Skip to main content

Speciation, Mobilization, and Toxicity of Cadmium in Soil–Microbe–Plant System: An Overview

  • Chapter
  • First Online:
Cadmium Toxicity Mitigation

Abstract

The extensive application of cadmium (Cd) in various industrial products results in worldwide contamination. In the first part of this chapter, we mainly focus on cadmium species, mobility, and factors influencing Cd bioavailability in soils. Furthermore, as Cd interacts with essential cellular components adversely affecting microbial biomass and diversity, we also report various sophisticated resistance mechanisms that provide microorganisms tolerance to Cd. Additionally, attention is paid to highlighting rhizodegradation as an interface between microbes and the rhizosphere that can significantly influence the increase of nutrient uptake and decline of metal toxicity. In particular, we further discuss cadmium accumulation, toxicity, and defense mechanisms in plants against Cd toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdu N, Abdullahi AA, Abdulkadir A (2017) Heavy metals and soil microbes. Environ Chem Lett 15:65–84

    Article  CAS  Google Scholar 

  • Acosta JA, Jansen B, Kalbitz K, Faz A, Martínez-Martínez S (2011) Salinity increases mobility of heavy metals in soils. Chemosphere 85(8):1318–1324

    Article  CAS  Google Scholar 

  • Ahmad SH, Reshi Z, Ahmad J, Iqbal M (2005) Morpho-anatomical responses of Trigonella foenum graecum Linn. to induced cadmium and lead stress. J Plant Biol 48:64–84

    Article  CAS  Google Scholar 

  • Ahmad I, Akhtar MJ, Zahir ZA, Mitter B (2015) Organic amendments: effects on cereals growth and cadmium remediation. Int J Environ Sci Technol 12:2919–2928

    Article  CAS  Google Scholar 

  • Akhter Z, Bi Z, Ali K, Sun C, Fiaz S, Haider FU, Bai J (2021) In response to abiotic stress, DNA methylation confers epigenetic changes in plants. Plants 10(6):1096

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91(7):869–881

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Aponte H, Meli P, Butler B, Paolini J, Matus F, Merino C, Cornejo P, Kuzyakov Y (2020) Meta-analysis of heavy metal effects on soil enzyme activities. Sci Total Environ 737:139744

    Article  CAS  Google Scholar 

  • Appel C, Ma L (2002) Concentration, pH, and surface charge effects on cadmium and lead sorption in three tropical soils. J Environ Qual 31(2):581–589

    Article  CAS  Google Scholar 

  • Bai YC, Chang YY, Hussain M, Lu B, Zhang JP, Song XB, Lei XS, Pei D (2020) Soil chemical and microbiological properties are changed by long-term chemical fertilizers that limit ecosystem functioning. Microorganisms 8(5):694

    Article  CAS  Google Scholar 

  • Bali AS, Sidhu GPS, Kumar V (2020) Root exudates ameliorate cadmium tolerance in plants: a review. Environ Chem Lett 18:1243–1275

    Article  CAS  Google Scholar 

  • Baliardini C, Meyer CL, Salis P, Saumitou-Laprade P, Verbruggen N (2015) CATION EXCHANGER1 cosegregates with Cadmium tolerance in the metal hyperaccumulator Arabidopsis halleri and plays a role in limiting oxidative stress in Arabidopsis spp. Plant Physiol 169(1):549–559

    Article  Google Scholar 

  • Baryla A, Carrier P, Franck F, Coulomb C, Sahut C, Havaux M (2001) Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: causes and consequences for photosynthesis and growth. Planta 212:696–709

    Article  CAS  Google Scholar 

  • Bazzi W, Abou Fayad AG, Nasser A, Haraoui LP, Dewachi O, Abou-Sitta G, Nguyen VK, Abara A, Karah N, Landecker H, Knapp C (2020) Heavy metal toxicity in armed conflicts potentiates AMR in A. baumannii by selecting for antibiotic and heavy metal co-resistance mechanisms. Front Microbiol 11:68

    Article  Google Scholar 

  • Belon E, Boisson M, Deportes IZ, Eglin TK, Feix I, Bispo AO, Galsomies L, Leblond S, Guellier CR (2012) An inventory of trace elements inputs to French agricultural soils. Sci Total Environ 439:87–95

    Article  CAS  Google Scholar 

  • Bigalke M, Ulrich A, Rehmus A, Keller A (2017) Accumulation of cadmium and uranium in arable soils in Switzerland. Environ Pollut 221:85–93

    Article  CAS  Google Scholar 

  • Biswas R, Halder U, Kabiraj A, Mondal A, Bandopadhyay R (2021) Overview on the role of heavy metals tolerance on developing antibiotic resistance in both Gram-negative and Gram-positive bacteria. Arch Microbiol 203:2761–2770

    Article  CAS  Google Scholar 

  • Bolan NS, Adriano DC, Naidu R (2003) Role of phosphorus in (Im)mobilization and bioavailability of heavy metals in the soil-plant system. Rev Environ Contam Toxicol 177(177):1–44

    CAS  Google Scholar 

  • Bontidean I, Lloyd JR, Hobman JL, Wilson JR, Csöregi E, Mattiasson B, Brown NL (2000) Bacterial metal-resistance proteins and their use in biosensors for the detection of bioavailable heavy metals. J Inorg Biochem 79(1–4):225–229

    Article  CAS  Google Scholar 

  • Bora MS, Sarma KP (2021) Anatomical and ultrastructural alterations in Ceratopteris pteridoides under cadmium stress: a mechanism of cadmium tolerance. Ecotoxicol Environ Saf 218:112285

    Article  CAS  Google Scholar 

  • Brown MD, Shinn LM, Reeser G, Browning M, Schwingel A, Khan NA, Holscher HD (2022) Fecal and soil microbiota composition of gardening and non-gardening families. Sci Rep 12(1):1595

    Article  CAS  Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45(3):198–207

    Article  CAS  Google Scholar 

  • Brunetti P, Zanella L, De Paolis A, Di Litta D, Cecchetti V, Falasca G, Barbieri M, Altamura MM, Costantino P, Cardarelli M (2015) Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis. J Exp Bot 66(13):3815–3829

    Article  CAS  Google Scholar 

  • Buerge-Weirich D, Hari R, Xue H, Behra P, Sigg L (2002) Adsorption of Cu, Cd, and Ni on goethite in the presence of natural groundwater ligands. Environ Sci Technol 36(3):328–336

    Article  CAS  Google Scholar 

  • Bukhteeva I, Hrunyk NI, Yusypovych YM, Shalovylo YI, Kovaleva V, Nesmelova IV (2022) Structure, dynamics, and function of PsDef2 defensin from Pinus sylvestris. Structure 30(5):753–762

    Article  CAS  Google Scholar 

  • Cabot C, Gallego B, Martos S, Barceló J, Poschenrieder C (2013) Signal cross talk in Arabidopsis exposed to cadmium, silicon, and Botrytis cinerea. Planta 237:337–349

