Skip to main content

Advanced Applications of Lignocellulosic Fibers and Mycelium-Based Composites for a Sustainable World

  • Chapter
  • First Online:
Trends and Innovations in Energetic Sources, Functional Compounds and Biotechnology

Abstract

Humanity's use of natural fibers dates back to prehistoric times, being essential materials for the protection and production of utensils and tools. Lignocellulosic fibers can be defined as fibrous plant material produced in photosynthesis, in which the main chemical component is cellulose. Agricultural residues consist mainly of plant fibers and are critical for making natural composite materials, adsorbent fibers, and nanostructured-based cellulose materials. This chapter will discuss some advanced applications of lignocellulosic fibers in biocomposites synthesis and adsorption of crude oils. Initially, we will discuss the main components of vegetable fibers relating to their structure/properties in chemical terms. Afterward, some examples of fungal/plant fiber biocomposites will be presented, focusing on the new mechanical properties of these materials. Subsequently, the excellent adsorbent properties of lignocellulosic fibers will be discussed as an attractive alternative for oily wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Steffen, W., Richardson, K., Rockstrom, J., Cornell, S.E., Fetzer, I., Bennett, E.M., Biggs, R., Carpenter, S.R., de Vries, W., de Wit, C.A., et al.: Planetary boundaries: guiding human development on a changing planet. Science 347(6223) (2015). https://doi.org/10.1126/science.1259855

  2. Jacob, D.J., Winner, D.A.: Effect of climate change on air quality. Atmos. Environ. 43(1), 51–63 (2009). https://doi.org/10.1016/j.atmosenv.2008.09.051

    Article  CAS  Google Scholar 

  3. Ferronato, N., Torretta, V.: Waste mismanagement in developing countries: a review of global issues. Int. J. Environ. Res. Public Health 16(6) (2019). https://doi.org/10.3390/ijerph16061060

  4. United Nations.: The 17 goals. https://sdgs.un.org/goals. Accessed 17 May 2023

  5. Iravani, S.: Green synthesis of metal nanoparticles using plants. Green Chem. 13(10), 2638–2650 (2011). https://doi.org/10.1039/c1gc15386b

    Article  CAS  Google Scholar 

  6. Siracusa, V., Rocculi, P., Romani, S., Dalla Rosa, M.: Biodegradable polymers for food packaging: a review. Trends Food Sci. Technol. 19(12), 634–643 (2008). https://doi.org/10.1016/j.tifs.2008.07.003

    Article  CAS  Google Scholar 

  7. Siqueira, G., Bras, J., Dufresne, A.: Cellulosic bionanocomposites: a review of preparation properties and applications. Polymers 2(4), 728–765 (2010). https://doi.org/10.3390/polym2040728

    Article  CAS  Google Scholar 

  8. Britannica, E.: Nat. Fibre (2023). https://www.britannica.com/topic/natural-fiber. Accessed 22 May 2023

  9. Li, Y., Hu, Y.P., Hu, C.J., Yu, Y.H.: Microstructures and mechanical properties of natural fibers. 1–2 (2008)

    Google Scholar 

  10. Saedi, S., Garcia, C.V., Kim, J.T., Shin, G.H.: Physical and chemical modifications of cellulose fibers for food packaging applications. Cellulose 28(14), 8877–8897 (2021)

    Article  CAS  Google Scholar 

  11. Djafari Petroudy, S.R., Fan, M., Fu, F.: 3—Physical and Mechanical Properties of Natural Fibers. Woodhead Publishing, pp 59–83 (2017)

    Google Scholar 

  12. Zulaikha, W., Hassan, M.Z., Ismail, Z.: Recent development of natural fibre for nanocellulose extraction and application. Mater. Today-Proc. 66, 2265–2273 (2022)

    Article  CAS  Google Scholar 

  13. Brandao, P.C., Souza, T.C., Ferreira, C.A., Hori, C.E., Romanielo, L.L.: Removal of petroleum hydrocarbons from aqueous solution using sugarcane bagasse as adsorbent. J. Hazard. Mater. 175(1–3), 1106–1112 (2010)

    Article  CAS  Google Scholar 

  14. Dong, T., Wang, F.M., Xu, G.B.: Theoretical and experimental study on the oil sorption behavior of kapok assemblies. Ind. Crops Prod. 61, 325–330 (2014)

    Article  CAS  Google Scholar 

  15. Chai, W.B., Liu, X.Y., Zou, J.C., Zhang, X.Y., Li, B.B., Yin, T.T.: Pomelo peel modified with acetic anhydride and styrene as new sorbents for removal of oil pollution. Carbohyd. Polym. 132, 245–251 (2015)

    Article  CAS  Google Scholar 

  16. Cocero, M.J., Cabeza, A., Abad, N., Adamovic, T., Vaquerizo, L., Martinez, C.M., Pazo-Cepeda, M.V.: Understanding biomass fractionation in subcritical & supercritical water. J. Supercrit. Fluids 133, 550–565 (2018)

    Article  CAS  Google Scholar 

  17. Onwuka J.C., Agbaji, E.B., Ajibola, V.O., Okibe, F.G.C. (2018) Treatment of crude oil-contaminated water with chemically modified natural fiber. Appl Water Sci 8(3) (2018)

    Google Scholar 

  18. Oliveira, L., Oliveira, L., Sonsin, A.F., Duarte, J.L.S., Soletti, J.I., Fonseca, E.J.S., Ribeiro, L.M.O., Meili, L.C.: Ultrafast diesel oil spill removal by fibers from silk-cotton tree: characterization and sorption potential evaluation. J. Clean. Prod. 263 (2020)

    Google Scholar 

  19. Silva, M.S., Frety, R., Vidal, R.R.L.: Cotton linter as biosorbent: removal study of highly diluted crude oil-in-saline water emulsion. Int. J. Environ. Sci. Technol. 20(2), 2111–2126 (2023)

    Article  CAS  Google Scholar 

  20. Cardoso, C.K.M., Mattedi, S., Lobato, A., Moreira, I.T.A.C.: Remediation of petroleum contaminated saline water using value-added adsorbents derived from waste coconut fibres. Chemosphere 279 (2021)

    Google Scholar 

  21. Li, X., Tabil, L.G., Panigrahi, S.: Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J. Polym. Environ. 15(1), 25–33 (2007)

