Skip to main content

The Potential of Nanocomposite Fertilizers for Sustainable Crop Production

  • Chapter
  • First Online:
Nanofertilizers for Sustainable Agroecosystems

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

  • 232 Accesses

Abstract

Modern day agriculture warrants for the crops which are able to take the edge off climate change along with increased productivity. Scale up production, economic viability, mass-scale trials, and involved environmental concerns are the important dimensions in this regard. Imprudent use of conventional fertilizers is a major environmental concern for soil and water reservoirs also leading to lower nutrient utilization in plants. Nanocomposites are playing vital role in advanced agricultural practices with their eco-friendly, biodegradable, economical, and publicly acceptable characteristics. Inclusion of nanocomposites as a support results in cascade signal activation of plant intrinsic immune system improving disease resistance in crop plants. Nutritional values of the crop, increased crop yield, improvement in the acquired plant response/ resistance against broad spectrum of pathogens and withstanding multiple stresses under the dynamic climate conditions with the use of nanocomposites is reviewed in the present work. Related aspects about the endophytic symbiosis of nanocomposites as an alternative to conventional fertilizers for the growth and well-being of the crop are highlighted. The role of nanocomposites in the plant growth, plant physiology, crops quantity, and crops quality are discussed. This compilation will contribute in developing a critical understanding of the current state of the art of nanocomposites as fertilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Aziz, M. E., Morsi, S. M. M., Salama, D. M., Abdel-Aziz, M. S., Abd Elwahed, M. S., Shaaban, E. A., & Youssef, A. M. (2019). Preparation and characterization of chitosan/polyacrylic acid/copper nanocomposites and their impact on onion production. International Journal of Biological Macromolecules, 123, 856–865.

    Article  CAS  PubMed  Google Scholar 

  • Abdel Maksoud, M. I. A., Bekhit, M., El-Sherif, D. M., Sofy, A. R., & Sofy, M. R. (2022). Gamma radiation-induced synthesis of a novel chitosan/silver/Mn-Mg ferrite nanocomposite and its impact on cadmium accumulation and translocation in brassica plant growth. International Journal of Biological Macromolecules, 194, 306–316.

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Aziz, H. M. M., Hasaneen, M. N. A., & Omer, A. M. (2016). Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Spanish Journal of Agricultural Research, 14, e0902–e0902.

    Article  Google Scholar 

  • Abdel-Aziz, H., Hasaneen, M., & Omer, A. (2018). Foliar application of nano chitosan NPK fertilizer improves the yield of wheat plants grown on two different soils. The Egyptian Journal of Experimental Biology (Botany), 14, 1.

    Article  Google Scholar 

  • Achari, G. A., Ramesh, R. (2019). Colonization of Eggplant by Endophytic Bacteria Antagonistic to Ralstonia solanacearum, the Bacterial Wilt Pathogen. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 89, 585–593.

    Google Scholar 

  • Ahmed, T., Noman, M., Luo, J., Muhammad, S., Shahid, M., Ali, M. A., et al. (2021). Bioengineered chitosan-magnesium nanocomposite: A novel agricultural antimicrobial agent against Acidovorax oryzae and Rhizoctonia solani for sustainable rice production. International Journal of Biological Macromolecules, 168, 834–845.

    Article  CAS  PubMed  Google Scholar 

  • Ahmed, T., Noman, M., Jiang, H., Shahid, M., Ma, C., Wu, Z., et al. (2022). Bioengineered chitosan-iron nanocomposite controls bacterial leaf blight disease by modulating plant defense response and nutritional status of rice (Oryza sativa L.). Nano Today, 45, 101547.

    Article  CAS  Google Scholar 

  • Alidoust, D., & Isoda, A. (2013). Effect of γFe2O3 nanoparticles on photosynthetic characteristic of soybean (Glycine max (L.) Merr.): Foliar spray versus soil amendment. Acta Physiologiae Plantarum, 35, 3365–3375.

    Article  CAS  Google Scholar 

  • Amer, A., Ghoneim, M., Shoala, T., & Mohamed, H. I. (2021). Comparative studies of eco-friendly compounds like humic acid, salicylic, and glycyrrhizic acids and their nanocomposites on French basil (Ocimum basilicum L. cv. Grand verde). Environmental Science and Pollution Research International, 28, 47196–47212.

    Article  CAS  PubMed  Google Scholar 

  • Anusuya, S., & Sathiyabama, M. (2014). Preparation of β-d-glucan nanoparticles and its antifungal activity. International Journal of Biological Macromolecules, 70, 440–443.

    Article  CAS  PubMed  Google Scholar 

  • Attia, M. S., El-Sayyad, G. S., Abd Elkodous, M., Khalil, W. F., Nofel, M. M., Abdelaziz, A. M., et al. (2021). Chitosan and EDTA conjugated graphene oxide antinematodes in eggplant: Toward improving plant immune response. International Journal of Biological Macromolecules, 179, 333–344.

    Article  CAS  PubMed  Google Scholar 

  • Aziz, M. Z., Yaseen, M., Abbas, T., Naveed, M., Mustafa, A., Hamid, Y., et al. (2019). Foliar application of micronutrients enhances crop stand, yield and the biofortification essential for human health of different wheat cultivars. Journal of Integrative Agriculture, 18, 1369–1378.