    Article  CAS  Google Scholar 

  • Çatav ŞS, Genç TO, Oktay MK, Küçükakyüz K (2020) Cadmium toxicity in wheat: impacts on element contents, antioxidant enzyme activities, oxidative stress, and genotoxicity. Bull Environ Contam Toxicol 104:71–77

    Article  Google Scholar 

  • Cepeda CT, Sotres FG, Bello D (2016) Use of enzyme activities to monitor pollution of agricultural land. EQA Int J Environ Qual 22:15–24

    Google Scholar 

  • Chang JD, Huang S, Yamaji N, Zhang W, Ma JF, Zhao FJ (2020) OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice. Plant Cell Environ 43(10):2476–2491

    Article  CAS  Google Scholar 

  • Chao DY, Silva A, Baxter I, Huang YS, Nordborg M, Danku J, Lahner B, Yakubova E, Salt DE (2012) Genome-wide association studies identify heavy metal ATPase3 as the primary determinant of natural variation in leaf cadmium in Arabidopsis thaliana. PLoS Genet 8(9):e1002923

    Article  CAS  Google Scholar 

  • Chen D, Chen D, Xue R, Long J, Lin X, Lin Y, Jia L, Zeng R, Song Y (2019) Effects of boron, silicon and their interactions on cadmium accumulation and toxicity in rice plants. J Hazard Mater 367:447–455

    Article  CAS  Google Scholar 

  • Choppala G, Saifullah, Bolan N, Bibi S, Iqbal M, Rengel Z, Kunhikrishnan A, Ashwath N, Ok YS (2014) Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Crit Rev Plant Sci 33(5):374–391

    Article  CAS  Google Scholar 

  • Cleophas FN, Zahari NZ, Murugayah P, Rahim SA, Mohd Yatim AN (2022) Phytoremediation: a novel approach of bast fiber plants (Hemp, Kenaf, Jute and Flax) for heavy metals decontamination in soil. Toxics 11(1):5

    Article  Google Scholar 

  • Cloquet C, Carignan J, Libourel G, Sterckeman T, Perdrix E (2006) Tracing source pollution in soils using cadmium and lead isotopes. Environ Sci Technol 40(8):2525–2530

    Article  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53(1):159–182

    Article  CAS  Google Scholar 

  • Costa M, Henriques B, Pinto J, Fabre E, Viana T, Ferreira N, Amaral J, Vale C, Pinheiro-Torres J, Pereira E (2020) Influence of salinity and rare earth elements on simultaneous removal of Cd, Cr, Cu, Hg, Ni and Pb from contaminated waters by living macroalgae. Environ Pollut 266:115374

    Article  CAS  Google Scholar 

  • Courbot M, Willems G, Motte P, Arvidsson S, Roosens N, Saumitou-Laprade P, Verbruggen N (2007) A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiol 144(2):1052–1065

    Article  CAS  Google Scholar 

  • Cui X, Mao P, Sun S, Huang R, Fan Y, Li Y, Li Y, Zhuang P, Li Z (2021) Phytoremediation of cadmium contaminated soils by Amaranthus Hypochondriacus L.: the effects of soil properties highlighting cation exchange capacity. Chemosphere 283:131067

    Article  CAS  Google Scholar 

  • Dalvi AA, Bhalerao SA (2013) Response of plants towards heavy metal toxicity: an overview of avoidance, tolerance and uptake mechanism. Ann Plant Sci 2(9):362–368

    Google Scholar 

  • Dang P, Li C, Lu C, Zhang M, Huang T, Wan C, Wang H, Chen Y, Qin X, Liao Y, Siddique KH (2022) Effect of fertilizer management on the soil bacterial community in agroecosystems across the globe. Agric Ecosyst Environ 326:107795

    Article  CAS  Google Scholar 

  • Dave D, Sarma S, Parmar P, Shukla A, Goswami D, Shukla A, Saraf M (2020) Microbes as a boon for the bane of heavy metals. Environ Sustain 3(3):233–255

    Article  CAS  Google Scholar 

  • Degryse F, Smolders E, Merckx R (2006) Labile Cd complexes increase Cd availability to plants. Environ Sci Technol 40(3):830–836

    Article  CAS  Google Scholar 

  • Smolders E, Mertens J (2013) Cadmium. In: Alloway JB (ed) Heavy metals in soils – trace metals and metalloids in soils and their bioavailability, 3rd edn. Springer, Dordrecht, pp 283–299

    Google Scholar 

  • Deng S, Wang P, Zhang G, Dou Y (2016) Polyacrylonitrile-based fiber modified with thiosemicarbazide by microwave irradiation and its adsorption behavior for Cd(II) and Pb(II). J Hazard Mater 307:64–72

    Article  CAS  Google Scholar 

  • Di Toppi LS, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41(2):105–130

    Article  Google Scholar 

  • Diaconu M, Pavel LV, Hlihor RM, Rosca M, Fertu DI, Lenz M et al (2020) Characterization of heavy metal toxicity in some plants and microorganisms—a preliminary approach for environmental bioremediation. New Biotechnol 56:130–139

    Article  CAS  Google Scholar 

  • Ding S, Ma C, Shi W, Liu W, Lu Y, Liu Q, Luo ZB (2017) Exogenous glutathione enhances cadmium accumulation and alleviates its toxicity in Populus canescens. Tree Physiol 37(12):1697–1712

    Article  CAS  Google Scholar 

  • Ding Y, Gong S, Wang Y, Wang F, Bao H, Sun J, Cai C, Yi K, Chen Z, Zhu C (2018) MicroRNA166 modulates cadmium tolerance and accumulation in rice. Plant Physiol 177(4):1691–1703

    Article  CAS  Google Scholar 

  • Dong J, Mao WH, Zhang GP, Wu FB, Cai Y (2007) Root excretion and plant tolerance to cadmium toxicity - a review. Plant Soil Environ 53(5):193

    Article  CAS  Google Scholar 

  • Dutta M, Kushwaha A, Kalita S, Devi G, Bhuyan M (2019) Assessment of bioaccumulation and detoxification of cadmium in soil-plant-insect food chain. Bioresour Technol Rep 7:100242

    Article  Google Scholar 

  • Feng Z, Ji S, Ping J, Cui D (2021) Recent advances in metabolomics for studying heavy metal stress in plants. TrAC Trends Anal Chem 143:116402

    Article  CAS  Google Scholar 

  • Flemming HC, Wuertz S (2019) Bacteria and archaea on Earth and their abundance in biofilms. Nat Rev Microbiol 17(4):247–260

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28(8):1056–1071

    Article  CAS  Google Scholar 

  • Fu H, Yu H, Li T, Zhang X (2018) Influence of cadmium stress on root exudates of high cadmium accumulating rice line (Oryza sativa L.). Ecotoxicol Environ Saf 150:168–175

    Article  CAS  Google Scholar 

  • Fuhrmann JJ (2021) Microbial metabolism. In: Principles and applications of soil microbiology. Elsevier, pp 57–87