    Article  Google Scholar 

  22. Phil. Sugar Cane 2. rows.jpg, S. C., Ed.; Flickr.com

    Google Scholar 

  23. Rameshng.: 5002.JPG, B. T. f. K., Ed.; commons.wikimedia.org, pp Banana tree from Valiyaparambu, Thrissur, Kerala

    Google Scholar 

  24. Stang, D.J.: 20zz.jpg, S. c., Ed.; ZipcodeZoo.com

    Google Scholar 

  25. Leidus, I.: open.jpg, C.-s. a. c., Ed.; commons.wikimedia.org

    Google Scholar 

  26. Mamichaelraj.: HARVEST.jpg, B. O. C. A.-S. I. R. F., Ed.; commons.wikimedia.org

    Google Scholar 

  27. Kabir, M.M., Wang, H., Lau, K.T., Cardona, F.: Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos. Part B-Eng. 43(7), 2883–2892 (2012)

    Article  CAS  Google Scholar 

  28. Prachayawarakorn, J., Chaiwatyothin, S., Mueangta, S., Hanchana, A.: Effect of jute and kapok fibers on properties of thermoplastic cassava starch composites. Mater. Des. 47, 309–315 (2013)

    Article  CAS  Google Scholar 

  29. Ghali, L., Msahli, S., Zidi, M., Sakli, F.: Effect of pre-treatment of Luffa fibres on the structural properties. Mater. Lett. 63(1), 61–63 (2009)

    Article  CAS  Google Scholar 

  30. Hussain, M., Levacher, D., Leblanc, N., Zmamou, H., Djeran-Maigre, I., Razakamanantsoa, A., Saouti, L.C.: Analysis of physical and mechanical characteristics of tropical natural fibers for their use in civil engineering applications. J. Nat. Fibers 20(1) (2023)

    Google Scholar 

  31. Richard, C., Cousin, P., Foruzanmehr, M., Elkoun, S., Robert, M.: Characterization of components of milkweed floss fiber. Sep. Sci. Technol. 54(18), 3091–3099 (2019)

    Article  CAS  Google Scholar 

  32. Hori, K., Flavier, M.E., Kuga, S., Lam, T.B.T., Iiyama, K.: Excellent oil absorbent kapok Ceiba pentandra (L.) Gaertn. fiber: fiber structure, chemical characteristics, and application. J. Wood Sci. 46(5), 401–404 (2000)

    Google Scholar 

  33. Sorieul, M., Dickson, A., Hill, S.J., Pearson, H.C.: Plant fibre: molecular structure and biomechanical properties, of a complex living material, influencing its deconstruction towards a biobased composite. Materials 9(8) (2016)

    Google Scholar 

  34. Berglund, J., Mikkelsen, D., Flanagan, B.M., Dhital, S., Gaunitz, S., Henriksson, G., Lindstrom, M.E., Yakubov, G.E., Gidley, M.J., Vilaplana, F.C.: Wood hemicelluloses exert distinct biomechanical contributions to cellulose fibrillar networks. Nat. Commun. 11(1) (2020)

    Google Scholar 

  35. Liu, Q.Q., Luo, L., Zheng, L.Q.C.: Lignins: biosynthesis and biological functions in plants. Int. J. Mol. Sci. 19(2) (2018)

    Google Scholar 

  36. Likon, M., Remskar, M., Ducman, V., Svegl, F.: Populus seed fibers as a natural source for production of oil super absorbents. J. Environ. Manag. 114, 158–167 (2013)

    Article  CAS  Google Scholar 

  37. Dong, T., Xu, G.B., Wang, F.M.: Oil spill cleanup by structured natural sorbents made from cattail fibers. Ind. Crops Prod. 76, 25–33 (2015)

    Article  CAS  Google Scholar 

  38. Philippe, G., Geneix, N., Petit, J., Guillon, F., Sandt, C., Rothan, C., Lahaye, M., Marion, D., Bakan, B.: Assembly of tomato fruit cuticles: a cross-talk between the cutin polyester and cell wall polysaccharides. New Phytol. 226(3), 809–822 (2020)

    Article  CAS  Google Scholar 

  39. Abdullah, M.A., Rahmah, A.U., Man, Z.: Physicochemical and sorption characteristics of Malaysian Ceiba pentandra (L.) Gaertn. as a natural oil sorbent. J. Hazard. Mater. 177(1–3), 683–691 (2010)

    Google Scholar 

  40. Choi, H.M., Cloud, R.M.: Natural sorbents in oil-spill cleanup. Environ. Sci. Technol. 26(4), 772–776 (1992)

    Article  CAS  Google Scholar 

  41. Wahi, R., Chuah, L.A., Choong, T.S.Y., Ngaini, Z., Nourouzi, M.M.: Oil removal from aqueous state by natural fibrous sorbent: an overview. Sep. Purif. Technol. 113, 51–63 (2013)

    Article  CAS  Google Scholar 

  42. Payne, K.C., Jackson, C.D., Aizpurua, C.E., Rojas, O.J., Hubbe, M.A.: Oil spills abatement: factors affecting oil uptake by cellulosic fibers. Environ. Sci. Technol. 46(14), 7725–7730 (2012)

    Article  CAS  Google Scholar 

  43. Lu, P., Hsieh, Y.L.: Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohyd. Polym. 82(2), 329–336 (2010)

    Article  Google Scholar 

  44. Phanthong, P., Reubroycharoen, P., Hao, X.G., Xu, G.W., Abudula, A., Guan, G.Q.: Nanocellulose: extraction and application. Carbon Resour. Convers. 1(1), 32–43 (2018)

    Article  Google Scholar 

  45. Dufresne, A.: Preparation and applications of cellulose nanomaterials. Chem. Afr. -A J. Tunis. Chem. Soc. (2022)

    Google Scholar 

  46. Mokhena, T.C., John, M.J.: Cellulose nanomaterials: new generation materials for solving global issues. Cellulose 27(3), 1149–1194 (2020)

    Article  CAS  Google Scholar 

  47. Joseph, S.R., Sandra, H.T.P., Nair, A., Chandran, S.A., Ushamani, M.: Cellulose nanocrystals from sugarcane bagasse: isolation, characterization and application. Cellul. Chem. Technol. 57(1–2), 39–47 (2023)

    CAS  Google Scholar 

  48. Hernandez, J., Romero, V., Escalante, A., Toriz, G., Rojas, O.J., Sulbaran, B.: Agave tequilana Bagasse as Source of Cellulose Nanocrystals via Organosolv Treatment. BioResources 13(2), 3603–3614 (2018)

