Skip to main content
Log in

A critical review on the effects of zinc at toxic levels of cadmium in plants

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Increasing cadmium (Cd) pollution in agricultural soils has raised serious concerns worldwide. Several exogenous substances can be used to mitigate the toxic effects of Cd in plants. Zinc (Zn) is one of the essential plant micronutrients and is involved in several physiological functions in plants. Zn may alleviate Cd toxicity in plants owing to the chemical similarity of Zn with Cd. Published reports demonstrated that Zn can alleviate toxic effects of Cd in plants by increasing plant growth, regulating Cd uptake, increasing photosynthesis, and reducing oxidative stress. Literature demonstrated that the role of Zn on Cd accumulation by plants is very controversial and depends upon several factors including concentrations of Cd and Zn in the medium, exposure duration, plant species and genotypes, and growth conditions. This review highlights the role of Zn in reducing Cd toxicity in plants and provides new insight that proper level of Zn in plants may enhance plant resistance to excess Cd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbas MS, Akmal M, Ullah S, Hassan MU, Farooq S (2017) Effectiveness of zinc and gypsum application against cadmium toxicity and accumulation in wheat (Triticum aestivum L.). Commun Soil Sci Plant Anal 48:1659–1668

    Article  CAS  Google Scholar 

  • Abbas T, Rizwan M, Ali S, Adrees M, Mahmood A, Rehman MZ, Ibrahim M, Arshad M, Qayyum MF (2018) Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil. Ecotoxicol Environ Saf 148:825–833

    Article  CAS  Google Scholar 

  • Adiloglu A (2002) The effect of zinc (Zn) application on uptake of cadmium (Cd) in some cereal species. Arch Agron Soil Sci 48:553–556

    Article  CAS  Google Scholar 

  • Adiloglu A, Adiloglu S, Gonulsuz E, Oner N (2005) Effect of zinc application on cadmium uptake of maize grown in zinc deficient soil. Pak J Biol Sci 8:10–12

    Article  CAS  Google Scholar 

  • Adrees M, Ali S, Rizwan M, Ibrahim M, Abbas F, Farid M, Rehman MZ, Irshad MK, Bharwana SA (2015a) The effect of excess copper on growth and physiology of important food crops: a review. Environ Sci Pollut Res 22:8148–8162

    Article  CAS  Google Scholar 

  • Adrees M, Ali S, Rizwan M, Rehman MZ, Ibrahim M, Abbas F, Farid M, Qayyum MF, Irshad MK (2015b) Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxicol Environ Saf 119:186–197

    Article  CAS  Google Scholar 

  • Ali B, Qian P, Jin R, Ali S, Khan M, Aziz R, Tian T, Zhou W (2014a) Physiological and ultra-structural changes in Brassica napus seedlings induced by cadmium stress. Biol Plant 58:131–138

    Article  CAS  Google Scholar 

  • Ali B, Gill RA, Yang S, Gill MB, Ali S, Rafiq MT, Zhou W (2014b) Hydrogen sulfide alleviates cadmium-induced morpho-physiological and ultrastructural changes in Brassica napus. Ecotoxicol Environ Saf 110:197–207

    Article  CAS  Google Scholar 

  • Ali B, Gill RA, Yang S, Gill MB, Farooq MA, Liu D, Daud MK, Ali S, Zhou W (2015) Regulation of cadmium-induced proteomic and metabolic changes by 5-aminolevulinic acid in leaves of Brassica napus L. PLoS One 10:1–23

    Google Scholar 

  • Ammar WB, Zarrouk M, Nouairi I (2015) Zinc alleviates cadmium effects on growth, membrane lipid biosynthesis and peroxidation in Solanum lycopersicum leaves. Biologia 70:198–207

    Article  CAS  Google Scholar 

  • Ansari MM, Neha, Khan HA (2015) Effect of cadmium chloride exposure during the induction of collagen induced arthritis. Chem Biol Interact 238:55–65