    Article  CAS  Google Scholar 

  • Batista, P. F., Müller, C., Merchant, A., Fuentes, D., de Oliveira Silva-Filho, R., da Silva, F. B., & Costa, A. C. (2020). Biochemical and physiological impacts of zinc sulphate, potassium phosphite and hydrogen sulphide in mitigating stress conditions in soybean. Physiologia Plantarum, 168, 456–472.

    Article  CAS  PubMed  Google Scholar 

  • Beig, B., Niazi, M. B. K., Jahan, Z., Zia, M., Shah, G. A., Iqbal, Z., & Douna, I. (2022). Facile coating of micronutrient zinc for slow release urea and its agronomic effects on field grown wheat (Triticum aestivum L.). Science of the Total Environment, 838, 155965.

    Article  CAS  PubMed  Google Scholar 

  • Beyer, P. (2010). Golden Rice and ‘Golden’ crops for human nutrition. New Biotechnology, 27, 478–481.

    Article  CAS  PubMed  Google Scholar 

  • bin Hussein, M. Z., Zainal, Z., Yahaya, A. H., & Foo, D. W. V. (2002). Controlled release of a plant growth regulator, α-naphthaleneacetate from the lamella of Zn–Al-layered double hydroxide nanocomposite. Journal of Controlled Release, 82, 417–427.

    Article  CAS  PubMed  Google Scholar 

  • Carvalho, S. M. P., & Vasconcelos, M. W. (2013). Producing more with less: Strategies and novel technologies for plant-based food biofortification. Food Research International, 54, 961–971.

    Article  CAS  Google Scholar 

  • Chakkalakkal, N. D., Thomas, M., Chittillapilly, P. S., Sujith, A., & Anjali, P. D. (2022). Electrospun polymer nanocomposite membrane as a promising seed coat for controlled release of agrichemicals and improved germination: Towards a better agricultural prospect. Journal of Cleaner Production, 377, 134479.

    Article  CAS  Google Scholar 

  • Chakraborty, R., Mukhopadhyay, A., Paul, S., Sarkar, S., Mukhopadhyay, R. (2023). Nanocomposite-based smart fertilizers: A boon to agricultural and environmental sustainability. Science of The Total Environment, 863, 160859.

    Google Scholar 

  • Chavanke, S. N., Penna, S., & Dalvi, S. G. (2022). β-Glucan and its nanocomposites in sustainable agriculture and environment: An overview of mechanisms and applications. Environmental Science and Pollution Research, 29, 80062–80087.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J., Sun, L., Cheng, Y., Lu, Z., Shao, K., Li, T., et al. (2016). Graphene oxide-silver nanocomposite: Novel agricultural antifungal agent against Fusarium graminearum for crop disease prevention. ACS Applied Materials & Interfaces, 8, 24057–24070.

    Article  CAS  Google Scholar 

  • Chrysargyris, A., Papakyriakou, E., Petropoulos, S. A., & Tzortzakis, N. (2019). The combined and single effect of salinity and copper stress on growth and quality of Mentha spicata plants. Journal of Hazardous Materials, 368, 584–593.

    Article  CAS  PubMed  Google Scholar 

  • Chrysargyris, A., Höfte, M., Tzortzakis, N., Petropoulos, S. A., & Di Gioia, F. (2022). Editorial: Micronutrients: The borderline between their beneficial role and toxicity in plants. Frontiers in Plant Science, 13, 840624.

    Article  PubMed  PubMed Central  Google Scholar 

  • De Steur, H., Mehta, S., Gellynck, X., & Finkelstein, J. L. (2017). GM biofortified crops: Potential effects on targeting the micronutrient intake gap in human populations. Current Opinion in Biotechnology, 44, 181–188.

    Article  PubMed  Google Scholar 

  • Dhaliwal, G. S., Jindal, V., & Mohindru, B. (2015). Crop losses due to insect pests: Global and Indian Scenario. Indian Journal of Entomology, 77, 165.

    Article  Google Scholar 

  • Dhaliwal, S. S., Sharma, V., Shukla, A. K., Kaur, J., Gupta, R. K., Verma, V., et al. (2023). Interactive effect of land use systems on depth-wise soil properties and micronutrients minerals in North-Western, India. Heliyon, 9(2), e13591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimkpa, C. O., Campos, M. G. N., Fugice, J., Glass, K., Ozcan, A., Huang, Z., et al. (2022). Synthesis and characterization of novel dual-capped Zn–urea nanofertilizers and application in nutrient delivery in wheat. Environmental Science: Advances, 1, 47–58.

    CAS  Google Scholar 

  • Drostkar, E., Talebi, R., & Kanouni, H. (2016). Foliar application of Fe, Zn and NPK nano-fertilizers on seed yield and morphological traits in chickpea under rainfed condition. Retrieved from https://www.semanticscholar.org/paper/Foliar-application-of-Fe%2C-Zn-and-NPK-on-seed-yield-Drostkar-Talebi/bd1aeab33ac893f2e78651e6aa7850c634d21fcd

  • Durgude, S. A., Ram, S., Kumar, R., Singh, S. V., Singh, V., Durgude, A. G., Pramanick, B., Maitra, S., Gaber, A., & Hossain, A. (2022). Plant-based nanomaterials: Raw materials, techniques, and applications in food, agriculture, and health. Journal of Nanomaterials, 5120307.