    Article  CAS  Google Scholar 

  49. Pandi, N., Sonawane, S.H., Kishore, K.A.C.: Synthesis of cellulose nanocrystals (CNCs) from cotton using ultrasound-assisted acid hydrolysis. Ultrason. Sonochemistry 70 (2021)

    Google Scholar 

  50. Thambiraj, S., Shankaran, D.R.: Preparation and physicochemical characterization of cellulose nanocrystals from industrial waste cotton. Appl. Surf. Sci. 412, 405–416 (2017)

    Article  CAS  Google Scholar 

  51. Doineau, E., Coqueugniot, G., Pucci, M.F., Caro, A.S., Cathala, B., Benezet, J.C., Bras, J., Le Moigne, N.C.: Hierarchical thermoplastic biocomposites reinforced with flax fibres modified by xyloglucan and cellulose nanocrystals. Carbohydr. Polym. 254 (2021)

    Google Scholar 

  52. Durmaz, E., Ates, S., Ahsan, L., He, Z.B., Ni, Y.H.: Characterization of microfibrillarcellulose (MFC) obtained from corn stalk, sunflower stalk reed and sesame husk. Wood Res. 63(4), 713–726 (2018)

    CAS  Google Scholar 

  53. Liu, Z., Liu, Y., Zhang, L., Poyraz, S., Lu, N., Kim, M., Smith, J., Wang, X., Yu, Y., Zhang, X.: Controlled synthesis of transition metal/conducting polymer nanocomposites. Nanotechnology 23(33) 2012. https://doi.org/10.1088/0957-4484/23/33/335603

  54. Moran, J.I., Alvarez, V.A., Cyras, V.P., Vazquez, A.: Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15(1), 149–159 (2008)

    Article  CAS  Google Scholar 

  55. Zhao, Y.D., Zhang, Y.J., Lindstrom, M.E., Li, J.B.: Tunicate cellulose nanocrystals: preparation, neat films and nanocomposite films with glucomannans. Carbohyd. Polym. 117, 286–296 (2015)

    Article  CAS  Google Scholar 

  56. Gao, C.F., Zhang, Y., Cao, Y.Y., Xiao, W.H., Han, L.J.: Effect of ultrafine grinding pretreatment on the cellulose fibers and nanocrystals from wheat straw. J. Biobased Mater. Bioenergy 14(3), 369–375 (2020)

    Article  CAS  Google Scholar 

  57. Neto, W.P.F., Silverio, H.A., Dantas, N.O., Pasquini, D.: Extraction and characterization of cellulose nanocrystals from agro-industrial residue—Soy hulls. Ind. Crops Prod. 42, 480–488 (2013)

    Article  Google Scholar 

  58. Johar, N., Ahmad, I., Dufresne, A.: Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind. Crops Prod. 37(1), 93–99 (2012)

    Article  CAS  Google Scholar 

  59. Mali, P., Sherje, A.P.C.: Cellulose nanocrystals: fundamentals and biomedical applications. Carbohydr. Polym. 275 (2022)

    Google Scholar 

  60. Farooq, A., Patoary, M.K., Zhang, M.L., Mussana, H., Li, M.M., Naeem, M.A., Mushtaq, M., Liu, L.F.: Cellulose from sources to nanocellulose and an overview of synthesis and properties of nanocellulose/zinc oxide nanocomposite materials. Int. J. Biol. Macromol. 154, 1050–1073 (2020)

    Article  CAS  Google Scholar 

  61. Park, S.A., Eom, Y., Jeon, H., Koo, J.M., Lee, E.S., Jegal, J., Hwang, S.Y., Oh, D.X., Park, J.: Preparation of synergistically reinforced transparent bio-polycarbonate nanocomposites with highly dispersed cellulose nanocrystals. Green Chem. 21(19), 5212–5221 (2019)

    Article  CAS  Google Scholar 

  62. Li, Z.Q., Wang, M.L., Li, Y., Ren, J.M., Pei, C.H.C.: Effect of cellulose nanocrystals on bacterial cellulose hydrogel for oil-water separation. Sep. Purif. Technol. 304 (2023)

    Google Scholar 

  63. Osorio, D.A., Lee, B.E.J., Kwiecien, J.M., Wang, X.Y., Shahid, I., Hurley, A.L., Cranston, E.D., Grandfield, K.: Cross-linked cellulose nanocrystal aerogels as viable bone tissue scaffolds. Acta Biomater. 87, 152–165 (2019)

    Article  CAS  Google Scholar 

  64. Pooyan, P., Brewster, L.P., Tannenbaum, R., Garmestani, H.: Biomimetic synthesis of two different types of renewable cellulosic nanomaterials for scaffolding in tissue engineering. Green Process. Synth. 7(3), 181–190 (2018)

    Article  CAS  Google Scholar 

  65. Mu, R.J., Hong, X., Ni, Y.S., Li, Y.Z., Pang, J., Wang, Q., Xiao, J.B., Zheng, Y.F.: Recent trends and applications of cellulose nanocrystals in food industry. Trends Food Sci. Technol. 93, 136–144 (2019)

    Article  CAS  Google Scholar 

  66. Andrade, M.S., Ishikawa, O.H., Costa, R.S., Seixas, M.V.S., Rodrigues, R., Moura, E.A.B.C.: Development of sustainable food packaging material based on biodegradable polymer reinforced with cellulose nanocrystals. Food Packag. Shelf Life 31 (2022)

    Google Scholar 

  67. Edwards, J.V., Prevost, N., Sethumadhavan, K., Ullah, A., Condon, B.: Peptide conjugated cellulose nanocrystals with sensitive human neutrophil elastase sensor activity. Cellulose 20(3), 1223–1235 (2013)

    Article  CAS  Google Scholar 

  68. Li, R.Y., Liu, Y.Q., Seidi, F., Deng, C., Liang, F.Y., Xiao, H.N.C.: Design and construction of fluorescent cellulose nanocrystals for biomedical applications. Adv. Mater. Interfaces 9(11) (2022)

    Google Scholar 

  69. Kim, J., Sadasivuni, K.K., Zhai, L., Gao, X., Jo, E.B., IEEE, C.: Cellulose nanocrystals and nanofibers for smart optics materials. 2014. <Go to ISI>://WOS:000393497300077