    Article  CAS  Google Scholar 

  • Arshad M, Ali S, Noman A, Ali Q, Rizwan M, Farid M, Irshad MK (2016) Phosphorus amendment decreased cadmium (Cd) uptake and ameliorates chlorophyll contents, gas exchange attributes, antioxidants, and mineral nutrients in wheat (Triticum aestivum L.) under Cd stress. Arch Agron Soil Sci 62:533–546

    Article  CAS  Google Scholar 

  • Bashir A, Rizwan M, Ali S, Rehman MZ, Ishaque W, Riaz MA, Maqbool A (2018) Effect of foliar-applied iron complexed with lysine on growth and cadmium (Cd) uptake in rice under Cd stress. Environ Sci Pollut Res 25:20691–20699

    Article  CAS  Google Scholar 

  • Basnet P, Amarasiriwardena D, Wu F, Fu Z, Zhang T (2014) Elemental bioimaging of tissue level trace metal distributions in rice seeds (Oryza sativa L.) from a mining area in China. Environ Pollut 195:148–156

    Article  CAS  Google Scholar 

  • Baycu G, Gevrek-Kürüm N, Moustaka J, Csatári I, Rognes SE, Moustakas M (2017) Cadmium-zinc accumulation and photosystem II responses of Noccaea caerulescens to Cd and Zn exposure. Environ Sci Pollut Res 24:2840–2850

    Article  CAS  Google Scholar 

  • Benakova M, Ahmadi H, Dučaiová Z, Tylová E, Clemens S, Tůma J (2017) Effects of Cd and Zn on physiological and anatomical properties of hydroponically grown Brassica napus plants. Environ Sci Pollut Res 24:20705–20716

    Article  CAS  Google Scholar 

  • Brennan RF, Bolland MDA (2014a) Cadmium concentration in yellow lupin grain is decreased by zinc applications to soil but is increased by phosphorus applications to soil. J Plant Nutr 37:850–868

    Article  CAS  Google Scholar 

  • Brennan RF, Bolland MDA (2014b) Application of increasing levels of zinc to soil reduced accumulation of cadmium in lupin grain. J Plant Nutr 37:147–160

    Article  CAS  Google Scholar 

  • Cakmak I, Kutman UB (2018) Agronomic biofortification of cereals with zinc: a review. Eur J Soil Sci 69:172–180

    Article  Google Scholar 

  • Cakmak I, Welch RM, Erenoglu B, Römheld V, Norvell WA, Kochian LV (2000) Influence of varied zinc supply on re-translocation of cadmium (109Cd) and rubidium (86Rb) applied on mature leaf of durum wheat seedlings. Plant Soil 219:279–284

    Article  CAS  Google Scholar 

  • Cakmak I, McLaughlin MJ, White P (2017) Zinc for better crop production and human health. Plant Soil 411:1–4

    Article  CAS  Google Scholar 

  • Caldelas C, Weiss DJ (2017) Zinc homeostasis and isotopic fractionation in plants: a review. Plant Soil 411:17–46

    Article  CAS  Google Scholar 

  • Chaoui A, Ghorbal MH, El Ferjani E (1997) Effects of cadmium-zinc interactions on hydroponically grown bean (Phaseolus vulgaris L.). Plant Sci 126:21–28

    Article  CAS  Google Scholar 

  • Cherif J, Mediouni C, Ammar WB, Jemal F (2011) Interactions of zinc and cadmium toxicity in their effects on growth and in antioxidative systems in tomato plants (Solanum lycopersicum). J Environ Sci (China) 23:837–844

    Article  CAS  Google Scholar 

  • Choudhary M, Bailey LD, Grant CA, Leisle D (1995) Effect of Zn on the concentration of Cd and Zn in plant tissue of two durum wheat lines. Can J Plant Sci 75:445–448