    Google Scholar 

  • Dutta, P., Kumari, A., Mahanta, M., Biswas, K. K., Dudkiewicz, A., Thakuria, D., ... & Mazumdar, N. (2022). Advances in nanotechnology as a potential alternative for plant viral disease management. Frontiers in Microbiology, 13, 935193.

    Google Scholar 

  • Ebadollahi, R., Jafarirad, S., Kosari-Nasab, M., & Mahjouri, S. (2019). Effect of explant source, perlite nanoparticles and TiO2/perlite nanocomposites on phytochemical composition of metabolites in callus cultures of Hypericum perforatum. Scientific Reports, 9, 12998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egamberdieva, D., Wirth, S., Bellingrath-Kimura, S. D., Mishra, J., & Arora, N. K. (2019). Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Frontiers in Microbiology, 10. Retrieved from https://www.frontiersin.org/articles/10.3389/fmicb.2019.02791

  • El-Abeid, S. E., Ahmed, Y., Daròs, J.-A., & Mohamed, M. A. (2020). Reduced graphene oxide nanosheet-decorated copper oxide nanoparticles: A potent antifungal nanocomposite against Fusarium root rot and wilt diseases of tomato and pepper plants. Nanomaterials, 10, 1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Kahky, D., Attia, M., Easa, S. M., Awad, N. M., & Helmy, E. A. (2021). Interactive effects of biosynthesized nanocomposites and their antimicrobial and cytotoxic potentials. Nanomaterials, 11(4), 903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erenstein, O., Poole, N., & Donovan, J. (2022). Role of staple cereals in human nutrition: Separating the wheat from the chaff in the infodemics age. Trends in Food Science & Technology, 119, 508–513.

    Article  CAS  Google Scholar 

  • FAO-UN. (2022). Genetically modified crops: Safety, benefits, risks and global status |Policy Support and Governance| Food and Agriculture Organization of the United Nations. FAO-UN.

    Google Scholar 

  • Farhangi-Abriz, S., & Ghassemi-Golezani, K. (2021). Changes in soil properties and salt tolerance of safflower in response to biochar-based metal oxide nanocomposites of magnesium and manganese. Ecotoxicology and Environmental Safety, 211, 111904.

    Article  CAS  PubMed  Google Scholar 

  • Füzy, A., Kovács, R., Cseresnyés, I., Parádi, I., Szili-Kovács, T., Kelemen, B., et al. (2019). Selection of plant physiological parameters to detect stress effects in pot experiments using principal component analysis. Acta Physiologiae Plantarum, 41, 56.

    Article  Google Scholar 

  • Gamage, A., Thiviya, P., Mani, S., Ponnusamy, P. G., Manamperi, A., Evon, P., et al. (2022). Environmental properties and applications of biodegradable starch-based nanocomposites. Polymers, 14, 4578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Ovando, A. E., Ramírez Piña, J. E., Esquivel Naranjo, E. U., Cervantes Chávez, J. A., & Esquivel, K. (2022). Biosynthesized nanoparticles and implications by their use in crops: Effects over physiology, action mechanisms, plant stress responses and toxicity. Plant Stress, 6, 100109.

    Article  Google Scholar 

  • Ge, S., Li, M., Ji, N., Liu, J., Mul, H., Xiong, L., & Sun, Q. (2018). Preparation of a strong gelatin–short linear glucan nanocomposite hydrogel by an in situ self-assembly process. Journal of Agricultural and Food Chemistry, 66, 177–186.

    Article  CAS  PubMed  Google Scholar 

  • Gharekhani, H., Olad, A., & Hosseinzadeh, F. (2018). Iron/NPK agrochemical formulation from superabsorbent nanocomposite based on maize bran and montmorillonite with functions of water uptake and slow-release fertilizer. New Journal of Chemistry, 42, 13899–13914.

    Article  CAS  Google Scholar 

  • Ghasemi, S., Khoshgoftarmanesh, A. H., Afyuni, M., & Hadadzadeh, H. (2014). Iron(II)–amino acid chelates alleviate salt-stress induced oxidative damages on tomato grown in nutrient solution culture. Scientia Horticulturae, 165, 91–98.

    Article  CAS  Google Scholar 

  • Ghassemi-Golezani, K., & Farhangi-Abriz, S. (2021). Biochar-based metal oxide nanocomposites of magnesium and manganese improved root development and productivity of safflower (Carthamus tinctorius L.) under salt stress. Rhizosphere, 19, 100416.

    Article  Google Scholar 

  • Giroto, A. S., do Valle, S. F., Guimarães, G. G. F., Wuyts, N., Ohrem, B., Jablonowski, N. D., et al. (2022). Zinc loading in urea-formaldehyde nanocomposites increases nitrogen and zinc micronutrient fertilization efficiencies in poor sand substrate. Science of the Total Environment, 841, 156688.

    Article  CAS  PubMed  Google Scholar 

  • Gohari, G., Mohammadi, A., Akbari, A., Panahirad, S., Dadpour, M. R., Fotopoulos, V., & Kimura, S. (2020). Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Scientific Reports, 10, 912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guha, T., Gopal, G., Mukherjee, A., & Kundu, R. (2022). Fe3O4-urea nanocomposites as a novel nitrogen fertilizer for improving nutrient utilization efficiency and reducing environmental pollution. Environmental Pollution, 292, 118301.