    Google Scholar 

  70. Figueiredo, L.R.F., Nepomuceno, N.C., Melo, J.D.D., Medeiros, E.S.C.: Glycerol-based polymer adhesives reinforced with cellulose nanocrystals. Int. J. Adhes. Adhes. 110 (2021)

    Google Scholar 

  71. Tang, Z.W., Zhao, M.C., Li, N., Xiao, H., Miao, Q.X., Zhang, M., Liu, K., Huang, L.L., Chen, L.H., Zeng, H.B., et al.: Self-healing, reusable and conductive cellulose nanocrystals-containing adhesives. Colloids Surf. A-Phys.Chemical Eng. Asp. 643 (2022)

    Google Scholar 

  72. Hamlin, J., Nuruddin, M., Tarabara, V., Szczepanski, C.: Incorporation of cellulose nanocrystals and reactive surfactants for improved pressure-sensitive adhesive performance. Aiche J. 68(12) (2022)

    Google Scholar 

  73. Peng, B.L., Dhar, N., Liu, H.L., Tam, K.C.: Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can. J. Chem. Eng. 89(5), 1191–1206 (2011)

    Article  CAS  Google Scholar 

  74. Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J.: Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40(7), 3941–3994 (2011)

    Article  CAS  Google Scholar 

  75. Mariano, M., El Kissi, N., Dufresne, A.: Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J. Polym. Sci. Part B-Polym. Phys. 52(12), 791–806 (2014)

    Article  CAS  Google Scholar 

  76. Li, S.Z., Huo, F.W.: Metal-organic framework composites: from fundamentals to applications. Nanoscale 7(17), 7482–7501 (2015). https://doi.org/10.1039/c5nr00518c

    Article  CAS  Google Scholar 

  77. Hastuti, N., Kanomata, K., Kitaoka, T.: Hydrochloric acid hydrolysis of pulps from oil palm empty fruit bunches to produce cellulose nanocrystals. J. Polym. Environ. 26(9), 3698–3709 (2018)

    Article  CAS  Google Scholar 

  78. Rubleva, N.V., Lebedeva, E.O., Afineevskii, A.V., Voronova, M.I., Surov, O.V., Zakharov, A.G.: Production of cellulose nanocrystals by hydrolysis in mixture of hydrochloric and nitric acids. Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 62(12), 85–93 (2019)

    Article  CAS  Google Scholar 

  79. Das, K., Ray, D., Bandyopadhyay, N.R., Ghosh, T., Mohanty, A.K., Misra, M.: A study of the mechanical, thermal and morphological properties of microcrystalline cellulose particles prepared from cotton slivers using different acid concentrations. Cellulose 16(5), 783–793 (2009)

    Article  CAS  Google Scholar 

  80. Lavoine, N., Desloges, I., Dufresne, A., Bras, J.: Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohyd. Polym. 90(2), 735–764 (2012)

    Article  CAS  Google Scholar 

  81. Trache, D., Tarchoun, A.F., Derradji, M., Hamidon, T.S., Masruchin, N., Brosse, N., Hussin, M.H.C.: Nanocellulose: from fundamentals to advanced applications. Front. Chem. 8 (2020)

    Google Scholar 

  82. Yu, H., Zeng, G.M., Huang, H.L., Xi, X.M., Wang, R.Y., Huang, D.L., Huang, G.H., Li, J.B.: Microbial community succession and lignocellulose degradation during agricultural waste composting. Biodegradation 18(6), 793–802 (2007). https://doi.org/10.1007/s10532-007-9108-8

    Article  CAS  Google Scholar 

  83. Villas-Boas, S.G., Noel, S., Lane, G.A., Attwood, G., Cookson, A.: Extracellular metabolomics: a metabolic footprinting approach to assess fiber degradation in complex media. Anal. Biochem. 349(2), 297–305 (2006). https://doi.org/10.1016/j.ab.2005.11.019

    Article  CAS  Google Scholar 

  84. Sanchez, C.: Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol. Adv. 27(2), 185–194 (2009). https://doi.org/10.1016/j.biotechadv.2008.11.001

    Article  CAS  Google Scholar 

  85. Tuomela, M., Vikman, M., Hatakka, A., Itavaara, M.: Biodegradation of lignin in a compost environment: a review. Biores. Technol. 72(2), 169–183 (2000). https://doi.org/10.1016/s0960-8524(99)00104-2

    Article  CAS  Google Scholar 

  86. Dashtban, M., Schraft, H., Qin, W.S.: Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int. J. Biol. Sci. 5(6), 578–595 (2009). https://doi.org/10.7150/ijbs.5.578

    Article  CAS  Google Scholar 

  87. Cragg, S.M., Beckham, G.T., Bruce, N.C., Bugg, T.D.H., Distel, D.L., Dupree, P., Etxabe, A.G., Goodell, B.S., Jellison, J., McGeehan, J.E., et al.: Lignocellulose degradation mechanisms across the Tree of Life. Curr. Opin. Chem. Biol. 29, 108–119 (2015). https://doi.org/10.1016/j.cbpa.2015.10.018

    Article  CAS  Google Scholar 

  88. Fontes, A.M., Geris, R., dos Santos, A.V., Pereira, M.G., Ramalho, J.G.S., da Silva, A.F., Malta, M.: Bio-inspired gold microtubes based on the morphology of filamentous fungi. Biomater. Sci. 2(7), 956–960 (2014). https://doi.org/10.1039/c4bm00030g

    Article  CAS  Google Scholar 

  89. Fontes, A.M., Oliveira, C., Bargiela, P., da Rocha, M.D.C., Geris, R., da Silva, A.F., Gangishetty, M.K., Scott, R.W.J., Malta, M.: Unveiling the surface and the ultrastructure of palladized fungal biotemplates. Langmuir 37(44), 12961–12971 (2021). https://doi.org/10.1021/acs.langmuir.1c02023

    Article  CAS  Google Scholar 

  90. Li, Z., Chung, S.W., Nam, J.M., Ginger, D.S., Mirkin, C.A.: Living templates for the merarchical assembly of gold nanoparticles. Angewandte Chemie-International Edition 42(20), 2306–2309 (2003). https://doi.org/10.1002/anie.200351231

