald KA, Truong M, Britton G, DellaPenna D (1996) Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants. Plant Cell 8:1627–1639

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rao AG (2008) The outlook for protein engineering in crop improvement. Plant Physiol 147:6–12

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ravanello MP, Ke D, Alvarez J, Huang B, Shewmaker CK (2003) Coordinate expression of multiple bacterial carotenoid genes in canola leading to altered carotenoid production. Metab Eng 5:255–263

    CAS  PubMed  Google Scholar 

  • Relf-Eckstein J, Raney JP, Rakow G (2007) Meal quality improvement in Brassica napus canola through the development of yellow-seeded germplasm. Proceedings of 12th International Rapeseed Congress, Wuhan, China, March 26–30, 2007. Poster presentation, vol 5, 289–291

  • Robinson SJ, Tang LH, Mooney BA, McKay SJ, Clarke WE, Links MG, Karcz S, Regan S, Wu YY, Gruber MY, Cui D, Yu M, Parkin IA (2009) An archived activation tagged population of Arabidopsis thaliana to facilitate forward genetics approaches. BMC Plant Biol 9:101

    PubMed Central  PubMed  Google Scholar 

  • Ruuska SA, Schwender J, Ohlrogge JB (2004) The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes. Plant Physiol 136:2700–2709

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sang JP, Salisbury PA (1988) Glucosinolate profiles of international rapeseed lines (Brassica napus and Brassica campestris). J Sci Food Agric 45:255–261

    CAS  Google Scholar 

  • Schroeder DF, Gahrtz M, Maxwell BB, Cook RK, Kan JM, Alonso JM, Ecker JR, Chory J (2002) De-etiolated 1 (DET1) and damaged DNA binding protein 1 (DDB1) interact to regulate Arabidopsis photomorphogenesis. Curr Biol 12:1462–1472

    CAS  PubMed  Google Scholar 

  • Sheahan JJ (1996) Sinapate esters provide greater UV-B attenuation than flavonoids in Arabidopsis thaliana (Brassicaceae). Am J Bot 83:679–686

    CAS  Google Scholar 

  • Shewmaker CK, Sheehy JA, Daley M, Colburn S, Ke DY (1999) Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J 4:401–412

    Google Scholar 

  • Shiau SY, Lo PS (2000) Dietary choline requirements of juvenile hybrid tilapia, Oreochromis niloticus × O. aureus. J Nutr 130:100–103

    CAS  PubMed  Google Scholar 

  • Si P, Walton GH (2004) Determinants of oil concentration and seed yield in canola and Indian mustard in the lower rainfall areas of Western Australia. Aust J Agr Res 55:367–377

    Google Scholar 

  • Si P, Mailer RJ, Galwey N, Turner DW (2003) Influence of genotype and environment on oil and protein concentrations of canola (Brassica napus L.) grown across southern Australia. Aust J Agr Res 54:397–407

    Google Scholar 

  • Singh RD, Chuaqui CA (1991) Development of a continuous process to remove chlorophylls from canola oil. Ninth project report: Research on canola seed oil and meal, Canola Council of Canada, Winnipeg, Canada pp 449–472

  • Strack D (1981) Sinapine as a supply of choline for the biosynthesis of phosphatidylcholine in Raphanus sativus seedlings. Z Naturforsch 36c:215–221

    Google Scholar 

  • Taylor M, Ramsay G (2005) Carotenoid biosynthesis in plant storage organs: recent advances and prospects for improving plant food quality. Physiol Plant 124:143–151

    CAS  Google Scholar 

  • Teskeredžić Z, Higgs DA, Dosanjh BS, McBride JR, Hardy RW, Beames RH, Jones JD, Simell M, Vaara T, Bridges RB (1995) Assessment of undephytinized and dephytinized rapeseed protein concentrate as sources of dietary protein for juvenile rainbow trout (Oncorhynchus mykiss). Aquaculture 131:261–277

    Google Scholar 

  • Tierens KF, Thomma BP, Brouwer M, Schmidt J, Kistner K, Porzel A, Mauch-Mani B, Cammue BP, Broekaert WF (2001) Study of the role of antimicrobial glucosinolate-derived isothiocyanates in resistance of Arabidopsis to microbial pathogens. Plant Physiol 125:1688–1699

    CAS  PubMed Central  PubMed  Google Scholar 

  • Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Young K, Taylor NE, Henikoff JG, Comai L, Henikoff S (2003) Large-scale discovery of induced point mutations with high-throughput tilling. Genome Res 13:524–530

    CAS  PubMed  Google Scholar 

  • Trémolières H, Trémolières A, Mazliak P (1978) Effects of light and temperature on fatty acid desaturation during the maturation of rapeseed. Phytochemistry 17:685–688

    Google Scholar 

  • Tsang EW, Yang J, Chang Q, Nowak G, Kolenovsky A, McGregor DI, Keller WA (2003) Chlorophyll reduction in the seed of Brassica napus with a glutamate 1-semialdehyde aminotransferase antisense gene. Plant Mol Biol 51:191–201

    CAS  PubMed  Google Scholar 

  • Tsao R, Peterson CJ, Coats JR (2002) Glucosinolate breakdown products as insect fumigants and their effect on carbon dioxide emission of insects. BMC Ecol 2:5. doi:10.1186/1472-6785-2-5