    Chapter  Google Scholar 

  • Gallego B, Martos S, Cabot C, BarcelÓ J, Poschenrieder C (2016) Zinc hyperaccumulation substitutes for defense failures beyond salicylate and jasmonate signaling pathways of Alternaria brassicicola attack in Noccaea caerulescens. Physiol Plant 159:401–415. https://doi.org/10.1111/ppl.12518

    Article  CAS  Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309(5739):1387–1390

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  Google Scholar 

  • Goix S, Lévêque T, Xiong TT, Schreck E, Baeza-Squiban A, Geret F, Uzu G, Austruy A, Dumat C (2014) Environmental and health impacts of fine and ultrafine metallic particles: assessment of threat scores. Environ Res 133:185–194

    Article  CAS  Google Scholar 

  • Goswami L, Kumar RV, Pakshirajan K, Pugazhenthi G (2019) A novel integrated biodegradation—microfiltration system for sustainable wastewater treatment and energy recovery. J Hazard Mater 365:707–715

    Article  CAS  Google Scholar 

  • Grignon C, Sentenac H (1991) pH and ionic conditions in the apoplast. Annu Rev Plant Biol 42(1):103–128

    Article  CAS  Google Scholar 

  • Gu F, Zhang J, Shen Z, Li Y, Ji R, Li W, Zhang L, Han J, Xue J, Cheng H (2022) A review for recent advances on soil washing remediation technologies. Bull Environ Contam Toxicol 109(4):651–658

    Article  CAS  Google Scholar 

  • Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465(1–2):190–198

    Article  CAS  Google Scholar 

  • Guo C, Sun L, Chen X, Zhang D (2013) Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res 8(21):2003

    CAS  Google Scholar 

  • Gupta DK, Pena LB, Romero-Puertas MC, Hernández A, Inouhe M, Sandalio LM (2017) NADPH oxidases differentially regulate ROS metabolism and nutrient uptake under cadmium toxicity. Plant Cell Environ 40(4):509–526

    Article  CAS  Google Scholar 

  • Gusiatin ZM, Klimiuk E (2012) Metal (Cu, Cd and Zn) removal and stabilization during multiple soil washing by saponin. Chemosphere 86(4):383–391

    Article  CAS  Google Scholar 

  • Gutsch A, Zouaghi S, Renaut J, Cuypers A, Hausman JF, Sergeant K (2018) Changes in the proteome of Medicago sativa leaves in response to long-term cadmium exposure using a cell-wall targeted approach. Int J Mol Sci 19(9):2498

    Article  Google Scholar 

  • Hall JÁ (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11

    Article  CAS  Google Scholar 

  • Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Krämer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453(7193):391–395

    Article  CAS  Google Scholar 

  • Harholt J, Suttangkakul A, Vibe Scheller H (2010) Biosynthesis of pectin. Plant Physiol 153(2):384–395

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Bhuyan MB, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9(8):681

    Article  CAS  Google Scholar 

  • Haynes RJ (1980) Ion exchange properties of roots and ionic interactions within the root apoplasm: their role in ion accumulation by plants. Bot Rev 46:75–99

    Article  CAS  Google Scholar 

  • He ZL, Xu HP, Zhu YM, Yang XE, Chen GC (2005) Adsorption-desorption characteristics of cadmium in variable charge soils. J Environ Sci Health 40(4):805–822

    Article  CAS  Google Scholar 

  • Hiller DA, Winzig G, Dornauf C (2001) Bodenchemische Untersuchungen von Versickerungsanlagen als Grundlage für eine nachhaltige Niederschlagswaserbewirtschaftung im Sinne des Boden-und Grundwasserschutzes. University of Duisburg-Essen, p 94

    Google Scholar 

  • Holmgren GGS, Meyer MW, Chaney RL, Daniels RB (1993) Cadmium, lead, zinc, copper, and nickel in agricultural soils of the United States of America. J Environ Qual 22(2):335–348

    Article  CAS  Google Scholar 

  • Hong KJ, Tokunaga S, Kajiuchi T (2002) Evaluation of remediation process with plant-derived biosurfactant for recovery of heavy metals from contaminated soils. Chemosphere 49(4):379–387

    Article  CAS  Google Scholar 

  • Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:872875

    Google Scholar 

  • Huang Q, Zhu J, Qiao X, Cai P, Rong X, Liang W, Chen W (2009) Conformation, activity and proteolytic stability of acid phosphatase on clay minerals and soil colloids from an Alfisol. Colloids Surf B 74(1):279–283

    Article  CAS  Google Scholar 

  • Hui CY, Guo Y, Liu L, Yi J (2022) Recent advances in bacterial biosensing and bioremediation of cadmium pollution: a mini-review. World J Microbiol Biotechnol 38(1):9

    Article  Google Scholar 

  • Hussain A, Ali S, Rizwan M, ur Rehman MZ, Javed MR, Imran M, Chatha SAS, Nazir R (2018) Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environ Pollut 242:1518–1526

    Article  CAS  Google Scholar 

  • Hussain B, Ashraf MN, Abbas A, Li J, Farooq M (2021) Cadmium stress in paddy fields: effects of soil conditions and remediation strategies. Sci Total Environ 754:142188

    Article  CAS  Google Scholar 

  • Irfan M, Ahmad A, Hayat S (2014) Effect of cadmium on the growth and antioxidant enzymes in two varieties of Brassica juncea. Saudi J Biol Sci 21(2):125–131

    Article  CAS  Google Scholar 

  • Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa NK, Nakanishi H (2012) Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proc Natl Acad Sci 109(47):19166–19171

    Article  CAS  Google Scholar 

  • Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H (2006) Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J 45(3):335–346

    Article  CAS  Google Scholar 

  • Jalmi SK (2022) The role of ABC transporters in metal transport in plants. Springer Nature Singapore, In Plant metal and metalloid transporters Singapore, pp 55–71

    Google Scholar 

  • Jiang X, Dai J, Zhang X, Wu H, Tong J, Shi J, Fang W (2022) Enhanced Cd efflux capacity and physiological stress resistance: the beneficial modulations of Metarhizium robertsii on plants under cadmium stress. J Hazard Mater 437:129429

    Article  CAS  Google Scholar 

  • Jin Y, Luan Y, Ning Y, Wang L (2018) Effects and mechanisms of microbial remediation of heavy metals in soil: a critical review. Appl Sci 8(8):1336

    Article  Google Scholar 

  • Kabata-Pendias A (1993) Behavioural properties of trace metals in soils. Appl Geochem 8:3–9

    Article  Google Scholar 

  • Kabata-Pendias A, Sadurski W (2004) Trace elements and compounds in soil. In: Elements and their compounds in the environment: occurrence, analysis and biological relevance. Springer, pp 79–99

    Chapter  Google Scholar 

  • Kapoor D, Sharma R, Handa N, Kaur H, Rattan A, Yadav P, Gautam V, Kaur R, Bhardwaj R (2015) Redox homeostasis in plants under abiotic stress: role of electron carriers, energy metabolism mediators and proteinaceous thiols. Front Environ Sci 3:13