    Article  CAS  Google Scholar 

  91. Sugunan, A., Melin, P., Schnurer, J., Hilborn, J.G., Dutta, J.: Nutrition-driven assembly of colloidal nanoparticles: Growing fungi assemble gold nanoparticles as microwires. Adv Mater 19(1), 77-+ (2007). https://doi.org/10.1002/adma.200600911

  92. Bigall, N.C., Reitzig, M., Naumann, W., Simon, P., van Pee, K.H., Eychmuller, A.: Fungal templates for noble-metal nanoparticles and their application in catalysis. Angewandte Chemie-International Edition 47(41), 7876–7879 (2008). https://doi.org/10.1002/anie.200801802

    Article  CAS  Google Scholar 

  93. Kubo, A.M., Gorup, L.F., Amaral, L.S., Filho, E.R., Camargo, E.R.: Kinetic control of microtubule morphology obtained by assembling gold nanoparticles on living fungal biotemplates. Bioconjug. Chem. 27(10), 2337–2345 (2016). https://doi.org/10.1021/acs.bioconjchem.6b00340

    Article  CAS  Google Scholar 

  94. Li, Y., Li, L.Y., Chen, T., Duan, T., Yao, W.T., Zheng, K., Dai, L.C., Zhu, W.K.: Bioassembly of fungal hypha/graphene oxide aerogel as high performance adsorbents for U(VI) removal. Chem. Eng. J. 347, 407–414 (2018). https://doi.org/10.1016/j.cej.2018.04.140

    Article  CAS  Google Scholar 

  95. Li, Y., Zou, G., Zhang, X., Yang, S.Y., Wang, Z.H., Chen, T., Zhang, L., Lei, J., Zhu, W.K., Duan, T.: Bio-inspired and assembled fungal hyphae/carbon nanotubes aerogel for water-oil separation. Nanotechnology 30(27) 2019. https://doi.org/10.1088/1361-6528.ab0be3

  96. Wang, J.S., Hu, X.J., Liu, Y.G., Xie, S.B., Bao, Z.L.: Biosorption of uranium (VI) by immobilized Aspergillus fumigatus beads. J. Environ. Radioact. 101(6), 504–508 (2010). https://doi.org/10.1016/j.jenvrad.2010.03.002

    Article  CAS  Google Scholar 

  97. Rosario, J., da Luz, L.L., Geris, R., Ramalho, J.G.S., da Silva, A.F., Alves, S., Malta, M.: Photoluminescent organisms: how to make fungi glow through biointegration with lanthanide metal-organic frameworks. Sci. Rep. 9 (2019). https://doi.org/10.1038/s41598-019-43835-x

  98. Li, K., Jia, J.Y., Wu, N., Xu, Q.: Recent advances in the construction of biocomposites based on fungal mycelia. Front. Bioeng. Biotechnol. 10 (2022). https://doi.org/10.3389/fbioe.2022.1067869

  99. Appels, F.V.W., Camere, S., Montalti, M., Karana, E., Jansen, K.M.B., Dijksterhuis, J., Krijgsheld, P., Wosten, H.A.B.: Fabrication factors influencing mechanical, moisture- and water-related properties of mycelium-based composites. Mater. Des. 161, 64–71 (2019). https://doi.org/10.1016/j.matdes.2018.11.027

    Article  CAS  Google Scholar 

  100. Xing, Y.G., Brewer, M., El-Gharabawy, H., Griffith, G., Jones, P.: Growing and testing mycelium bricks as building insulation materials. In: 2nd international conference on energy engineering and environmental protection (EEEP), Sanya, PEOPLES R CHINA, Nov 20–22, 2017; 2018; vol. 121. https://doi.org/10.1088/1755-1315/121/2/022032

  101. Rakitina, M.A., Sayfutdinova, A.R., Kozhevnikova, E.Y., Voronin, D.V., Vinokurov, V.A.: Evaluation of optimal fungi strains for development of mycelium-based biopolymeric matrices. Chem. Technol. Fuels Oils 58(6), 1005–1010 (2023). https://doi.org/10.1007/s10553-023-01482-z

    Article  CAS  Google Scholar 

  102. Aiduang, W., Kumla, J., Srinuanpan, S.; Thamjaree, W.; Lumyong, S.; Suwannarach, N.: Mechanical, physical, and chemical properties of mycelium-based composites produced from various lignocellulosic residues and fungal species. J. Fungi 8(11) (2022). https://doi.org/10.3390/jof8111125

  103. Livne, A., Wosten, H.A.B., Pearlmutter, D., Gal, E.: Fungal mycelium bio-composite acts as a CO2-sink building material with low embodied energy. Acs Sustain. Chem. Eng. 10(37), 12099–12106 (2022). https://doi.org/10.1021/acssuschemeng.2c01314

    Article  CAS  Google Scholar 

  104. Aiduang, W., Chanthaluck, A., Kumla, J., Jatuwong, K., Srinuanpan, S., Waroonkun, T., Oranratmanee, R., Lumyong, S., Suwannarach, N.: Amazing fungi for eco-friendly composite materials: a comprehensive review. J. Fungi 8(8) (2022). https://doi.org/10.3390/jof8080842

  105. Ghazvinian, A., Khalilbeigi, A., Mottaghi, E., Gursoy, B.: The design and fabrication of mycocreate 2.0: a spatial structure built with load-bearing mycelium-based composite components. J. Int. Assoc. Shell Spat. Struct. 63(2), 85–97 (2022). https://doi.org/10.20898/j.iass.2022.012.

  106. Nguyen, M.T., Solueva, D., Spyridonos, E., Dahy, H.: Mycomerge: fabrication of mycelium-based natural fiber reinforced composites on a rattan framework. Biomimetics 7(2) (2022). https://doi.org/10.3390/biomimetics7020042

  107. Saez, D., Grizmann, D., Trautz, M., Werner, A.: Exploring the binding capacity of mycelium and wood-based composites for use in construction. Biomimetics 7(2) (2022). https://doi.org/10.3390/biomimetics7020078

  108. Vasatko, H., Gosch, L., Jauk, J., Stavric, M.: Basic research of material properties of mycelium-based composites. Biomimetics 7(2) 2022. https://doi.org/10.3390/biomimetics7020051

  109. Modanloo, B., Ghazvinian, A., Matini, M., Andaroodi, E.: Tilted Arch; implementation of additive manufacturing and bio-welding of mycelium-based composites. Biomimetics 6(4) (2021). https://doi.org/10.3390/biomimetics6040068

  110. Angelova, G.V., Brazkova, M.S., Krastanov, A.I.: Renewable mycelium based composite—sustainable approach for lignocellulose waste recovery and alternative to synthetic materials—a review. Zeitschrift Fur Naturforschung Section C-a Journal of Biosciences 76(11–12), 431–442 (2021). https://doi.org/10.1515/znc-2021-0040

    Article  CAS  Google Scholar 

  111. Kuribayashi, T., Lankinen, P., Hietala, S., Mikkonen, K.S.: Dense and continuous networks of aerial hyphae improve flexibility and shape retention of mycelium composite in the wet state. Compos Part A-Appl Sci Manuf 152 (2022). https://doi.org/10.1016/j.compositesa.2021.106688.

