Skip to main content
Log in

Mechanical behavior of mycelium-based particulate composites

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This work investigates the mechanical behavior of mycelium composites reinforced with biodegradable agro-waste particles. In the composite, the mycelium acts as a supportive matrix which binds reinforcing particles within its filamentous network structure. The compressive behavior of mycelium composites is investigated using an integrated experimental and computational approach. The experimental results indicate that the composite mimics the soft elastic response of pure mycelium at small strains and demonstrates marked stiffening at larger strains due to the densification of stiff particles. The composite also exhibits the characteristic stress softening effect and hysteresis under cyclic compression previously observed for pure mycelium. To gain further insight into the composite behavior, a three-dimensional finite element model based on numerical homogenization technique is presented. Model validation is performed by direct comparison with experiments, and a parametric study of the effect of mycelium density and particle size is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Shao Z, Vollrath F (2002) Materials: surprising strength of silkworm silk. Nature 418:741

    Article  CAS  Google Scholar 

  2. Gibson LJ (1985) The mechanical behaviour of cancellous bone. J Biomech 18:317–328

    Article  CAS  Google Scholar 

  3. Dixon PG, Gibson LJ (2014) The structure and mechanics of Moso bamboo material. J R Soc Interface 11:20140321

    Article  Google Scholar 

  4. Lynch B, Bancelin S, Bonod-Bidaud C, Gueusquin J-B, Ruggiero F, Schanne-Klein M-C, Allain J-M (2017) A novel microstructural interpretation for the biomechanics of mouse skin derived from multiscale characterization. Acta Biomater 50:302–311

    Article  CAS  Google Scholar 

  5. Wegst UG, Bai H, Saiz E, Tomsia AP, Ritchie RO (2015) Bioinspired structural materials. Nat Mater 14:23–36

    Article  CAS  Google Scholar 

  6. Fricker M, Boddy L, Bebber D (2007) Network organisation of mycelial fungi. In: Howard RJ, Gow NAR (eds) Biology of the fungal cell. Springer, Berlin, pp 309–330

    Chapter  Google Scholar 

  7. Michalenko G, Hohl H, Rast D (1976) Chemistry and architecture of the mycelial wall of Agaricus bisporus. Microbiology 92:251–262

    CAS  Google Scholar 

  8. Howard RJ, Ferrari MA, Roach DH, Money NP (1991) Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc Natl Acad Sci 88:11281–11284

    Article  CAS  Google Scholar 

  9. Islam M, Tudryn G, Bucinell R, Schadler L, Picu RC (2017) Morphology and mechanics of fungal mycelium. Sci Rep 7:13070-1–13070-12

    Google Scholar 

  10. Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties. Cambridge University Press, Cambridge

    Google Scholar 

  11. Kim OV, Litvinov RI, Weisel JW, Alber MS (2014) Structural basis for the nonlinear mechanics of fibrin networks under compression. Biomaterials 35:6739–6749

    Article  CAS  Google Scholar 

  12. Dorfmann A, Ogden RW (2004) A constitutive model for the Mullins effect with permanent set in particle-reinforced rubber. Int J Solids Struct 41:1855–1878

    Article  Google Scholar 

  13. Mullins L (1969) Softening of rubber by deformation. Rubber Chem Technol 42:339–362

    Article  CAS  Google Scholar 

  14. Holt G, Mcintyre G, Flagg D, Bayer E, Wanjura J, Pelletier M (2012) Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material: evaluation study of select blends of cotton byproducts. J Biobased Mater Bioenergy 6:431–439

    Article  CAS  Google Scholar 

  15. Travaglini S, Noble J, Ross P, Dharan C (2013) Mycology matrix composites. In: Proceedings of the American Society for Composites—28th technical conference, State College, PA, pp 1–20

  16. Yang Z, Zhang F, Still B, White M, Amstislavski P (2017) Physical and mechanical properties of fungal mycelium-based biofoam. J Mater Civ Eng 29:04017030-1–04017030-9

    Google Scholar 

  17. Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11:357–372

    Article  Google Scholar 

  18. Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40:3647–3679

    Article  Google Scholar 

  19. Islam MR, Tudryn G, Bucinell R, Schadler L, Picu RC (2018) Stochastic continuum model for mycelium-based bio-foam. Mater Design (submitted)

  20. https://grow.bio/collections/shop/products/hemp-mycelium-material?ref=ecovativeshop (2018)

  21. Islam M, Tudryn GJ, Picu RC (2016) Microstructure modeling of random composites with cylindrical inclusions having high volume fraction and broad aspect ratio distribution. Comput Mater Sci 125:309–318

    Article  Google Scholar 

  22. Evans JW (1993) Random and cooperative sequential adsorption. Rev Mod Phys 65:1281–1329

    Article  CAS  Google Scholar 

  23. Version A, 6.13 (2013) Analysis User’s Manual. Dassault Systemes Simulia Corp, Providence

  24. Kari S, Berger H, Rodriguez-Ramos R, Gabbert U (2007) Computational evaluation of effective material properties of composites reinforced by randomly distributed spherical particles. Compos Struct 77:223–231

    Article  Google Scholar 

  25. http://www.simmetrix.com/products/SimulationModelingSuite/MeshSim/MeshSim.html

  26. Zhao L, Schaefer D, Xu H, Modi SJ, LaCourse WR, Marten MR (2005) Elastic properties of the cell wall of Aspergillus nidulans studied with atomic force microscopy. Biotechnol Prog 21:292–299

    Article  Google Scholar 

  27. Ifuku S, Saimoto H (2012) Chitin nanofibers: preparations, modifications, and applications. Nanoscale 4:3308–3318

    Article  CAS  Google Scholar 

  28. Storåkers B (1986) On material representation and constitutive branching in finite compressible elasticity. J Mech Phys Solids 34:125–145

    Article  Google Scholar 

  29. Ogden R, Roxburgh D (1999) A pseudo–elastic model for the Mullins effect in filled rubber. Proc R Soc Lond A Math Phys Eng Sci 455:2861–2877

    Article  Google Scholar 

  30. Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 11:127–140

    Article  Google Scholar 

Download references

Acknowledgements

This material is based on work supported by the US National Science Foundation (NSF) under Grant CMMI-1362234.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. C. Picu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.R., Tudryn, G., Bucinell, R. et al. Mechanical behavior of mycelium-based particulate composites. J Mater Sci 53, 16371–16382 (2018). https://doi.org/10.1007/s10853-018-2797-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2797-z

Keywords

Navigation