    Article  Google Scholar 

  • Kapoor D, Singh S, Kumar V, Romero R, Prasad R, Singh J (2019) Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). Plant Gene 19:100182

    Article  CAS  Google Scholar 

  • Karaca A, Cetin SC, Turgay OC, Kizilkaya R (2010) Effects of heavy metals on soil enzyme activities. In: Soil heavy metals. Springer, pp 237–262

    Chapter  Google Scholar 

  • Kaur K, Sharma A, Capalash N, Sharma P (2019) Multicopper oxidases: biocatalysts in microbial pathogenesis and stress management. Microbiol Res 222:1–13

    Article  CAS  Google Scholar 

  • Khan MA, Khan S, Khan A, Alam M (2017) Soil contamination with cadmium, consequences and remediation using organic amendments. Sci Total Environ 601:1591–1605

    Article  Google Scholar 

  • Khan Z, Elahi A, Bukhari DA, Rehman A (2022) Cadmium sources, toxicity, resistance and removal by microorganisms-a potential strategy for cadmium eradication. J Saudi Chem Soc 26:101569

    Article  CAS  Google Scholar 

  • Khandaker MM, Abdullahi UA, Elyni N, Alias N (2021) Biological processes of heavy metals-contaminated environmental remediation: a review. J Environ Treat Tech 9(3):601–608

    Google Scholar 

  • Kicińska A, Pomykała R, Izquierdo-Diaz M (2022) Changes in soil pH and mobility of heavy metals in contaminated soils. Eur J Soil Sci 73(1):e13203

    Article  Google Scholar 

  • Kim S, Lim H, Lee I (2010) Enhanced heavy metal phytoextraction by Echinochloa crus-galli using root exudates. J Biosci Bioeng 109(1):47–50

    Article  CAS  Google Scholar 

  • Knappe F, Möhler S, Ostermayer A, Lazar S, Kaufmann C (2008) Vergleichende Auswertung von Stoffeinträgen in Böden über verschiedene Eintragspfade. Umweltforschungsplan des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit Forschungsbericht 203(74):275

    Google Scholar 

  • Korenkov V, King B, Hirschi K, Wagner GJ (2009) Root-selective expression of AtCAX4 and AtCAX2 results in reduced lamina cadmium in field-grown Nicotiana tabacum L. Plant Biotechnol J 7(3):219–226

    Article  CAS  Google Scholar 

  • Kotoky R, Pandey P (2018) Plant-microbe symbiosis as an instrument for the mobilization and removal of heavy metals from contaminated soils - a realistic approach. Curr Biotechnol 7(2):71–79

    Article  CAS  Google Scholar 

  • Kubier A, Wilkin RT, Pichler T (2019) Cadmium in soils and groundwater: a review. Appl Geochem 108:104388

    Article  CAS  Google Scholar 

  • Kumar N, Kumari V, Ram C, Thakur K, Tomar SK (2018) Bio-prospectus of cadmium bioadsorption by lactic acid bacteria to mitigate health and environmental impacts. Appl Microbiol Biotechnol 102:1599–1615

    Article  CAS  Google Scholar 

  • Kumar A, Subrahmanyam G, Mondal R, Cabral-Pinto MMS, Shabnam AA, Jigyasu DK, Malyan SK, Fagodiya RK, Khan SA, Yu ZG (2021) Bio-remediation approaches for alleviation of cadmium contamination in natural resources. Chemosphere 268:128855

    Article  CAS  Google Scholar 

  • Kuramata M, Masuya S, Takahashi Y, Kitagawa E, Inoue C, Ishikawa S, Youssefian S, Kusano T (2009) Novel cysteine-rich peptides from Digitaria ciliaris and Oryza sativa enhance tolerance to cadmium by limiting its cellular accumulation. Plant Cell Physiol 50(1):106–117

    Article  CAS  Google Scholar 

  • Lanquar V, Lelièvre F, Bolte S, Hamès C, Alcon C, Neumann D, Vansuyt G, Curie C, Schröder A, Krämer U, Barbier-Brygoo H (2005) Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J 24(23):4041–4051

    Article  CAS  Google Scholar 

  • Lanquar V, Ramos MS, Lelièvre F, Barbier-Brygoo H, Krieger-Liszkay A, Krämer U, Thomine S (2010) Export of vacuolar manganese by AtNRAMP3 and AtNRAMP4 is required for optimal photosynthesis and growth under manganese deficiency. Plant Physiol 152(4):1986–1999

    Article  CAS  Google Scholar 

  • Li XG, Zhang TL, Wang XX, Hua K, Zhao L, Han ZM (2013) The composition of root exudates from two different resistant peanut cultivars and their effects on the growth of soil-borne pathogen. Int J Biol Sci 9(2):164

    Article  Google Scholar 

  • Li X, Cui X, Zhang X, Liu W, Cui Z (2020) Combined toxicity and detoxification of lead, cadmium and arsenic in Solanum nigrum L. J Hazard Mater 389:121874

    Article  CAS  Google Scholar 

  • Liao M, Xie XM (2004) Cadmium release in contaminated soils due to organic acids. Pedosphere 14(2):223–228

    CAS  Google Scholar 

  • Liu H, Zhao H, Wu L, Liu A, Zhao FJ, Xu W (2017) Heavy metal ATPase 3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola. New Phytol 215(2):687–698

    Article  CAS  Google Scholar 

  • Luo JS, Huang J, Zeng DL, Peng JS, Zhang GB, Ma HL, Guan Y, Yi HY, Fu YL, Han B, Lin HX (2018) A defensin-like protein drives cadmium efflux and allocation in rice. Nat Commun 9(1):645

    Article  Google Scholar 

  • Luo JS, Yang Y, Gu T, Wu Z, Zhang Z (2019a) The Arabidopsis defensin gene AtPDF2 5 mediates cadmium tolerance and accumulation. Plant Cell Environ 42(9):2681–2695

    Article  CAS  Google Scholar 

  • Luo JS, Gu T, Yang Y, Zhang Z (2019b) A non-secreted plant defensin AtPDF2. 6 conferred cadmium tolerance via its chelation in Arabidopsis. Plant Mol Biol 100:561–569

    Article  CAS  Google Scholar 

  • Luo JS, Xiao Y, Yao J, Wu Z, Yang Y, Ismail AM, Zhang Z (2020a) Overexpression of a defensin-like gene CAL2 enhances cadmium accumulation in plants. Front Plant Sci 11:217

    Article  Google Scholar 

  • Luo Y, Zhou M, Zhao Q, Wang F, Gao J, Sheng H, An L (2020b) Complete genome sequence of Sphingomonas sp. Cra20, a drought resistant and plant growth promoting rhizobacteria. Genomics 112(5):3648–3657

    Article  CAS  Google Scholar 

  • Mar SS, Okazaki M (2012) Investigation of Cd contents in several phosphate rocks used for the production of fertilizer. Microchem J 104:17–21

    Article  CAS  Google Scholar 

  • Mathivanan K, Chandirika JU, Vinothkanna A, Yin H, Liu X, Meng D (2021) Bacterial adaptive strategies to cope with metal toxicity in the contaminated environment – a review. Ecotoxicol Environ Saf 226:112863

    Article  CAS  Google Scholar 

  • Maurya AK (2020) Oxidative stress in crop plants. Agronomic crops: volume 3: stress responses and tolerance, pp 349–380

    Google Scholar 

  • Mehmood S, Saeed DA, Rizwan M, Khan MN, Aziz O, Bashir S, Ibrahim M, Ditta A, Akmal M, Mumtaz MA, Ahmed W (2018) Impact of different amendments on biochemical responses of sesame (Sesamum indicum L.) plants grown in lead-cadmium contaminated soil. Plant Physiol Biochem 132:345–355

    Article  CAS  Google Scholar 

  • Merkel, B.J. and Sperling, B., 1998. Hydrogeochemische Stoffsysteme Teil II, Schriftenreihe des Deutschen Verbandes für Wasserwirtschaft und Kulturbau e. V. Wirtschafts-und Verl.-Ges.