    Article  CAS  Google Scholar 

  • Christensen T (1984) Cadmium soil sorption at low concentrations: II. Reversibility, effect of changes in solute composition, and effect of soil aging. Water Air Soil Pollut 21:115–125

    Article  CAS  Google Scholar 

  • Cojocaru P, Gusiatin ZM, Cretescu I (2016) Phytoextraction of Cd and Zn as single or mixed pollutants from soil by rape (Brassica napus). Environ Sci Pollut Res 23:10693–10701

    Article  CAS  Google Scholar 

  • Dikkaya ET, Ergun N (2014) Effects of cadmium and zinc interactions on growth parameters and activities of ascorbate peroxidase on maize (Zea mays L. MAT 97). Eur J Exp Biol 4:288–295

    Google Scholar 

  • Erdem H, Tosun YK, Ozturk M (2012) Effect of cadmium-zinc interactions on growth and Cd-Zn concentration in durum and bread wheats. Fresenius Environ Bull 21:1046–1051

    CAS  Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Shan D, Chen Y, Deng N, Khan F, Wu C, Wu W, Shah F (2015a) Grain cadmium and zinc concentrations in maize influenced by genotypic variations and zinc fertilization. CLEAN Soil Air Water 43:1433–1440

    Article  CAS  Google Scholar 

  • Fahad S, Hussain S, Khan F, Wu C, Saud S, Hassan S, Ahmad N, Gang D, Ullah A, Huang J (2015b) Effects of tire rubber ash and zinc sulfate on crop productivity and cadmium accumulation in five rice cultivars under field conditions. Environ Sci Pollut Res 22:12424–12434

    Article  CAS  Google Scholar 

  • Feng R, Qiu W, Lian F, Yu Z, Yang Y, Song Z (2013) Field evaluation of in situ remediation of Cd-contaminated soil using four additives, two foliar fertilisers and two varieties of pakchoi. J Environ Manag 124:17–24

    Article  CAS  Google Scholar 

  • Fontes RL, Pereira J, Neves JC (2014) Uptake and translocation of cd and Zn in two lettuce cultivars. An Acad Bras Ciênc 86:907–922

    Article  CAS  Google Scholar 

  • Forster SM, Rickertsen JR, Mehring GH, Ransom JK (2018) Type and placement of zinc fertilizer impacts cadmium content of harvested durum wheat grain. J Plant Nutr 41:1471–1481

    Article  CAS  Google Scholar 

  • Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46

    Article  CAS  Google Scholar 

  • Gao X, Mohr RM, McLaren DL, Grant CA (2011) Grain cadmium and zinc concentrations in wheat as affected by genotypic variation and potassium chloride fertilization. Field Crop Res 122:95–103

    Article  Google Scholar 

  • Garg N, Kaur H (2013) Impact of cadmium-zinc interactions on metal uptake, translocation and yield in pigeonpea genotypes colonized by arbuscular mycorrhizal fungi. J Plant Nutr 36:67–90

    Article  CAS  Google Scholar 

  • Gill SS, Khan NA, Tuteja N (2011) Differential cadmium stress tolerance in five Indian mustard (Brassica juncea L.) cultivars an evaluation of the role of antioxidant machinery. Plant Signal Behav 6:293–300

    Article  CAS  Google Scholar 

  • Grant CA, Bailey LD (1998) Nitrogen, phosphorus and zinc management effects on grain yield and cadmium concentration in two cultivars of durum wheat. Can J Plant Sci 78:63–70

    Article  CAS  Google Scholar 

  • Green CE, Chaney RL, Bouwkamp J (2003) Interactions between cadmium uptake and phytotoxic levels of zinc in hard red spring wheat. J Plant Nutr 26:417–430

    Article  CAS  Google Scholar 

  • Green CE, Chaney RL, Bouwkamp J (2017) Increased zinc supply does not inhibit cadmium accumulation by rice (Oryza sativa L.). J Plant Nutr 40:869–877