    Article  CAS  PubMed  Google Scholar 

  • Hessini, K., Issaoui, K., Ferchichi, S., Saif, T., Abdelly, C., Siddique, K. H. M., & Cruz, C. (2019). Interactive effects of salinity and nitrogen forms on plant growth, photosynthesis and osmotic adjustment in maize. Plant Physiology and Biochemistry, 139, 171–178.

    Article  CAS  PubMed  Google Scholar 

  • Hussein, M. M., & Abou-Baker, N. H. (2018). The contribution of nano-zinc to alleviate salinity stress on cotton plants. Royal Society Open Science, 5, 171809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahangirian, H., Rafiee-Moghaddam, R., Jahangirian, N., Nikpey, B., Jahangirian, S., Bassous, N., et al. (2020). Green synthesis of zeolite/Fe2O3 nanocomposites: Toxicity & cell proliferation assays and application as a smart iron nanofertilizer. International Journal of Nanomedicine, 15, 1005–1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain, T., Srivastava, K., Kumar, S., & Dutta, P. K. (2022). Chapter 6—Current and future prospects of chitosan-based nanomaterials in plant protection and growth. In S. Kumar & S. V. Madihally (Eds.), Role of chitosan and chitosan-based nanomaterials in plant sciences (pp. 143–163). Academic.

    Chapter  Google Scholar 

  • Jakhar, A. M., Aziz, I., Kaleri, A. R., Hasnain, M., Haider, G., Ma, J,. Abideem, Z. (2022). Nano-fertilizers: A sustainable technology for improving crop nutrition and food security. NanoImpact, 27, 100411.

    Google Scholar 

  • Jampílek, J., & Kráľová, K. (2022). Chapter 13—Impact of copper-based nanoparticles on economically important plants. In K. A. Abd-Elsalam (Ed.), Copper nanostructures: Next-generation of agrochemicals for sustainable agroecosystems (pp. 293–339). Elsevier.

    Chapter  Google Scholar 

  • Janmohammadi, M., Amanzadeh, T., Sabaghnia, N., & Dashti, S. (2016). Impact of foliar application of nano micronutrient fertilizers and titanium dioxide nanoparticles on the growth and yield components of barley under supplemental irrigation. Acta Agriculturae Slovenica, 107, 265.

    Article  Google Scholar 

  • Jha, A., Pathania, D., Sonu, et al. (2023). Panorama of biogenic nano-fertilizers: A road to sustainable Agriculture. Environmental Research, 235, 116456.

    Google Scholar 

  • Ji, Y., Huang, M., Yan, J., Qi, T., Li, T., Liu, Y., et al. (2020). Adhesive nanocomposite for prolonging foliar retention and synergistic weeding and nourishing. Advanced Sustainable Systems, 4, 2000010.

    Article  CAS  Google Scholar 

  • Jung, S., Cui, Y., Barnes, M., Satam, C., Zhang, S., Chowdhury, R. A., et al. (2020). Multifunctional bio-nanocomposite coatings for perishable fruits. Advanced Materials, 32, 1908291.

    Article  CAS  Google Scholar 

  • Kapoor, P., Dhaka, R. K., Sihag, P., Mehla, S., Sagwal, V., Singh, Y., et al. (2022). Nanotechnology-enabled biofortification strategies for micronutrients enrichment of food crops: Current understanding and future scope. NanoImpact, 26, 100407.

    Article  CAS  PubMed  Google Scholar 

  • Kassem, I., Ablouh, E.-H., El Bouchtaoui, F.-Z., Kassab, Z., Khouloud, M., Sehaqui, H., et al. (2021). Cellulose nanocrystals-filled poly (vinyl alcohol) nanocomposites as waterborne coating materials of NPK fertilizer with slow release and water retention properties. International Journal of Biological Macromolecules, 189, 1029–1042.

    Article  CAS  PubMed  Google Scholar 

  • Kheir, A. M. S., Abouelsoud, H. M., Hafez, E. M., & Ali, O. A. M. (2019). Integrated effect of nano-Zn, nano-Si, and drainage using crop straw–filled ditches on saline sodic soil properties and rice productivity. Arabian Journal of Geosciences, 15, 1–8.

    Google Scholar 

  • Kimanya, M. E. (2015). The health impacts of mycotoxins in the eastern Africa region. Current Opinion in Food Science, 6, 7–11.

    Article  Google Scholar 

  • Koondhar, M. A., Aziz, N., Tan, Z., Yang, S., Raza Abbasi, K., & Kong, R. (2021). Green growth of cereal food production under the constraints of agricultural carbon emissions: A new insights from ARDL and VECM models. Sustainable Energy Technologies and Assessments, 47, 101452.

    Article  Google Scholar 

  • Kumar, P., & Sharma, P. K. (2020). Soil salinity and food security in India. Frontiers in Sustainable Food Systems, 4. Retrieved from https://www.frontiersin.org/articles/10.3389/fsufs.2020.533781

  • Kumar, V., Sachdev, D., Pasricha, R., Maheshwari, P. H., & Taneja, N. K. (2018). Zinc-supported multiwalled carbon nanotube nanocomposite: A synergism to micronutrient release and a smart distributor to promote the growth of onion seeds in arid conditions. ACS Applied Materials & Interfaces, 10, 36733–36745.