    Google Scholar 

  • Meychik N, Nikolaeva Y, Kushunina M, Yermakov I (2014) Are the carboxyl groups of pectin polymers the only metal-binding sites in plant cell walls? Plant Soil 381:25–34

    Article  CAS  Google Scholar 

  • Mirlean N, Roisenberg A (2006) The effect of emissions of fertilizer production on the environment contamination by cadmium and arsenic in southern Brazil. Environ Pollut 143(2):335–340

    Article  CAS  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2007) Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis (L.) O. Kuntze. Environ Toxicol 22(4):368–374

    Article  CAS  Google Scholar 

  • Monachese M, Burton JP, Reid G (2012) Bioremediation and tolerance of humans to heavy metals through microbial processes: a potential role for probiotics? Appl Environ Microbiol 78(18):6397–6404

    Article  CAS  Google Scholar 

  • Mondal SC, Sarma B, Farooq M, Nath DJ, Gogoi N (2020) Cadmium bioavailability in acidic soils under bean cultivation: role of soil additives. Int J Environ Sci Technol 17:153–160

    Article  CAS  Google Scholar 

  • Monna F, Hamer K, Lévêque J, Sauer M (2000) Pb isotopes as a reliable marker of early mining and smelting in the Northern Harz province (Lower Saxony, Germany). J Geochem Explor 68(3):201–210

    Article  CAS  Google Scholar 

  • Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149(2):894–904

    Article  CAS  Google Scholar 

  • Moulis JM (2010) Cellular mechanisms of cadmium toxicity related to the homeostasis of essential metals. Biometals 23:877–896

    Article  CAS  Google Scholar 

  • Moura DJ, Péres VF, Jacques RA, Saffi J (2012) Heavy metal toxicity: oxidative stress parameters and DNA repair. In: Metal toxicity in plants: perception, signaling and remediation. Springer, pp 187–205

    Chapter  Google Scholar 

  • Moynahan OS, Zabinski CA, Gannon JE (2002) Microbial community structure and carbon-utilization diversity in a mine tailings revegetation study. Restor Ecol 10(1):77–87

    Article  Google Scholar 

  • Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa NK (2006) Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Sci Plant Nutr 52(4):464–469

    Article  CAS  Google Scholar 

  • Nanda M, Kumar V, Sharma DK (2019) Multimetal tolerance mechanisms in bacteria: the resistance strategies acquired by bacteria that can be exploited to ‘clean-up’ heavy metal contaminants from water. Aquat Toxicol 212:1–10

    Article  CAS  Google Scholar 

  • Nannipieri P, Trasar-Cepeda C, Dick RP (2018) Soil enzyme activity: a brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biol Fertil Soils 54:11–19

    Article  CAS  Google Scholar 

  • Navarro-Torre S, Mateos-Naranjo E, Caviedes MA, Pajuelo E, Rodríguez-Llorente ID (2016) Isolation of plant-growth-promoting and metal-resistant cultivable bacteria from Arthrocnemum macrostachyum in the Odiel marshes with potential use in phytoremediation. Mar Pollut Bull 110(1):133–142

    Article  CAS  Google Scholar 

  • Nkosi N (2020) Characterisation of extracellular polymeric substances (EPS) from bacteria isolated from acid mine decant. University of Johannesburg

    Google Scholar 

  • Nocito FF, Lancilli C, Dendena B, Lucchini G, Sacchi GA (2011) Cadmium retention in rice roots is influenced by cadmium availability, chelation and translocation. Plant Cell Environ 34(6):994–1008

    Article  CAS  Google Scholar 

  • Nordberg M, Nordberg GF (2009) Metallothioneins: historical development and overview. Met Ions Life Sci 5(2009):1–29

    CAS  Google Scholar 

  • Oburger E, Cid CV, Schwertberger D, Roschitz C, Wenzel WW (2020) Response of tungsten (W) solubility and chemical fractionation to changes in soil pH and soil aging. Sci Total Environ 731:139224

    Article  CAS  Google Scholar 

  • Odokuma LO, Abah AE (2003) Heavy metal biosorption by three bacteria isolated from a tropical river. Glob J Environ Sci 2(2):98–101

    CAS  Google Scholar 

  • Pal A, Bhattacharjee S, Saha J, Sarkar M, Mandal P (2022) Bacterial survival strategies and responses under heavy metal stress: a comprehensive overview. Crit Rev Microbiol 48(3):327–355

    Article  CAS  Google Scholar 

  • Parisi K, Shafee TM, Quimbar P, van der Weerden NL, Bleackley MR, Anderson MA (2019, April) The evolution, function and mechanisms of action for plant defensins. In: Seminars in cell & developmental biology, vol 88. Academic Press, pp 107–118

    Google Scholar 

  • Park J, Song WY, Ko D, Eom Y, Hansen TH, Schiller M, Lee TG, Martinoia E, Lee Y (2012) The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J 69(2):278–288

    Article  CAS  Google Scholar 

  • Patel HK, Kalaria RK, Vasava DK (2021) Prospects for exploiting microbes and plants for bioremediation of heavy metals. In: Removal of refractory pollutants from wastewater treatment plants. CRC Press, pp 33–60

    Chapter  Google Scholar 

  • Peng JS, Wang YJ, Ding G, Ma HL, Zhang YJ, Gong JM (2017) A pivotal role of cell wall in cadmium accumulation in the Crassulaceae hyperaccumulator Sedum plumbizincicola. Mol Plant 10(5):771–774

    Article  CAS  Google Scholar 

  • Peng F, Wang C, Zhu J, Zeng J, Kang H, Fan X, Sha L, Zhang H, Zhou Y, Wang Y (2018) Expression of TpNRAMP5, a metal transporter from Polish wheat (Triticum polonicum L.), enhances the accumulation of Cd, Co and Mn in transgenic Arabidopsis plants. Planta 247:1395–1406

    Article  CAS  Google Scholar 

  • Peng D, Qiao S, Luo Y, Ma H, Zhang L, Hou S et al (2020) Performance of microbial induced carbonate precipitation for immobilizing Cd in water and soil. J Hazard Mater 400:123116