    PubMed Central  PubMed  Google Scholar 

  • Umeno D, Tobias AV, Arnold FH (2005) Diversifying carotenoid biosynthetic pathways by directed evolution. Microbiol Mol Biol Rev 69:51–78

    CAS  PubMed Central  PubMed  Google Scholar 

  • Underhill EW (1980) Glucosinolates. In: Bell EA, Charlwood BV (eds) Encyclopedia of plant physiology, vol 8. Springer, New York, pp 493–511

    Google Scholar 

  • Uppström B (1995) Seed chemistry. In: Kimber D, McGregor DI (eds) Brassica oilseeds: production and utilization. CAB International, Oxon, pp 217–242

    Google Scholar 

  • USDA-Economic Research Service, United States Department of Agriculture (2012) http://www.ers.usda.gov/topics/crops/soybeans-oil-crops/canola.aspx

  • Velasco L, Möllers C (1998) Non-destructive assessment of sinapic acid esters in Brassica species: II. evaluation of germplasm and identification of phenotypes with reduced levels. Crop Sci 38:1650–1654

    CAS  Google Scholar 

  • Venkatramesh M, Karunanandaa B, Sun B, Gunter CA, Boddupalli S, Kishore GM (2003) Expression of a Streptomyces 3-hydroxysteroid oxidase gene in oilseeds for converting phytosterols to phytostanols. Phytochemistry 62:39–46

    CAS  PubMed  Google Scholar 

  • Wang SX, Oomah BD, McGregor DI, Downey RK (1998) Genetic and seasonal variation in the sinapine content of seed from Brassica and Sinapis species. Can J Plant Sci 78:395–400

    CAS  Google Scholar 

  • Wei S, Li X, Gruber MY, Li R, Zhou R, Zebarjadi A, Hannoufa A (2009) RNAi-mediated suppression of DET1 alters the levels of carotenoids and sinapate esters in seeds of Brassica napus. J Agr Food Chem 57:5326–5333

    CAS  Google Scholar 

  • Wei S, Yu B, Gruber MY, Khachatourians GG, Hegedus DD, Hannoufa A (2010) Enhanced seed carotenoid levels and branching in transgenic Brassica napus expressing the Arabidopsis miR156b gene. J Agr Food Chem 58:9572–9578

    CAS  Google Scholar 

  • Wei S, Gruber MY, Yu B, Gao M-J, Khachatourians GG, Hegedus DD, Parkin IAP, Hannoufa A (2012) Arabidopsis mutant sk156 reveals complex regulation of SPL15 in a miR156-controlled gene network. BMC Plant Biol 12:169

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weier D, Mittasch J, Strack D, Milkowski C (2007) The genes BnSCT1and BnSCT2 from Brassica napus encoding the final enzyme of sinapine biosynthesis: molecular characterization and suppression. Planta 227:375–385

    PubMed  Google Scholar 

  • Woodgate D, Chan CH, Conquer JA (2006) Cholesterol-lowering ability of a phytostanol softgel supplement in adults with mild to moderate hypercholesterolemia. Lipids 41:127–132

    CAS  PubMed  Google Scholar 

  • Yu B, Lydiate DJ, Young LW, Schäfer UA, Hannoufa A (2008) Enhancing the carotenoid content of Brassica napus seeds by downregulating lycopene epsilon cyclase. Transgenic Res 17:573–585

    CAS  PubMed  Google Scholar 

  • Yu B, Gruber MY, Khachatourians GG, Zhou R, Epp D, Hegedus DD, Parkin IAP, Welsch R, Hannoufa A (2012) Arabidopsis cpSRP54 regulates carotenoid accumulation in Arabidopsis and Brassica napus. J Exp Bot 63:5189–5202

    CAS  PubMed  Google Scholar 

  • Yusuf MA, Sarin NB (2007) Antioxidant value addition in human diets: genetic transformation of Brassica juncea with gamma-TMT gene for increased alpha-tocopherol content. Transgenic Res 16:109–113

    CAS  PubMed  Google Scholar 

  • Yusuf MA, Kumar D, Rajwanshi R, Strasser RJ, Tsimilli-Michael M, Govindjee, Sarin NB (2010) Overexpression of gamma-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. Biochim Biophys Acta 1797:1428–1438

    CAS  PubMed  Google Scholar 

  • Zhang H, Vasanthan T, Wettasinghe M (2007) Enrichment of tocopherols and phytosterols in canola oil during seed germination. J Agr Food Chem 55:355–359

    Google Scholar 

  • Zhang K, Bhuiya M-W, Pazo JR, Miao Y, Kim H, Ralph J, Liu C-J (2012) An engineered monolignol 4-O-methyltransferase depresses lignin biosynthesis and confers novel metabolic capability in Arabidopsis. Plant Cell 24:3135–3152

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Margie Gruber, Dr. Carol Powers and Ms. Teresa Fruits for language editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelali Hannoufa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hannoufa, A., Pillai, B.V.S. & Chellamma, S. Genetic enhancement of Brassica napus seed quality. Transgenic Res 23, 39–52 (2014). https://doi.org/10.1007/s11248-013-9742-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-013-9742-3

Keywords

Navigation