    Article  CAS  Google Scholar 

  • Kumar, A., Singh, S., Mukherjee, A., Rastogi, R. P., & Verma, J. P. (2021). Salt-tolerant plant growth–promoting Bacillus pumilus strain JPVS11 to enhance plant growth attributes of rice and improve soil health under salinity stress. Microbiological Research, 242, 126616.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, A., Kaur, H., Choudhary, A., Mehta, K., Chattopadhyay, A., & Mehta, S. (2023). Chapter 7—Role of nanocomposites in sustainable crop plants’ growth and production. In A. Husen (Ed.), Engineered nanomaterials for sustainable agricultural production, soil improvement and stress management (pp. 161–181). Academic.

    Chapter  Google Scholar 

  • Kwas, M., Paccagnini, A., & Rubaszek, M. (2022). Common factors and the dynamics of cereal prices. A forecasting perspective. Journal of Commodity Markets, 28, 100240.

    Article  Google Scholar 

  • Leplat, J., Friberg, H., Abid, M., & Steinberg, C. (2013). Survival of Fusarium graminearum, the causal agent of Fusarium head blight. A review. Agronomy for Sustainable Development, 33, 97–111.

    Article  Google Scholar 

  • Li, S., Tian, Y., Jiang, P., Lin, Y., Liu, X., & Yang, H. (2021). Recent advances in the application of metabolomics for food safety control and food quality analyses. Critical Reviews in Food Science and Nutrition, 61, 1448–1469.

    Article  CAS  PubMed  Google Scholar 

  • Liang, D., Wang, Y., Shi, H., Luo, Z., Quirino, R. L., Lu, Q., & Zhang, C. (2022). Controllable release fertilizer with low coating content enabled by superhydrophobic castor oil-based polyurethane nanocomposites prepared through a one-step synthetic strategy. Industrial Crops and Products, 189, 115803.

    Article  CAS  Google Scholar 

  • Liu, B., Mu, L., Zhang, J., Han, X., & Shi, H. (2020). TiO2/Cu2(OH)2CO3 nanocomposite as efficient antimicrobials for inactivation of crop pathogens in agriculture. Materials Science and Engineering: C, 107, 110344.

    Article  CAS  PubMed  Google Scholar 

  • Lohmousavi, S. M., Abad, H. H. S., Noormohammadi, G., & Delkhosh, B. (2020). Synthesis and characterization of a novel controlled release nitrogen-phosphorus fertilizer hybrid nanocomposite based on banana peel cellulose and layered double hydroxides nanosheets. Arabian Journal of Chemistry, 13, 6977–6985.

    Article  CAS  Google Scholar 

  • Mary Isabella Sonali, J., Kavitha, R., Kumar, P. S., Rajagopal, R., Gayathri, K. V., Ghfar, A. A., & Govindaraju, S. (2022). Application of a novel nanocomposite containing micro-nutrient solubilizing bacterial strains and CeO2 nanocomposite as bio-fertilizer. Chemosphere, 286, 131800.

    Article  CAS  PubMed  Google Scholar 

  • Mengel, K., Kirkby, E. A., Kosegarten, H., & Appel, T. (Eds.). (2001). Principles of plant nutrition. Springer Netherlands.

    Google Scholar 

  • Menossi, M., Casalongué, C., & Alvarez, V. A. (2022). Bio-nanocomposites for modern agricultural applications. In S. Mallakpour & C. M. Hussain (Eds.), Handbook of consumer nanoproducts (pp. 1201–1237). Springer Nature.

    Chapter  Google Scholar 

  • Merghany, M. M., Abdelgawad, K. F., Tawfic, G. A., & Ahmed, S. S. (2019). Yield, quality and leaves anatomy structure of spring onion sprayed by nanocomposite to control Thrips tabaci. Plant Archives, 19, 1839–1849.

    Google Scholar 

  • Morteza, E., Moaveni, P., Farahani, H. A., & Kiyani, M. (2013). Study of photosynthetic pigments changes of maize (Zea mays L.) under nano Tio2 spraying at various growth stages. Springerplus, 2, 247.

    Article  PubMed  PubMed Central  Google Scholar 

  • Naaz, H., Rawat, K., Saffeullah, P., & Umar, S. (2022). Silica nanoparticles synthesis and applications in agriculture for plant fertilization and protection: A review. Environmental Chemistry Letters, 21(1), 539–559. https://doi.org/10.1007/s10311-022-01515-9

    Article  CAS  Google Scholar 

  • Nada, W. M., & Blumenstein, O. (2015). Characterization and impact of newly synthesized superabsorbent hydrogel nanocomposite on water retention characteristics of sandy soil and grass seedling growth. International Journal of Soil Science, 10, 153–165.

    Article  CAS  Google Scholar 

  • Nagarajan, S. (2007). Plant diseases in India and their control. In Ciba foundation symposium 177—Crop protection and sustainable agriculture (pp. 208–227). Wiley.