    Article  CAS  Google Scholar 

  • Pottier M, Oomen R, Picco C, Giraudat J, Scholz-Starke J, Richaud P, Carpaneto A, Thomine S (2015) Identification of mutations allowing natural resistance associated macrophage proteins (NRAMP) to discriminate against cadmium. Plant J 83(4):625–637

    Article  CAS  Google Scholar 

  • Qayyum MF, Liaquat F, Rehman RA, Gul M, ul Hye MZ, Rizwan M, Rehaman MZU (2017) Effects of co-composting of farm manure and biochar on plant growth and carbon mineralization in an alkaline soil. Environ Sci Pollut Res 24:26060–26068

    Article  CAS  Google Scholar 

  • Qi F, Lamb D, Naidu R, Bolan NS, Yan Y, Ok YS, Rahman MM, Choppala G (2018) Cadmium solubility and bioavailability in soils amended with acidic and neutral biochar. Sci Total Environ 610:1457–1466

    Article  Google Scholar 

  • Rahim HU, Akbar WA, Alatalo JM (2022) A comprehensive literature review on cadmium (Cd) status in the soil environment and its immobilization by biochar-based materials. Agronomy 12(4):877

    Article  CAS  Google Scholar 

  • Rakhsh F, Golchin A (2018) Carbohydrate concentrations and enzyme activities as influenced by exchangeable cations, mineralogy and clay content. Appl Clay Sci 163:214–226

    Article  CAS  Google Scholar 

  • Rasool A, Nasim W, Xiao T, Ali W, Shafeeque M, Sultana SR, Fahad S, Munis MFH, Chaudhary HJ (2020) Microbial diversity response in thallium polluted riverbank soils of the Lanmuchang. Ecotoxicol Environ Saf 187:109854

    Article  CAS  Google Scholar 

  • Rivera-Utrilla J, Bautista-Toledo I, Ferro-Garcıa MA, Moreno-Castilla C (2003) Bioadsorption of Pb(II), Cd(II), and Cr(VI) on activated carbon from aqueous solutions. Carbon 41(2):323–330

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Rehman MZU, Maqbool A (2019) A critical review on the effects of zinc at toxic levels of cadmium in plants. Environ Sci Pollut Res 26:6279–6289

    Article  CAS  Google Scholar 

  • Romero-Puertas MC, Rodríguez-Serrano M, Corpas FJ, Gomez MD, Del Rio LA, Sandalio LM (2004) Cadmium-induced subcellular accumulation of O2 and H2O2 in pea leaves. Plant Cell Environ 27(9):1122–1134

    Article  CAS  Google Scholar 

  • Rudakiya DM, Patel Y (2021) Bioremediation of metals, metalloids, and nonmetals. In: Microbial rejuvenation of polluted environment, vol 2. Springer, pp 33–49

    Chapter  Google Scholar 

  • Saeki K, Kunito T (2012) Influence of chloride ions on cadmium adsorptions by oxides, hydroxides, oxyhydroxides, and phyllosilicates. Appl Clay Sci 62:58–62

    Article  Google Scholar 

  • Sandeepa GM, Lakshmanna B, Madakka M (2023) Recent advancements in the bioremediation of heavy metals from the polluted environment by novel microorganisms. In: Microbiology for cleaner production and environmental sustainability. CRC Press, pp 383–394

    Chapter  Google Scholar 

  • Sangthong C, Setkit K, Prapagdee B (2016) Improvement of cadmium phytoremediation after soil inoculation with a cadmium-resistant Micrococcus sp. Environ Sci Pollut Res 23:756–764

    Article  CAS  Google Scholar 

  • Sarwar N, Saifullah, Malhi SS, Zia MH, Naeem A, Bibi S, Farid G (2010) Role of mineral nutrition in minimizing cadmium accumulation by plants. J Sci Food Agric 90(6):925–937

    Article  CAS  Google Scholar 

  • Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24(5):2155–2167

    Article  CAS  Google Scholar 

  • Satoh-Nagasawa N, Mori M, Nakazawa N, Kawamoto T, Nagato Y, Sakurai K, Takahashi H, Watanabe A, Akagi H (2012) Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant Cell Physiol 53(1):213–224

    Article  CAS  Google Scholar 

  • Seregin IV, Kozhevnikova AD (2023) Phytochelatins: sulfur-containing metal (loid)-chelating ligands in plants. Int J Mol Sci 24(3):2430

    Article  CAS  Google Scholar 

  • Shah K, Nahakpam S, Chaturvedi V, Singh P (2019) Cadmium-induced anatomical abnormalities in plants. In: Cadmium toxicity and tolerance in plants. Academic Press, pp 111–139

    Chapter  Google Scholar 

  • Shahid M, Austruy A, Echevarria G, Arshad M, Sanaullah M, Aslam M et al (2014) EDTA-enhanced phytoremediation of heavy metals: a review. Soil Sediment Contam 23:389–416. https://doi.org/10.1080/15320383.2014.831029

    Article  CAS  Google Scholar 

  • Shahid M, Dumat C, Khalid S, Schreck E, Xiong T, Niazi NK (2017) Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J Hazard Mater 325:36–58

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz KJ, Mimura T (2016) Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant Cell Environ 39(5):1112–1126

    Article  CAS  Google Scholar 

  • She J, Wang J, Wei X, Zhang Q, Xie Z, Beiyuan J, Xiao E, Yang X, Liu J, Zhou Y, Xiao T (2021) Survival strategies and dominant phylotypes of maize-rhizosphere microorganisms under metal(loid)s contamination. Sci Total Environ 774:145143

    Article  CAS  Google Scholar 

  • Shim D, Hwang JU, Lee J, Lee S, Choi Y, An G, Martinoia E, Lee Y (2009) Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice. Plant Cell 21(12):4031–4043

    Article  CAS  Google Scholar 

  • Shiyu QIN, Hongen LIU, Zhaojun NIE, Rengel Z, Wei GAO, Chang LI, Peng ZHAO (2020) Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: a review. Pedosphere 30(2):168–180

    Article  Google Scholar 

  • Sidhu GPS, Bali AS (2022) Cd in the environment: uptake, toxicity and management. In: Appraisal of metal(loids) in the ecosystem. Elsevier, pp 283–300

    Chapter  Google Scholar 

  • Silber A, Bar-Yosef B, Suryano S, Levkovitch I (2012) Zinc adsorption by perlite: Effects of pH, ionic strength, temperature, and pre-use as growth substrate. Geoderma 170:159–167

    Article  CAS  Google Scholar 

  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143

    Article  Google Scholar 

  • Smith DBC, Woodruff WF, Solano LG, Ellefsen F, Karl J (2014) Geochemical and mineralogical maps for soils of the conterminous United States, Open-File Report 2014–1082. U.S. Geological Survey, Reston, p 386