  112. Elsacker, E., Vandelook, S., Van Wylick, A., Ruytinx, J., De Laet, L., Peeters, E.: A comprehensive framework for the production of mycelium-based lignocellulosic composites. Sci. Total Environ. 725 (2020). https://doi.org/10.1016/j.scitotenv.2020.138431

  113. Jiang, L., Walczyk, D., McIntyre, G., Bucinell, R., Li, B.B.: Bioresin infused then cured mycelium-based sandwich-structure biocomposites: Resin transfer molding (RTM) process, flexural properties, and simulation. J. Clean. Prod. 207, 123–135 (2019). https://doi.org/10.1016/j.jclepro.2018.09.255

    Article  CAS  Google Scholar 

  114. Islam, M.R., Tudryn, G., Bucinell, R., Schadler, L., Picu, R.C.: Mechanical behavior of mycelium-based particulate composites. J. Mater. Sci. 53(24), 16371–16382 (2018). https://doi.org/10.1007/s10853-018-2797-z

    Article  CAS  Google Scholar 

  115. Riquelme, M., Aguirre, J., Bartnicki-Garcia, S., Braus, G.H., Feldbrugge, M., Fleig, U., Hansberg, W., Herrera-Estrella, A., Kamper, J., Kuck, U., et al.: Fungal morphogenesis, from the polarized growth of hyphae to complex reproduction and infection structures. Microbiol. Mol. Biol. Rev. 82(2) (2018). https://doi.org/10.1128/mmbr.00068-17

  116. Bowman, S.M., Free, S.J.: The structure and synthesis of the fungal cell wall. BioEssays 28(8), 799–808 (2006). https://doi.org/10.1002/bies.20441

    Article  Google Scholar 

  117. Free, S.J.: Chapter two—fungal cell wall organization and biosynthesis. In: Advances in Genetics, vol. 81, pp. 33–82. Elsevier Inc. (2013)

    Google Scholar 

  118. Free, S.J.: Fungal cell wall organization and biosynthesis. In: Advances in Genetics. Elsevier Inc., (2013)

    Google Scholar 

  119. Bartnick, S.: Cell wall chemistry morphogenesis and taxonomy of fungi. Annu. Rev. Microbiol. 22, 87 (1968). https://doi.org/10.1146/annurev.mi.22.100168.000511

  120. Garcia-Rubio, R., de Oliveira, H.C., Rivera, J., Trevijano-Contador, N.: The fungal cell wall: candida, cryptococcus, and aspergillus species. Front. Microbiol. 10 (2020). https://doi.org/10.3389/fmicb.2019.02993

  121. Gow, N.A.R., Latge, J.P., Munro, C.A.: The fungal cell wall: structure, biosynthesis, and function. Microbiol. Spectr. 5(3) (2017). https://doi.org/10.1128/microbiolspec.FUNK-0035-2016

  122. Lundell, T.K., Makela, M.R., Hilden, K.: Lignin-modifying enzymes in filamentous basidiomycetes—ecological, functional and phylogenetic review. J. Basic Microbiol. 50(1), 5–20 (2010). https://doi.org/10.1002/jobm.200900338

    Article  CAS  Google Scholar 

  123. Sydor, M., Cofta, G., Doczekalska, B., Bonenberg, A.: Fungi in mycelium-based composites: usage and recommendations. Materials 15(18) (2022). https://doi.org/10.3390/ma15186283

  124. Alemu, D., Tafesse, M., Mondal, A.K.: Mycelium-based composite: the future sustainable biomaterial. Int. J. Biomater. (2022). https://doi.org/10.1155/2022/8401528

  125. Elsacker, E., Vandelook, S., Brancart, J., Peeters, E., De Laet, L.: Mechanical, physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic substrates. PLoS One 14(7) (2019). https://doi.org/10.1371/journal.pone.0213954

  126. Sydor, M., Bonenberg, A., Doczekalska, B., Cofta, G.: Mycelium-based composites in art, architecture, and interior design: a review. Polymers 14(1) (2022). https://doi.org/10.3390/polym14010145

  127. Elsacker, E., Sondergaard, A., Van Wylick, A., Peeters, E., De Laet, L.: Growing living and multifunctional mycelium composites for large-scale formwork applications using robotic abrasive wire-cutting. Constr. Build. Mater. 283 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122732.

  128. Elsacker, E., De Laet, L., Peeters, E.: Functional grading of mycelium materials with inorganic particles: the effect of nanoclay on the biological, chemical and mechanical properties. Biomimetics 7(2) (2022). https://doi.org/10.3390/biomimetics7020057

  129. Hawksworth, D.L., Lucking, R.: Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol. Spectr. 5(4) 2017. https://doi.org/10.1128/microbiolspec.FUNK-0052-2016

  130. Moore, D., Robson, G.D., Trinci, A.P.J.: 21st Century Guidebook to Fungi. Cambridge University Press (2020)

    Google Scholar 

  131. Alemu, D, Tafesse, M, Deressa, Y.G.: Production of mycoblock from the mycelium of the fungus Pleurotus ostreatus for use as sustainable construction materials. Adv. Mater. Sci. Eng. (2022). https://doi.org/10.1155/2022/2876643

  132. Hammel, K.E., Cullen, D.: Role of fungal peroxidases in biological ligninolysis. Curr. Opin. Plant Biol. 11(3), 349–355 (2008). https://doi.org/10.1016/j.pbi.2008.02.003

    Article  CAS  Google Scholar 

  133. Baldrian, P., Valaskova, V.: Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol. Rev. 32(3), 501–521 (2008). https://doi.org/10.1111/j.1574-6976.2008.00106.x