    Chapter  Google Scholar 

  • Najafi Vafa, Z., Sirousmehr, A., Ghanbari, A., Khammari, I., & Falahi, N. (2015). Effects of nano zinc and humic acid on quantitative and qualitative characteristics of savory (Satureja hortensis L.). Journal of BioScience and Biotechnology. https://doi.org/10.12692/ijb/6.3.124-136

  • do Nascimento, L. Á., Abhilasha, A., Singh, J., Elias, M. C., & Colussi, R. (2022). Rice germination and its impact on technological and nutritional properties: A review. Rice Science, 29, 201–215.

    Article  Google Scholar 

  • Neitzel, I., Mochalin, V., & Gogotsi, Y. (2012). Chapter 13—Advances in surface chemistry of nanodiamond and nanodiamond–Polymer composites. In O. A. Shenderova & D. M. Gruen (Eds.), Ultananocrystalline diamond (2nd ed., pp. 421–456). William Andrew Publishing.

    Chapter  Google Scholar 

  • Ni, J., Hu, H., & Wu, L. (2022). Fabrication of calcium peroxide into amphiphilic nest-like attapulgite/SiO2 as a seed coating nanocomposite of wheat that confers resistance to multiple environmental stresses. ACS Agricultural Science & Technology, 2, 1300–1310.

    Article  CAS  Google Scholar 

  • Nokandeh, S., Ramezani, M., & Gerami, M. (2021). The physiological and biochemical responses to engineered green graphene/metal nanocomposites in Stevia rebaudiana. Journal of Plant Biochemistry and Biotechnology, 30, 579–585.

    Article  CAS  Google Scholar 

  • OECD-FAO. (2022). OECD-FAO agricultural outlook 2022–2031 (No. 20.500.12592/vn963f). FAO: Food and Agriculture Organization of the United Nations.

    Book  Google Scholar 

  • Olad, A., Zebhi, H., Salari, D., Mirmohseni, A., & Reyhani Tabar, A. (2018). Slow-release NPK fertilizer encapsulated by carboxymethyl cellulose-based nanocomposite with the function of water retention in soil. Materials Science and Engineering: C, 90, 333–340.

    Article  CAS  PubMed  Google Scholar 

  • Osman, H. S., Gowayed, S. M., Elbagory, M., Omara, A. E.-D., El-Monem, A. M. A., Abd El-Razek, U. A., & Hafez, E. M. (2021). Interactive impacts of beneficial microbes and Si-Zn nanocomposite on growth and productivity of soybean subjected to water deficit under salt-affected soil conditions. Plants, 10, 1396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perfileva, A. I., Moty’leva, S. M., Klimenkov, I. V., Arsent’ev, K. Y., Graskova, I. A., Sukhov, B. G., & Trofimov, B. A. (2017). Development of antimicrobial nano-selenium biocomposite for protecting potatoes from bacterial phytopathogens. Nanotechnologies in Russia, 12, 553–558.

    Article  CAS  Google Scholar 

  • Pimsen, R., Porrawatkul, P., Nuengmatcha, P., Ramasoot, S., & Chanthai, S. (2021). Efficiency enhancement of slow release of fertilizer using nanozeolite–chitosan/sago starch-based biopolymer composite. Journal of Coatings Technology and Research, 18, 1321–1332.

    Article  CAS  Google Scholar 

  • Pîrvulescu, M., Sala, F., Boldea, M. (2015). Variation of chlorophyll content in sunflower under the influence of magnetic nanofluids. AIP Conference Proceedings, 1648, 670009.

    Google Scholar 

  • Poole, N., Donovan, J., & Erenstein, O. (2021). Viewpoint: Agri-nutrition research: Revisiting the contribution of maize and wheat to human nutrition and health. Food Policy, 100, 101976.

    Article  PubMed  Google Scholar 

  • Raju, D., Mehta, U. J., & Beedu, S. R. (2016). Biogenic green synthesis of monodispersed gum kondagogu (Cochlospermum gossypium) iron nanocomposite material and its application in germination and growth of mung bean (Vigna radiata) as a plant model. IET Nanobiotechnology, 10, 141–146.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rastogi, A., Tripathi, D. K., Yadav, S., Chauhan, D. K., Živčák, M., Ghorbanpour, M., et al. (2019). Application of silicon nanoparticles in agriculture. 3 Biotech, 9, 90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Félix, F., López-Cota, A. G., Moreno-Vásquez, M. J., Graciano-Verdugo, A. Z., Quintero-Reyes, I. E., Del-Toro-Sánchez, C. L., & Tapia-Hernández, J. A. (2021). Sustainable-green synthesis of silver nanoparticles using safflower (Carthamus tinctorius L.) waste extract and its antibacterial activity. Heliyon, 7(4), e06923. https://doi.org/10.1016/j.heliyon.2021.e06923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahoo, S. K., Panigrahi, G. K., Sahoo, A., Pradhan, A. K., & Dalbehera, A. (2021). Bio-hydrothermal synthesis of ZnO–ZnFe2O4 nanoparticles using Psidium guajava leaf extract: Role in waste water remediation and plant immunity. Journal of Cleaner Production, 318, 128522.

    Article  CAS  Google Scholar 

  • Sangwan, S., Sharma, P., Wati, L., & Mehta, S. (2023). Chapter 4—Effect of chitosan nanoparticles on growth and physiology of crop plants. In A. Husen (Ed.), Engineered nanomaterials for sustainable agricultural production, soil improvement and stress management (pp. 99–123). Academic.