    Google Scholar 

  • Smolders E, Oorts K, Van Sprang P, Schoeters I, Janssen CR, McGrath SP, McLaughlin MJ (2009) Toxicity of trace metals in soil as affected by soil type and aging after contamination: using calibrated bioavailability models to set ecological soil standards. Environ Toxicol Chem 28(8):1633–1642

    Article  CAS  Google Scholar 

  • Sodhi KK, Mishra LC, Singh CK, Kumar M (2022) Perspective on the heavy metal pollution and recent remediation strategies. Curr Res Microb Sci 3:100166

    CAS  Google Scholar 

  • Song Y, Jin L, Wang X (2017) Cadmium absorption and transportation pathways in plants. Int J Phytoremediation 19(2):133–141

    Article  CAS  Google Scholar 

  • Sprynskyy M, Kowalkowski T, Tutu H, Cozmuta LM, Cukrowska EM, Buszewski B (2011) The adsorption properties of agricultural and forest soils towards heavy metal ions (Ni, Cu, Zn, and Cd). Soil Sediment Contam 20(1):12–29

    Article  CAS  Google Scholar 

  • Sreedevi PR, Suresh K, Jiang G (2022) Bacterial bioremediation of heavy metals in wastewater: a review of processes and applications. J Water Process Eng 48:102884

    Article  Google Scholar 

  • Su J, Weng X, Luo Z, Huang H, Wang W (2021) Impact of biochar on soil properties, pore water properties, and available cadmium. Bull Environ Contam Toxicol 107(3):544–552

    Article  CAS  Google Scholar 

  • Sullivan TS, McBride MB, Thies JE (2013) Soil bacterial and archaeal community composition reflects high spatial heterogeneity of pH, bioavailable Zn, and Cu in a metalliferous peat soil. Soil Biol Biochem 66:102–109

    Article  CAS  Google Scholar 

  • Sun L, Cao X, Tan C, Deng Y, Cai R, Peng X, Bai J (2020) Analysis of the effect of cadmium stress on root exudates of Sedum plumbizincicola based on metabolomics. Ecotoxicol Environ Saf 205:111152

    Article  CAS  Google Scholar 

  • Takahashi R, Ishimaru Y, Shimo H, Ogo Y, Senoura T, Nishizawa NK, Nakanishi H (2012) The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant Cell Environ 35(11):1948–1957

    Article  CAS  Google Scholar 

  • Tan L, Qu M, Zhu Y, Peng C, Wang J, Gao D, Chen C (2020) ZINC TRANSPORTER5 and ZINC TRANSPORTER9 function synergistically in zinc/cadmium uptake. Plant Physiol 183(3):1235–1249

    Article  CAS  Google Scholar 

  • Tao X, Wang J, Liu C, Wang H, Yao H, Zheng G, Seh ZW, Cai Q, Li W, Zhou G, Zu C (2016) Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design. Nat Commun 7(1):11203

    Article  CAS  Google Scholar 

  • Tayang A, Songachan LS (2021) Microbial bioremediation of heavy metals. Curr Sci 120(6):00113891

    Article  Google Scholar 

  • Taylor M, Kim N, Smidt G, Busby C, McNally S, Robinson B, Kratz S, Schnug E (2016) Trace element contaminants and radioactivity from phosphate fertiliser. In: Phosphorus agriculture 100% zero, pp 231–266

    Google Scholar 

  • Thakur S, Singh L, Wahid ZA, Siddiqui MF, Atnaw SM, Din MFM (2016) Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environ Monit Assess 188:1–11

    Article  Google Scholar 

  • Tong YP, Kneer R, Zhu YG (2004) Vacuolar compartmentalization: a second-generation approach to engineering plants for phytoremediation. Trends Plant Sci 9(1):7–9

    Article  CAS  Google Scholar 

  • Ueno D, Sasaki A, Yamaji N, Miyaji T, Fujii Y, Takemoto Y, Moriyama S, Che J, Moriyama Y, Iwasaki K, Ma JF (2015) A polarly localized transporter for efficient manganese uptake in rice. Nat Plants 1(12):1–8

    Article  CAS  Google Scholar 

  • Unsal V, Dalkiran T, Cicek M (2020) The role of natural antioxidants against reactive oxygen species produced by cadmium toxicity: a review. Adv Pharm Bull 10(2):184–202

    Article  CAS  Google Scholar 

  • Vatamaniuk OK, Mari S, Lu YP, Rea PA (2000) Mechanism of heavy metal ion activation of phytochelatin (PC) synthase: blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides. J Biol Chem 275(40):31451–31459

    Article  CAS  Google Scholar 

  • Vatehová-Vivodová Z, Kollárová K, Malovíková A, Lišková D (2018) Maize shoot cell walls under cadmium stress. Environ Sci Pollut Res 25:22318–22322

    Article  Google Scholar 

  • Vázquez S, Goldsbrough P, Carpena RO (2006) Assessing the relative contributions of phytochelatins and the cell wall to cadmium resistance in white lupin. Physiol Plant 128(3):487–495

    Article  Google Scholar 

  • Vera-Bernal M, Martínez-Espinosa RM (2021) Insights on cadmium removal by bioremediation: the case of Haloarchaea. Microbiol Res 12(2):354–375

    Article  Google Scholar 

  • Wang J, Song L, Gong X, Xu J, Li M (2020) Functions of jasmonic acid in plant regulation and response to abiotic stress. Int J Mol Sci 21(4):1446

    Article  CAS  Google Scholar 

  • Wong CKE, Jarvis RS, Sherson SM, Cobbett CS (2009) Functional analysis of the heavy metal binding domains of the Zn/Cd-transporting ATPase, HMA2, in Arabidopsis thaliana. New Phytol 181(1):79–88

    Article  CAS  Google Scholar 

  • Wu S, Shen C, Yang Z, Lin B, Yuan J (2016) Tolerance of Ricinus communis L. to Cd and screening of high Cd accumulation varieties for remediation of Cd contaminated soils. Int J Phytoremediation 18(11):1148–1154

    Article  CAS  Google Scholar 

  • Wu W, Qu S, Nel W, Ji J (2020) The impact of natural weathering and mining on heavy metal accumulation in the karst areas of the Pearl River Basin, China. Sci Total Environ 734:139480

    Article  CAS  Google Scholar 

  • Xia X, Wu S, Zhou Z, Wang G (2021) Microbial Cd(II) and Cr(VI) resistance mechanisms and application in bioremediation. J Hazard Mater 401:123685

    Article  CAS  Google Scholar 

  • Xie L, Hao P, Cheng Y, Ahmed IM, Cao F (2018) Effect of combined application of lead, cadmium, chromium and copper on grain, leaf and stem heavy metal contents at different growth stages in rice. Ecotoxicol Environ Saf 162:71–76

    Article  CAS  Google Scholar 

  • Xie M, Chen W, Lai X, Dai H, Sun H, Zhou X, Chen T (2019) Metabolic responses and their correlations with phytochelatins in Amaranthus hypochondriacus under cadmium stress. Environ Pollut 252:1791–1800