    Article  CAS  Google Scholar 

  134. Dawodu, F.A., Abonyi, C.J., Akpomie, K.G.C.: Feldspar-banana peel composite adsorbent for efficient crude oil removal from solution. Appl Water Sci 11(1) (2021)

    Google Scholar 

  135. El Shahawy, A., Heikal, G.: Organic pollutants removal from oily wastewater using clean technology economically, friendly biosorbent (Phragmites australis). Ecol. Eng. 122, 207–218 (2018)

    Article  Google Scholar 

  136. Sidik, S.M., Jalil, A.A., Triwahyono, S., Adam, S.H., Satar, M.A.H., Hameed, B.H.: Modified oil palm leaves adsorbent with enhanced hydrophobicity for crude oil removal. Chem. Eng. J. 203, 9–18 (2012)

    Article  CAS  Google Scholar 

  137. Zhang, Z.Z., Gai, L.X., Hou, Z.W., Yang, C.Y., Ma, C.Q., Wang, Z.G., Sun, B.P., He, X.F., Tang, H.Z., Xu, P.: Characterization and biotechnological potential of petroleum-degrading bacteria isolated from oil-contaminated soils. Biores. Technol. 101(21), 8452–8456 (2010)

    Article  CAS  Google Scholar 

  138. Negi, H., Faujdar, E., Saleheen, R., Singh, R.K.: Viscosity modification of heavy crude oil by using a chitosan-based cationic surfactant. Energy Fuels 34(4), 4474–4483 (2020)

    Article  CAS  Google Scholar 

  139. Cai, L., Zhang, Y., Zhou, Y.R., Zhang, X.D., Ji, L.L., Song, W.D., Zhang, H.L., Liu, J.S.C.: Effective Adsorption of diesel oil by crab-shell-derived biochar nanomaterials. Materials 12(2) (2019)

    Google Scholar 

  140. Zhou, Y., Zhang, L., Cheng, Z.J.: Removal of organic pollutants from aqueous solution using agricultural wastes: a review. J. Mol. Liq. 212, 739–762 (2015)

    Article  CAS  Google Scholar 

  141. Al-Majed, A.A., Adebayo, A.R., Hossain, M.E.: A sustainable approach to controlling oil spills. J. Environ. Manag. 113, 213–227 (2012)

    Article  Google Scholar 

  142. El Gheriany, I.A., El Saqa, F.A., Amer, A.A.R., Hussein, M.: Oil spill sorption capacity of raw and thermally modified orange peel waste. Alex. Eng. J. 59(2), 925–932 (2020)

    Article  Google Scholar 

  143. Wu, J., Wang, N., Wang, L., Dong, H., Zhao, Y., Jiang, L.: Electrospun porous structure fibrous film with high oil adsorption capacity. ACS Appl. Mater. Interfaces 4(6), 3207–3212 (2012)

    Article  CAS  Google Scholar 

  144. Ibrahim, S., Wang, S.B., Ang, H.M.: Removal of emulsified oil from oily wastewater using agricultural waste barley straw. Biochem. Eng. J. 49(1), 78–83 (2010)

    Article  CAS  Google Scholar 

  145. Langevin, D., Poteau, S., Henaut, I., Argillier, J.F.: Crude oil emulsion properties and their application to heavy oil transportation. Oil & Gas Sci. Technol.-Rev. D Ifp Energ. Nouv. 59(5), 511–521 (2004)

    Article  CAS  Google Scholar 

  146. Lee, R.F.: Agents which promote and stabilize water-in-oil emulsions. Spill Sci. Technol. Bull. 5(2), 117–126 (1999)

    Article  CAS  Google Scholar 

  147. Rajak, V.K., Kumar, S., Thombre, N.V., Mandal, A.: Synthesis of activated charcoal from saw-dust and characterization for adsorptive separation of oil from oil-in-water emulsion. Chem. Eng. Commun. 205(7), 897–913 (2018)

    Article  CAS  Google Scholar 

  148. Wang, J.T., Zheng, Y., Wang, A.Q.: Effect of kapok fiber treated with various solvents on oil absorbency. Ind. Crops Prod. 40, 178–184 (2012)

    Article  CAS  Google Scholar 

  149. Zang, D., Liu, F., Zhang, M., Gao, Z.X., Wang, C.Y.: Novel superhydrophobic and superoleophilic sawdust as a selective oil sorbent for oil spill cleanup. Chem. Eng. Res. Des. 102, 34–41 (2015)

    Article  CAS  Google Scholar 

  150. Santander, M., Rodrigues, R.T., Rubio, J.: Modified jet flotation in oil (petroleum) emulsion/water separations. Colloids Surf. A Phys.Chemical Eng. Asp. 375(1–3), 237–244 (2011)

    Article  CAS  Google Scholar 

  151. Rubio, J., Souza, M.L., Smith, R.W.: Overview of flotation as a wastewater treatment technique. Miner. Eng. 15(3), 139–155 (2002)

    Google Scholar 

  152. Ahmad, A.L., Sumathi, S., Hameed, B.H.: Coagulation of residue oil and suspended solid in palm oil mill effluent by chitosan, alum and PAC. Chem. Eng. J. 118(1–2), 99–105 (2006)

    Article  CAS  Google Scholar 

  153. Santo, C.E., Vilar, V.J.P., Botelho, C.M.S., Bhatnagar, A., Kumar, E., Boaventura, R.A.R.: Optimization of coagulation-flocculation and flotation parameters for the treatment of a petroleum refinery effluent from a Portuguese plant. Chem. Eng. J. 183, 117–123 (2012)

    Article  CAS  Google Scholar 

  154. Abdelwahab, O., Nasr, S.M., Thabet, W.M.: Palm fibers and modified palm fibers adsorbents for different oils. Alex. Eng. J. 56(4), 749–755 (2017)

    Article  Google Scholar 

  155. Lv, N., Wang, X.L., Peng, S.T., Zhang, H.Q., Luo, L.C.: Study of the kinetics and equilibrium of the adsorption of oils onto hydrophobic jute fiber modified via the sol-gel method. Int. J. Environ. Res. Public Health 15(5) (2018)

    Google Scholar 

  156. Romero, I.C., Toro-Farmer, G., Diercks, A.R., Schwing, P., Muller-Karger, F., Murawski, S., Hollander, D.J.: Large-scale deposition of weathered oil in the Gulf of Mexico following a deep-water oil spill. Environ. Pollut. 228, 179–189 (2017)