    Chapter  Google Scholar 

  • Satti, S. H., Raja, N. I., Ikram, M., Oraby, H. F., Mashwani, Z.-U.-R., Mohamed, A. H., et al. (2022). Plant-based titanium dioxide nanoparticles trigger biochemical and proteome modifications in Triticum aestivum L. under biotic stress of Puccinia striiformis. Molecules, 27, 4274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sen, M. (2020). Nanocomposite materials. In Nanotechnology and the environment. IntechOpen.

    Chapter  Google Scholar 

  • Shaghaleh, H., Alhaj Hamoud, Y., Xu, X., Wang, S., & Liu, H. (2022). A pH-responsive/sustained release nitrogen fertilizer hydrogel based on aminated cellulose nanofiber/cationic copolymer for application in irrigated neutral soils. Journal of Cleaner Production, 368, 133098.

    Article  CAS  Google Scholar 

  • Shahid, S. A., Zaman, M., & Heng, L. (2018). Soil salinity: Historical perspectives and a world overview of the problem. In M. Zaman, S. A. Shahid, & L. Heng (Eds.), Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques (pp. 43–53). Springer International Publishing.

    Google Scholar 

  • Shaikh, B. B. R., Toksha, B. G., Shirsath, S. E., Chatterjee, A., Tonde, S., & Chishty, S. Q. (2021). Microstructure, magnetic, and dielectric interplay in NiCuZn ferrite with rare earth doping for magneto-dielectric applications. Journal of Magnetism and Magnetic Materials, 537, 168229.

    Article  CAS  Google Scholar 

  • Sharifi, R. (2016). Effect of seed priming and foliar application with micronutrients on quality of forage corn (Zea mays). Environmental and Experimental Biology, 14, 151–156.

    Article  Google Scholar 

  • Sharma, G., Prajapati, D., Devi, K. A., Pal, A., & Saharan, V. (2022). Chapter 11—Chitosan nanomaterials for delivery of micronutrients in plants. In S. Kumar & S. V. Madihally (Eds.), Role of chitosan and chitosan-based nanomaterials in plant sciences (pp. 239–253). Academic.

    Chapter  Google Scholar 

  • Shebl, A., Hassan, A. A., Salama, D. M., Abd El-Aziz, M. E., & Abd Elwahed, M. S. A. (2020). Template-free microwave-assisted hydrothermal synthesis of manganese zinc ferrite as a nanofertilizer for squash plant (Cucurbita pepo L). Heliyon, 6, e03596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheldon, A. R., Dalal, R. C., Kirchhof, G., Kopittke, P. M., & Menzies, N. W. (2017). The effect of salinity on plant-available water. Plant and Soil, 418, 477–491.

    Article  CAS  Google Scholar 

  • Sigmon, L. R., Adisa, I. O., Liu, B., Elmer, W. H., White, J. C., Dimkpa, C. O., & Fairbrother, D. H. (2021). Biodegradable polymer nanocomposites provide effective delivery and reduce phosphorus loss during plant growth. ACS Agricultural Science & Technology, 1, 529–539.

    Article  CAS  Google Scholar 

  • Song, U., & Kim, J. (2020). Zinc oxide nanoparticles: A potential micronutrient fertilizer for horticultural crops with little toxicity. Horticulture, Environment, and Biotechnology, 61, 625–631.

    Article  Google Scholar 

  • Soraki, R. K., Gerami, M., & Ramezani, M. (2021). Effect of graphene / metal nanocomposites on the key genes involved in rosmarinic acid biosynthesis pathway and its accumulation in Melissa officinalis. BMC Plant Biology, 21, 260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sturikova, H., Krystofova, O., Huska, D., & Adam, V. (2018). Zinc, zinc nanoparticles and plants. Journal of Hazardous Materials, 349, 101–110.

    Article  CAS  PubMed  Google Scholar 

  • Szőllősi, R., Molnár, Á., Kondak, S., & Kolbert, Z. (2020). Dual effect of nanomaterials on germination and seedling growth: Stimulation vs. Phytotoxicity. Plants, 9, 1745.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tighe-Neira, R., Carmora, E., Recio, G., Nunes-Nesi, A., Reyes-Dias, M., Alberdi, M., Rengel, Z., Inostrazo-Blancheteau, C. (2018). Metallic nanoparticles influence the structure and function of the photosynthetic apparatus in plants. Plant Physiology and Biochemistry, 130, 408–417.

    Google Scholar 

  • Toksha, B. G., Shirsath, S. E., Patange, S. M., & Jadhav, K. M. (2008). Structural investigations and magnetic properties of cobalt ferrite nanoparticles prepared by sol–gel auto combustion method. Solid State Communications, 147, 479–483.

    Article  CAS  Google Scholar 

  • Toksha, B. G., Shirsath, S. E., Mane, M. L., & Jadhav, K. M. (2017). Auto-ignition synthesis of CoFe2O4 with Al3+ substitution for high frequency applications. Ceramics International, 43, 14347–14353.

    Article  CAS  Google Scholar 

  • Toksha, B., Sonawale, V. A. M., Vanarase, A., Bornare, D., Tonde, S., Hazra, C., et al. (2021). Nanofertilizers: A review on synthesis and impact of their use on crop yield and environment. Environmental Technology & Innovation, 24, 101986.