    Article  CAS  Google Scholar 

  • Harris NS, Taylor GJ (2001) Remobilization of cadmium in maturing shoots of near isogenic lines of durum wheat that differ in grain cadmium accumulation. J Exp Bot 52:1473–1481

    Article  CAS  Google Scholar 

  • Hart JJ, Welch RM, Norvell WA, Kochian LV (2002) Transport interactions between cadmium and zinc in roots of bread and durum wheat seedlings. Physiol Plant 116:73–78

    Article  CAS  Google Scholar 

  • Hart JJ, Welch RM, Norvell WA, Clarke JM, Kochian LV (2005) Zinc effects on cadmium accumulation and partitioning in near-isogenic lines of durum wheat that differ in grain cadmium concentration. New Phytol 167:391–401

    Article  CAS  Google Scholar 

  • Hassan MJ, Zhang G, Wu F, Wei K, Chen Z (2005) Zinc alleviates growth inhibition and oxidative stress caused by cadmium in rice. J Plant Nutr Soil Sci 168:255–261

    Article  CAS  Google Scholar 

  • He PP, Lv XZ, Wang GY (2004) Effects of Se and Zn supplementation on the antagonism against Pb and Cd in vegetables. Environ Int 30:167–172

    Article  CAS  Google Scholar 

  • Huang D, Gong X, Liu Y, Zeng G, Lai C, Bashir H, Zhou L, Wang D, Xu P, Cheng M, Wan J (2017) Effects of calcium at toxic concentrations of cadmium in plants. Planta 245:863–873

    Article  CAS  Google Scholar 

  • Huang G, Ding C, Zhou Z, Zhang T, Wang X (2019) A tillering application of zinc fertilizer based on basal stabilization reduces Cd accumulation in rice (Oryza sativa L.). Ecotoxicol Environ Saf 167:338–344

    Article  CAS  Google Scholar 

  • Hussain S, Maqsood MA, Rengel Z, Aziz T (2012) Biofortification and estimated human bioavailability of zinc in wheat grains as influenced by methods of zinc application. Plant Soil 361:279–290

    Article  CAS  Google Scholar 

  • Hussain T, Murtaza G, Ghafoor A, Cheema MA (2016) The Cd: Zn ratio in a soil affects Cd toxicity in spinach (Spinacea oleracea L.). Pak J Agric Sci 53:419–424

    Google Scholar 

  • Hussain A, Ali S, Rizwan M, Rehman MZ, Javed MR, Imran M, Chatha SA, Nazir R (2018) Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environ Pollut 242:1518–1526

    Article  CAS  Google Scholar 

  • Hussain S, Khan AM, Rengel Z (2019) Zinc-biofortified wheat accumulates more cadmium in grains than standard wheat when grown on cadmium-contaminated soil regardless of soil and foliar zinc application. Sci Total Environ 654:402–408

    Article  CAS  Google Scholar 

  • Jiao Y, Grant CA, Bailey LD (2004) Effects of phosphorus and zinc fertilizer on cadmium uptake and distribution in flax and durum wheat. J Sci Food Agric 84:777–785

    Article  CAS  Google Scholar 

  • Keller C, Rizwan M, Davidian JC, Pokrovsky OS, Bovet N, Chaurand P, Meunier JD (2015) Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 μM Cu. Planta 241:847–860

    Article  CAS  Google Scholar 

  • Khurana M, Kansal B (2012) Influence of zinc supply on the phytotoxicity of cadmium in maize (Zea mays L.) grown on cadmium-contaminated soil. Acta Agron Hung 60:37–46

    Article  CAS  Google Scholar 

  • Köleli N, Eker S, Cakmak I (2004) Effect of zinc fertilization on cadmium toxicity in durum and bread wheat grown in zinc-deficient soil. Environ Pollut 131:453–459