    Article  CAS  Google Scholar 

  • Xu T, Nan F, Jiang X, Tang Y, Zeng Y, Zhang W, Shi B (2020) Effect of soil pH on the transport, fractionation, and oxidation of chromium(III). Ecotoxicol Environ Saf 195:110459

    Article  CAS  Google Scholar 

  • Yan H, Xu W, Xie J, Gao Y, Wu L, Sun L, Feng L, Chen X, Zhang T, Dai C, Li T (2019) Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies. Nat Commun 10(1):2562

    Article  Google Scholar 

  • Yang YJ, Xiong J, Chen RJ, Fu GF, Chen TT, Tao LX (2016) Excessive nitrate enhances cadmium (Cd) uptake by up-regulating the expression of OsIRT1 in rice (Oryza sativa). Environ Exp Bot 122:141–149

    Article  CAS  Google Scholar 

  • Yang P, Zhou XF, Wang LL, Li QS, Zhou T, Chen YK, Zhao ZY, He BY (2018a) Effect of phosphate-solubilizing bacteria on the mobility of insoluble cadmium and metabolic analysis. Int J Environ Res Public Health 15(7):1330

    Article  Google Scholar 

  • Yang Q, Li Z, Lu X, Duan Q, Huang L, Bi J (2018b) A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci Total Environ 642:690–700

    Article  CAS  Google Scholar 

  • Yin K, Wang Q, Lv M, Chen L (2019) Microorganism remediation strategies towards heavy metals. Chem Eng J 360:1553–1563

    Article  CAS  Google Scholar 

  • Younis U, Malik SA, Rizwan M, Qayyum MF, Ok YS, Shah MHR, Rehman RA, Ahmad N (2016) Biochar enhances the cadmium tolerance in spinach (Spinacia oleracea) through modification of Cd uptake and physiological and biochemical attributes. Environ Sci Pollut Res 23:21385–21394

    Article  CAS  Google Scholar 

  • Yu J, Xie R, Yu J, He H, Deng S, Ding S, Sun X, Hllah H (2023) Enhanced dandelion phytoremediation of Cd-contaminated soil assisted by tea saponin and plant growth-promoting rhizobacteria. J Soils Sediments 23(4):1745–1759

    Article  CAS  Google Scholar 

  • Yuan L, Yang S, Liu B, Zhang M, Wu K (2012) Molecular characterization of a rice metal tolerance protein, OsMTP1. Plant Cell Rep 31:67–79

    Article  Google Scholar 

  • Zaidi A, Khan M, Ahemad M, Oves M (2009) Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol Immunol Hung 56(3):263–284

    Article  CAS  Google Scholar 

  • Zare L, Ronaghi A, Ghasemi R, Zarei M, Sepehri M (2023) Alterations in glutathione, phytochelatin and micronutrients of corn plants exposed to cadmium stress at different time periods. Commun Soil Sci Plant Anal 54(9):1185–1197

    Article  CAS  Google Scholar 

  • Zhang M, Liu X, Yuan L, Wu K, Duan J, Wang X, Yang L (2012) Transcriptional profiling in cadmium-treated rice seedling roots using suppressive subtractive hybridization. Plant Physiol Biochem 50:79–86

    Article  CAS  Google Scholar 

  • Zhang Y, Cougnon FB, Wanniarachchi YA, Hayden JA, Nolan EM (2013) Reduction of human defensin 5 affords a high-affinity zinc-chelating peptide. ACS Chem Biol 8(9):1907–1911

    Article  CAS  Google Scholar 

  • Zhang C, Yu ZG, Zeng GM, Jiang M, Yang ZZ, Cui F, Zhu MY, Shen LQ, Hu L (2014) Effects of sediment geochemical properties on heavy metal bioavailability. Environ Int 73:270–281

    Article  CAS  Google Scholar 

  • Zhang J, Zhang M, Shohag MJI, Tian S, Song H, Feng Y, Yang X (2016) Enhanced expression of SaHMA3 plays critical roles in Cd hyperaccumulation and hypertolerance in Cd hyperaccumulator Sedum alfredii Hance. Planta 243:577–589

    Article  CAS  Google Scholar 

  • Zhao FJ, Hamon RE, Lombi E, McLaughlin MJ, McGrath SP (2002) Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot 53(368):535–543

    Article  CAS  Google Scholar 

  • Zhao W, Chen Z, Yang X, Sheng L, Mao H, Zhu S (2023) Metagenomics reveal arbuscular mycorrhizal fungi altering functional gene expression of rhizosphere microbial community to enhance Iris tectorum’s resistance to Cr stress. Sci Total Environ 895:164970

    Article  CAS  Google Scholar 

  • Zheng S, Chen C, Li Y, Li S, Liang J (2013) Characterizing the release of cadmium from 13 purple soils by batch leaching tests. Chemosphere 91(11):1502–1507

    Article  CAS  Google Scholar 

  • Zhi Y, Zhou Q, Leng X, Zhao C (2020) Mechanism of remediation of cadmium-contaminated soil with low-energy plant Snapdragon. Front Chem 8:222

    Google Scholar 

  • Zhou X, Zhang X, Ma C, Wu F, Jin X, Dini-Andreote F, Wei Z (2022) Biochar amendment reduces cadmium uptake by stimulating cadmium-resistant PGPR in tomato rhizosphere. Chemosphere 307:136138

    Article  CAS  Google Scholar 

  • Zhu H, Chen C, Xu C, Zhu Q, Huang D (2016) Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China. Environ Pollut 219:99–106

    Article  CAS  Google Scholar 

  • Zhu G, Tan W, Xie L, Ma C, Chen X, Zhang S, Wei Y (2022) Mechanisms underlying the inhibitory effects of Cd2+ on prodigiosin synthesis in Serratia marcescens KMR-3. J Inorg Biochem 236:111978

    Article  CAS  Google Scholar 

  • Zientara K, Wawrzyńska A, Łukomska J, López-Moya JR, Liszewska F, Assunção AG, Aarts MG, Sirko A (2009) Activity of the AtMRP3 promoter in transgenic Arabidopsis thaliana and Nicotiana tabacum plants is increased by cadmium, nickel, arsenic, cobalt and lead but not by zinc and iron. J Biotechnol 139(3):258–263

    Article  CAS  Google Scholar 

  • Zimmerman, A.R. and Ahn, M.Y., 2011. Organo-mineral–enzyme interaction and soil enzyme activity. In Soil enzymology, pp.271-292. Springer

    Google Scholar 

  • Zulfiqar U, Farooq M, Hussain S, Maqsood M, Hussain M, Ishfaq M, Ahmad M, Anjum MZ (2019) Lead toxicity in plants: Impacts and remediation. J Environ Manag 250:109557

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabina Dahija .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dahija, S., Pilić, S., Bešta-Gajević, R. (2024). Speciation, Mobilization, and Toxicity of Cadmium in Soil–Microbe–Plant System: An Overview. In: Jha, A.K., Kumar, N. (eds) Cadmium Toxicity Mitigation. Springer, Cham. https://doi.org/10.1007/978-3-031-47390-6_2

Download citation

Publish with us

Policies and ethics