    Article  CAS  Google Scholar 

  • Tombuloglu, H., Slimani, Y., Tombuloglu, G., Alshammari, T., Almessiere, M., Korkmaz, A. D., et al. (2020). Engineered magnetic nanoparticles enhance chlorophyll content and growth of barley through the induction of photosystem genes. Environmental Science and Pollution Research International, 27, 34311–34321.

    Article  CAS  PubMed  Google Scholar 

  • Tripathi, D. K., Singh, S., Singh, S., Mishra, S., Chauhan, D. K., & Dubey, N. K. (2015). Micronutrients and their diverse role in agricultural crops: Advances and future prospective. Acta Physiologiae Plantarum, 37, 139.

    Article  Google Scholar 

  • Umar, W., Czinkota, I., Gulyás, M., Aziz, T., & Hameed, M. K. (2022). Development and characterization of slow release N and Zn fertilizer by coating urea with Zn fortified nano-bentonite and ZnO NPs using various binders. Environmental Technology & Innovation, 26, 102250.

    Article  CAS  Google Scholar 

  • Verma, S. K., Das, A. K., Patel, M. K., Shah, A., Kumar, V., & Gantait, S. (2018). Engineered nanomaterials for plant growth and development: A perspective analysis. Science of the Total Environment, 630, 1413–1435.

    Article  CAS  PubMed  Google Scholar 

  • Verma, S. K., Das, A. K., Gantait, S., Kumar, V., & Gurel, E. (2019). Applications of carbon nanomaterials in the plant system: A perspective view on the pros and cons. Science of the Total Environment, 667, 485–499.

    Article  CAS  PubMed  Google Scholar 

  • Walker, S., Jaime, R., Kagot, V., & Probst, C. (2018). Comparative effects of hermetic and traditional storage devices on maize grain: Mycotoxin development, insect infestation and grain quality. Journal of Stored Products Research, 77, 34–44.

    Article  Google Scholar 

  • Wang, X., Cai, A., Wen, X., Jing, D., Qi, H., & Yuan, H. (2017). Graphene oxide-Fe3O4 nanocomposites as high-performance antifungal agents against Plasmopara viticola. Science China Materials, 60, 258–268.

    Article  CAS  Google Scholar 

  • Wang, R., Liu, L., Guo, Y., He, X., & Lu, Q. (2020). Effects of deterioration and mildewing on the quality of wheat seeds with different moisture contents during storage. RSC Advances, 10, 14581–14594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wawrzyniak, J., Waśkiewicz, A., & Ryniecki, A. (2018). Evaluation of critical points of mould growth and mycotoxin production in the stored barley ecosystem with a hazardous initial microbiological state of grain. Journal of Stored Products Research, 77, 166–176.

    Article  Google Scholar 

  • White, P. J., & Brown, P. H. (2010). Plant nutrition for sustainable development and global health | Annals of Botany | Oxford Academic. Annals of Botany, 105, 1073–1080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, Z., Jiang, X., Li, Y., Ma, X., Tang, Y., Li, H., et al. (2022). Antifungal activity of montmorillonite/peptide aptamer nanocomposite against Colletotrichum gloeosporioides on Stylosanthes. International Journal of Biological Macromolecules, 217, 282–290.

    Article  CAS  PubMed  Google Scholar 

  • Yang, F., Hong, F., You, W., Liu, C., Gao, F., Wu, C., & Yang, P. (2006). Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biological Trace Element Research, 110, 179–190.

    Article  CAS  PubMed  Google Scholar 

  • Zarinkoob, A., Esmaeilzadeh Bahabadi, S., Rahdar, A., Hasanein, P., & Sharifan, H. (2021). Ce-Mn ferrite nanocomposite promoted the photosynthesis, fortification of total yield, and elongation of wheat (Triticum aestivum L.). Environmental Monitoring and Assessment, 193, 800.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, D.-D., Hu, S., Wu, Q., Zhao, J.-F., Su, K.-R., Tan, L.-Q., & Zhou, X.-Q. (2022a). Construction of ZnO@mSiO2 antibacterial nanocomposite for inhibition of microorganisms during Zea mays storage and improving the germination. LWT, 168, 113907.

    Article  CAS  Google Scholar 

  • Zhang, H., Yuan, M., Tang, C., Wang, R., Cao, M., Chen, X., et al. (2022b). A novel nanocomposite that effectively prevents powdery mildew infection in wheat. Journal of Plant Physiology, 279, 153858.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Y., Zhu, X., Chen, X., & Zhou, J.-M. (2022). From plant immunity to crop disease resistance. Journal of Genetics and Genomics, 49, 693–703.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, L., Zhao, P., Chi, Y., Wang, D., Wang, P., Liu, N., et al. (2017). Controlling the hydrolysis and loss of nitrogen fertilizer (urea) by using a nanocomposite favors plant growth. ChemSusChem, 10, 2068–2079.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bhagwan Toksha or Aniruddha Chatterjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Toksha, B., Joshi, S., Chatterjee, A. (2024). The Potential of Nanocomposite Fertilizers for Sustainable Crop Production. In: Abd-Elsalam, K.A., Alghuthaymi, M.A. (eds) Nanofertilizers for Sustainable Agroecosystems. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-41329-2_4

Download citation

Publish with us

Policies and ethics