    Article  CAS  Google Scholar 

  • Kukier U, Chaney RL (2002) Growing rice grain with controlled cadmium concentrations. J Plant Nutr 25:1793–1820

    Article  CAS  Google Scholar 

  • Li DD, Zhou DM (2012) Acclimation of wheat to low-level cadmium or zinc generates its resistance to cadmium toxicity. Ecotoxicol Environ Saf 79:264–271

    Article  CAS  Google Scholar 

  • Liu Q, Tjoa A, Römheld V (2007a) Effects of chloride and co-contaminated zinc on cadmium accumulation within Thlaspi caerulescens and durum wheat. Bull Environ Contam Toxicol 79:62–65

    Article  CAS  Google Scholar 

  • Liu HJ, Zhang JL, Christie P, Zhang FS (2007b) Influence of external zinc and phosphorus supply on Cd uptake by rice (Oryza sativa L.) seedlings with root surface iron plaque. Plant Soil 300:105–115

    Article  CAS  Google Scholar 

  • Ma J, Zhang X, Wang L (2017) Synergistic effects between [Si-hemicellulose matrix] ligands and Zn ions in inhibiting Cd ion uptake in rice (Oryza sativa) cells. Planta 245:965–976

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, New York

    Google Scholar 

  • Martos S, Gallego B, Sáez L, López-Alvarado J, Cabot C, Poschenrieder C (2016) Characterization of zinc and cadmium hyperaccumulation in three Noccaea (Brassicaceae) populations from non-metalliferous sites in the eastern Pyrenees. Front Plant Sci 7:1–13

    Article  Google Scholar 

  • Mohammad A, Moheman A (2010) The effects of cadmium and zinc interactions on the accumulation and tissue distribution of cadmium and zinc in tomato (Lycopersicon esculentum Mill.). Arch Agron Soil Sci 56:551–561

    Article  CAS  Google Scholar 

  • Murtaza G, Javed W, Hussain A, Wahid A, Murtaza B, Owens G (2015) Metal uptake via phosphate fertilizer and city sewage in cereal and legume crops in Zea mays Pakistan. Environ Sci Pollut Res 22:9136–9147

    Article  CAS  Google Scholar 

  • Murtaza G, Javed W, Hussain A, Qadir M, Aslam M (2017) Soil-applied zinc and copper suppress cadmium uptake and improve the performance of cereals and legumes. Int J Phytoremediation 19:199–206

    Article  CAS  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Nan Z, Li J, Zhang J, Cheng G (2002) Cadmium and zinc interactions and their transfer in soil-crop system under actual field conditions. Sci Total Environ 285:187–195

    Article  CAS  Google Scholar 

  • Poblaciones MJ, Damon P, Rengel Z (2017) Foliar zinc biofortification effects in Lolium rigidum and Trifolium subterraneum grown in cadmium-contaminated soil. PLoS One 12:1–13

    Article  CAS  Google Scholar 

  • Qaswar M, Hussain S, Rengel Z (2017) Zinc fertilisation increases grain zinc and reduces grain lead and cadmium concentrations more in zinc-biofortified than standard wheat cultivar. Sci Total Environ 605:454–460

    Article  CAS  Google Scholar 

  • Qayyum MF, Rehman MZ, Ali S, Rizwan M, Naeem A, Maqsood MA, Khalid H, Rinklebe J, Ok YS (2017) Residual effects of monoammonium phosphate, gypsum and elemental sulfur on cadmium phytoavailability and translocation from soil to wheat in an effluent irrigated field. Chemosphere 174:515–523

    Article  CAS  Google Scholar 

  • Qiao X, Wang P, Shi G, Yang H (2015) Zinc conferred cadmium tolerance in Lemna minor L. via modulating polyamines and proline metabolism. Plant Growth Regul 77:1–9