    Article  CAS  Google Scholar 

  157. Thilagavathi, G., Karan, C.P., Das, D.: Oil sorption and retention capacities of thermally-bonded hybrid nonwovens prepared from cotton, kapok, milkweed and polypropylene fibers. J. Environ. Manage. 219, 340–349 (2018)

    Article  CAS  Google Scholar 

  158. Grem, I.C.D., Lima, B.N.B., Carneiro, W.F., Queiros, Y.G.D., Mansur, C.R.E.: Chitosan microspheres applied for removal of oil from produced water in the oil industry. Polimeros-Ciencia E Tecnologia 23(6), 705–711 (2013)

    Article  CAS  Google Scholar 

  159. Sayyed, A.J., Pinjari, D.V., Sonawane, S.H., Bhanvase, B.A., Sheikh, J., Sillanpaa, M.C.: Cellulose-based nanomaterials for water and wastewater treatments: a review. J. Environ. Chem. Eng. 9(6) (2021)

    Google Scholar 

  160. Doshi, B., Sillanpaa, M., Kalliola, S.: A review of bio-based materials for oil spill treatment. Water Res. 135, 262–277 (2018)

    Article  CAS  Google Scholar 

  161. Choi, H.M., Kwon, H.J., Moreau, J.P.: Cotton nonwovens as oil-spill cleanup sorbents. Text. Res. J. 63(4), 211–218 (1993)

    Article  Google Scholar 

  162. Yuan, X.P., Chung, T.C.M.: Novel solution to oil spill recovery: using thermodegradable polyolefin oil superabsorbent polymer (Oil-SAP). Energy Fuels 26(8), 4896–4902 (2012)

    Article  CAS  Google Scholar 

  163. Gupta, S., Tai, N.H.: Carbon materials as oil sorbents: a review on the synthesis and performance. J. Mater. Chem. A 4(5), 1550–1565 (2016)

    Article  CAS  Google Scholar 

  164. Chowdhury, S., Mishra, R., Saha, P., Kushwaha, P.: Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination 265(1–3), 159–168 (2011)

    Article  CAS  Google Scholar 

  165. Singh, V., Kendall, R.J., Hake, K., Ramkumar, S.: Crude oil sorption by raw cotton. Ind. Eng. Chem. Res. 52(18), 6277–6281 (2013)

    Article  CAS  Google Scholar 

  166. Radetic, M., Ilic, V., Radojevic, D., Miladinovic, R., Jocic, D., Jovancic, P.: Efficiency of recycled wool-based nonwoven material for the removal of oils from water. Chemosphere 70(3), 525–530 (2008)

    Article  CAS  Google Scholar 

  167. Foo, K.Y., Hameed, B.H.: Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156(1), 2–10 (2010)

    Article  CAS  Google Scholar 

  168. Cheu, S.C., Kong, H., Song, S.T., Johari, K., Saman, N., Che Yunus, M.A., Mat, H.: Separation of dissolved oil from aqueous solution by sorption onto acetylated lignocellulosic biomass—equilibrium, kinetics and mechanism studies. 4(1), 864–881 (2016)

    Google Scholar 

  169. Nwadiogbu, J.O., Ajiwe, V.I.E., Okoye, P.A.C.: Removal of crude oil from aqueous medium by sorption on hydrophobic corncobs: equilibrium and kinetic studies. J. Taibah Univ. Sci. 10(1), 56–63 (2016)

    Article  Google Scholar 

  170. El-Din, G.A., Amer, A.A., Malsh, G., Hussein, M.: Study on the use of banana peels for oil spill removal. Alex. Eng. J. 57(3), 2061–2068 (2018)

    Article  Google Scholar 

  171. Costa, A.S., Romao, L.P.C., Araujo, B.R., Lucas, S.C.O., Maciel, S.T.A., Wisniewski, A., Alexandre, M.R.: Environmental strategies to remove volatile aromatic fractions (BTEX) from petroleum industry wastewater using biomass. Biores. Technol. 105, 31–39 (2012)

    Article  CAS  Google Scholar 

  172. Arellano, I.H., Pendleton, P.: Phenomenological analyses of carbon dioxide adsorption kinetics on supported zinc-functionalized ionic liquid hybrid sorbents. Chem. Eng. J. 288, 255–263 (2016)

    Article  CAS  Google Scholar 

  173. Gusmao, K.A.G., Gurgel, L.V.A., Melo, T.M.S., Gil, L.F.: Application of succinylated sugarcane bagasse as adsorbent to remove methylene blue and gentian violet from aqueous solutions—Kinetic and equilibrium studies. Dyes Pigm. 92(3), 967–974 (2012)

    Article  Google Scholar 

  174. Elanchezhiyan, S.S., Meenakshi, S.: Synthesis and characterization of chitosan/Mg-Al layered double hydroxide composite for the removal of oil particles from oil-in-water emulsion. Int. J. Biol. Macromol. 104, 1586–1595 (2017)

    Article  CAS  Google Scholar 

  175. Reddi, M.R.G., Gomathi, T., Saranya, M., Sudha, P.N.: Adsorption and kinetic studies on the removal of chromium and copper onto Chitosan-g-maliec anhydride-g-ethylene dimethacrylate. Int. J. Biol. Macromol. 104, 1578–1585 (2017)

    Article  Google Scholar 

  176. Ibrahim, S., Ang, H.M., Wang, S.B.: Removal of emulsified food and mineral oils from wastewater using surfactant modified barley straw. Biores. Technol. 100(23), 5744–5749 (2009)

    Article  CAS  Google Scholar 

  177. Fontana, K.B., Chaves, E.S., Sanchez, J.D.S., Watanabe, E., Pietrobelli, J., Lenzi, G.G.: Textile dye removal from aqueous solutions by malt bagasse: Isotherm, kinetic and thermodynamic studies. Ecotoxicol. Environ. Saf. 124, 329–336 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Malta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Geris, R., Calil, S., Rigoli, I.C., Vidal, R.R.L., da Silva, A.F., Malta, M. (2024). Advanced Applications of Lignocellulosic Fibers and Mycelium-Based Composites for a Sustainable World. In: Taft, C.A., de Almeida, P.F. (eds) Trends and Innovations in Energetic Sources, Functional Compounds and Biotechnology. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-46545-1_19

Download citation

Publish with us

Policies and ethics