    Article  CAS  Google Scholar 

  • Rehman MZ, Rizwan M, Ali S, Fatima N, Yousaf B, Naeem A, Sabir M, Ahmad HR, Ok YS (2016) Contrasting effects of biochar, compost and farm manure on alleviation of nickel toxicity in maize (Zea mays L.) in relation to plant growth, photosynthesis and metal uptake. Ecotoxicol Environ Saf 133:218–225

    Article  CAS  Google Scholar 

  • Rehman MZ, Rizwan M, Ali S, Sabir M, Sohail MI (2017) Contrasting effects of organic and inorganic amendments on reducing lead toxicity in wheat. Bull Environ Contam Toxicol 99:642–647

    Article  CAS  Google Scholar 

  • Rehman MZ, Rizwan M, Ali S, Naeem A, Yousaf B, Liu G, Khalid H, Saifullah AM (2018) A field study on the effects of phosphorus alone and combined with organic amendments on growth and cadmium accumulation in wheat and subsequent rice receiving raw effluents. Arab J Geosci 11:1–9

    Article  Google Scholar 

  • Rizwan M, Meunier JD, Hélène M, Keller C (2012) Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination. J Hazard Mater 209-210:326–334

    Article  CAS  Google Scholar 

  • Rizwan M, Meunier JD, Davidian JC, Pokrovsky OS, Bovet N, Keller C (2016a) Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics. Environ Sci Pollut Res 23:1414–1427

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Abbas T, Rehman MZ, Hannan F, Keller C, Al-Wabel MI, Ok YS (2016b) Cadmium minimization in wheat: a critical review. Ecotoxicol Environ Saf 130:43–53

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Adrees M, Rizvi H, Rehman MZ, Hannan F, Qayyum MF, Hafeez F, Ok YS (2016c) Cadmium stress in rice: toxic effects, tolerance mechanisms and management: a critical review. Environ Sci Pollut Res 23:17859–17879

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Qayyum MF, Ibrahim M, Rehman MZ, Abbas T, Ok YS (2016d) Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environ Sci Pollut Res 23:2230–2248

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Adrees M, Ibrahim M, Tsang DC, Rehman MZ, Zahir ZA, Rinklebe J, Tack FM, Ok YS (2017a) A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere 182:90–105

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Hussain A, Ali Q, Shakoor MB, Rehman MZ, Farid M, Asma M (2017b) Effect of zinc-lysine on growth, yield and cadmium uptake in wheat (Triticum aestivum L.) and health risk assessment. Chemosphere 187:35–42

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Abbas T, Adrees M, Rehman MZ, Ibrahim M, Abbas F, Qayyum MF, Nawaz R (2018) Residual effects of biochar on growth, photosynthesis and cadmium uptake in rice (Oryza sativa L.) under Cd stress with different water conditions. J Environ Manag 206:676–683

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Ali B, Adrees M, Arshad M, Hussain A, Rehman MZ, Waris AA (2019) Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere 214:269–277

    Article  CAS  Google Scholar 

  • Rojas-Cifuentes GA, Johnson BL, Berti MT, Norvell WA (2012) Zinc fertilization effects on seed cadmium accumulation in oilseed and grain crops grown on North Dakota soils. Chilean J Agric Res 72:1–8

    Article  Google Scholar 

  • Saifullah SN, Bibi S, Ahmad M, Ok YS (2014) Effectiveness of zinc application to minimize cadmium toxicity and accumulation in wheat (Triticum aestivum L.). Environ Earth Sci 71:1663–1672

    Article  CAS  Google Scholar 

  • Saifullah JH, Naeem A, Rengel Z, Dahlawi S (2016) Timing of foliar Zn application plays a vital role in minimizing Cd accumulation in wheat. Environ Sci Pollut Res 23:16432–16439

    Article  CAS  Google Scholar 

  • Salah SA, Barrington SF (2006) Effect of soil fertility and transpiration rate on young wheat plants (Triticum aestivum) Cd/Zn uptake and yield. Agric Water Manag 82:177–192

    Article  Google Scholar 

  • Sanaeiostovar A, Khoshgoftarmanesh AH, Shariatmadari H, Afyuni M, Schulin R (2012) Combined effect of zinc and cadmium levels on root antioxidative responses in three different zinc-efficient wheat genotypes. J Agron Crop Sci 198:276–285

    Article  CAS  Google Scholar 

  • Sarwar N, Ishaq W, Farid G, Shaheen MR, Imran M, Geng M, Hussain S (2015) Zinc–cadmium interactions: impact on wheat physiology and mineral acquisition. Ecotoxicol Environ Saf 122:528–536

    Article  CAS  Google Scholar 

  • Sharma RK, Agrawal M, Agrawal SB (2007) Interactive effects of cadmium and zinc on carrots: growth and biomass accumulation. J Plant Nutr 31:19–34

    Article  CAS  Google Scholar 

  • Sharma RK, Agrawal M, Agrawal SB (2010) Physiological and biochemical responses resulting from cadmium and zinc accumulation in carrot plants. J Plant Nutr 33:1066–1079

    Article  CAS  Google Scholar 

  • Sharma RK, Agrawal M, Agrawal SB (2014) Responses of Beta vulgaris exposed to cadmium and zinc through soil drenching. J Environ Biol 35:727–732

    CAS  Google Scholar 

  • Souza JF, Dolder H, Cortelazzo AL (2005) Effect of excess cadmium and zinc ions on roots and shoots of maize seedlings. J Plant Nutr 28:1923–1931

    Article  CAS  Google Scholar 

  • Sozubek B, Belliturk K, Saglam MT (2015) Effect of zinc application on cadmium uptake of maize grown in alkaline soil. Commun Soil Sci Plant Anal 46:1244–1248

    Article  CAS  Google Scholar 

  • Sun Q, Wang XR, Ding SM, Yuan XF (2005) Effects of interactions between cadmium and zinc on phytochelatin and glutathione production in wheat (Triticum aestivum L.). Environ Toxicol 20:195–201

    Article  CAS  Google Scholar 

  • Tammam AA, Hatata MM, Sadek OA (2016) Effect of Cd and Zn interaction on reactive oxygen species and antioxidant machinery of broad bean plants (Vicia faba L). Egypt J Exp Biol 12:193–209

    Google Scholar 

  • Taspinar MS, Agar G, Alpsoy L, Yildirim N, Bozari S, Sevsay S (2011) The protective role of zinc and calcium in Vicia faba seedlings subjected to cadmium stress. Toxicol Ind Health 27:73–80

    Article  CAS  Google Scholar 

  • Tkalec M, Štefanić PP, Cvjetko P, Šikić S, Pavlica M, Balen B (2014) The effects of cadmium-zinc interactions on biochemical responses in tobacco seedlings and adult plants. PLoS One 9:1–13

    Article  CAS  Google Scholar 

  • Valizadehfard F, Reyhanitabar A, Najafi N, Oustan S (2012) Interactive effects of cadmium and zinc application on their uptake by rice under waterlogged and non-waterlogged conditions. J Plant Physiol Breed 2:1–12

    Google Scholar 

  • Wang C, Xu W, Li H, Zhou K, Liu J, Zhang M (2013) Effects of zinc on physiologic characterization and cadmium accumulation and chemical forms in different varieties of pepper. Wuhan Univ J Nat Sci 18:541–548

    Article  CAS  Google Scholar 

  • Wang Y, Wang X, Wang C, Wang R, Peng F, Xiao X, Zeng J, Fan X, Kang H, Sha L, Zhang H (2016) Proteomic profiling of the interactions of Cd/Zn in the roots of dwarf polish wheat (Triticum polonicum L.). Front Plant Sci 7:1–11

    Google Scholar 

  • Wang H, Xu C, Luo ZC, Zhu HH, Wang S, Zhu QH, Huang DY, Zhang YZ, Xiong J, He YB (2018) Foliar application of Zn can reduce Cd concentrations in rice (Oryza sativa L.) under field conditions. Environ Sci Pollut Res 25:29287–29294

    Article  CAS  Google Scholar 

  • Welch RM, Hart JJ, Norvell WA, Sullivan LA, Kochian LV (1999) Effects of nutrient solution zinc activity on net uptake, translocation, and root export of cadmium and zinc by separated sections of intact durum wheat (Triticum turgidum L. var durum) seedling roots. Plant Soil 208:243–250

    Article  CAS  Google Scholar 

  • Wu F, Zhang G (2002) Alleviation of cadmium-toxicity by application of zinc and ascorbic acid in barley. J Plant Nutr 25:2745–2761

    Article  CAS  Google Scholar 

  • Yang JX, Wang LQ, Wei DP, Chen SB, Ma YB (2011) Foliar spraying and seed soaking of zinc fertilizers decreased cadmium accumulation in cucumbers grown in Cd-contaminated soils. Soil Sediment Contam 20:400–410

    Article  CAS  Google Scholar 

  • Younis U, Malik SA, Rizwan M, Qayyum MF, Ok YS, Shah MHR, Rehman RA, Ahmad N (2016) Biochar enhances the cadmium tolerance in spinach (Spinacia oleracea) through modification of Cd uptake and physiological and biochemical attributes. Environ Sci Pollut Res 23:21385–21394

    Article  CAS  Google Scholar 

  • Zare AA, Khoshgoftarmanesh AH, Malakouti MJ, Bahrami HA, Chaney RL (2018) Root uptake and shoot accumulation of cadmium by lettuce at various Cd: Zn ratios in nutrient solution. Ecotoxicol Environ Saf 148:441–446

    Article  CAS  Google Scholar 

  • Zhang L, Song FB (2006) Effects of forms and rates of zinc fertilizers on cadmium concentrations in two cultivars of maize. Commun Soil Sci Plant Anal 37:1905–1916

    Article  CAS  Google Scholar 

  • Zhao ZQ, Zhu YG, Smith FA, Smith SE (2005a) Cadmium uptake by winter wheat seedlings in response to interactions between phosphorus and zinc supply in soils. J Plant Nutr 28:1569–1580

    Article  CAS  Google Scholar 

  • Zhao ZQ, Zhu YG, Kneer R, Smith SE (2005b) Effect of zinc on cadmium toxicity-induced oxidative stress in winter wheat seedlings. J Plant Nutr 28:1947–1959

    Article  CAS  Google Scholar 

  • Zhao Z, Zhu YG, Cai Y (2005c) Effects of zinc on cadmium uptake by spring wheat (Triticum aestivum, L.): long-time hydroponic study and short-time 109Cd tracing study. J Zhe Univ Sci A 6:643–648

    Article  Google Scholar 

  • Zhao AQ, Tian XH, Lu WH, Gale WJ, Lu XC, Cao YX (2011) Effect of zinc on cadmium toxicity in winter wheat. J Plant Nutr 34:1372–1385

    Article  CAS  Google Scholar 

  • Zhu YG, Zhao ZQ, Li HY, Smith SE, Smith FA (2003) Effect of zinc–cadmium interactions on the uptake of zinc and cadmium by winter wheat (Triticum aestivum) grown in pot culture. Bull Environ Contam Toxicol 71:1289–1296

    Article  CAS  Google Scholar 

Download references

Funding

Financial support from Government College, University Faisalabad is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Rizwan or Muhammad Zia ur Rehman.

Additional information

Responsible editor: Gangrong Shi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizwan, M., Ali, S., Rehman, M.Z.u. et al. A critical review on the effects of zinc at toxic levels of cadmium in plants. Environ Sci Pollut Res 26, 6279–6289 (2019). https://doi.org/10.1007/s11356-019-04174-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-04174-6

Keywords

Navigation