Skip to main content

Advertisement

Log in

Survival of Fusarium graminearum, the causal agent of Fusarium head blight. A review

  • Review article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Wheat is one of the most cultivated crops worldwide. In 2010, 20 % of wheat and durum wheat were cultivated in Europe, 17 % in China and 9 % in Russia and in North America. Wheat yield can be highly decreased by several factors. In particular Fusarium graminearum Schwabe is a worldwide fungal pest impacting wheat production. F. graminearum is the causal agent of Fusarium head blight, root and stem-base rot of cereals. Losses caused by Fusarium head blight in Northern and Central America from 1998 to 2002 reached $2.7 billion. Moreover, F. graminearum produces mycotoxins which affect human and animal health. The threshold of these mycotoxins in foodstuffs is regulated in Europe since 2007. F. graminearum survives for several years saprotrophically in the soil, on dead organic matter, particularly on crop residues. F. graminearum adapts to a wide range of environmental variations, and produces extracellular enzymes allowing feeding on different crop residues. However, F. graminearum competes with other decomposers such as other Fusarium spp. belonging to the same complex of species. Actually, it is not known whether F. graminearum mycotoxins give F. graminearum a competitive advantage during the saprotrophic period. Anthropogenic factors including preceding crops, tillage system and weed management can alter the development of the soil biota, which in turn can change the saprotrophic development of F. graminearum and disease risk. We review the ecological requirements of F. graminearum saprotrophic persistence. The major conclusions are: (1) temperature, water, light and O2 are key conditions for F. graminearum growth and the development of its sexual reproduction structures on crop residues, although the fungus can resist for a long time under extreme conditions. (2) F. graminearum survival is enhanced by high quantities of available crop residues and by rich residues, while sexual reproduction structures occur on poor residues. (3) F. graminearum is a poor competitor over time for residues decomposition. F. graminearum survival can be controlled by the enhancement of the decomposition processes by other organisms. In addition, the development of F. graminearum on crop residues can be limited by antagonistic fungi and soil animals growing at the expense of F. graminearum-infested residues. (4) Agricultural practices are key factors for the control of F. graminearum survival. A suitable crop rotation and an inversive tillage can limit the risk of Fusarium head blight development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abid M, Leplat J, Fayolle L, Gautheron E, Heraud C, Gautheron N, Edel-Hermann V, Cordier C, Steinberg C (2011) Ecological role of mycotoxins in wheat crop residues: consequences on the multitrophic interactions and the development of Fusarium graminearum. In: Multitrophic interactions in soil. IOBC Bull 71:1–5

    Google Scholar 

  • Awad WA, Ghareeb K, Bohm J, Zentek J (2010) Decontamination and detoxification strategies for the Fusarium mycotoxin deoxynivalenol in animal feed and the effectiveness of microbial biodegradation. Food Addit Contam Part A Chem 27(4):510–520. doi:10.1080/19440040903571747

    CAS  Google Scholar 

  • Bastian F, Bouziri L, Nicolardot B, Ranjard L (2009) Impact of wheat straw decomposition on successional patterns of soil microbial community structure. Soil Biol Biochem 41(2):262–275. doi:10.1016/j.soilbio.2008.10.024

    CAS  Google Scholar 

  • Bateman GL (1993) Development of disease symptoms and fungal patogens on shoot bases in continuous winter–wheat, and effects of fungicides. Plant Pathol 42(4):595–608. doi:10.1111/j.1365-3059.1993.tb01540.x

    CAS  Google Scholar 

  • Bateman GL (2005) The contribution of ground-level inoculum of Fusarium culmorum to ear blight of winter wheat. Plant Pathol 54(3):299–307. doi:10.1111/j.1365-3059.2005.01181.x

    Google Scholar 

  • Bateman GL, Coskun H (1995) Populations of Fusarium spp. in soil growing continuous winter wheat, and effects of long-term application of fertilizers and of straw incorporation. Mycol Res 99:1391–1394. doi:10.1016/S0953-7562(09),81227-6

    Google Scholar 

  • Bateman GL, Murray G, Gutteridge RJ, Coskun H (1998) Effects of method of straw disposal and depth of cultivation on populations of Fusarium spp. in soil and on brown foot rot in continuous winter wheat. Ann Appl Biol 132(1):35–47. doi:10.1111/j.1744–7348.1998.tb05183.x

    Google Scholar 

  • Bateman GL, Gutteridge RJ, Gherbawy Y, Thomsett MA, Nicholson P (2007) Infection of stem bases and grains of winter wheat by Fusarium culmorum and F. graminearum and effects of tillage method and maize-stalk residues. Plant Pathol 56(4):604–615. doi:10.1111/j.1365–3059.2007.01577.x

    Google Scholar 

  • Belien T, Van Campenhout S, Robben J, Volckaert G (2006) Microbial endoxylanases: Effective weapons to breach the plant cell-wall barrier or, rather, triggers of plant defense systems? Mol Plant Microbe Interact 19(10):1072–1081. doi:10.1094/mpmi-19-1072

    PubMed  CAS  Google Scholar 

  • Berndes G, Hoogwijk M, van den Broek R (2003) The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenerg 25(1):1–28. doi:10.1016/s0961-9534(02)00185-x

    Google Scholar 

  • Bernhoft A, Clasen PE, Kristoffersen AB, Torp M (2010) Less Fusarium infestation and mycotoxin contamination in organic than in conventional cereals. Food Addit Contam Part A Chem 27(6):842–852. doi:10.1080/19440041003645761

    CAS  Google Scholar 

  • Beyer M, Verreet JA (2005) Germination of Gibberella zeae ascospores as affected by age of spores after discharge and environmental factors. Eur J Plant Pathol 111(4):381–389. doi:10.1007/s10658-004-6470-9

    Google Scholar 

  • Beyer M, Roding S, Ludewig A, Verreet JA (2004) Germination and survival of Fusarium graminearum macroconidia as affected by environmental factors. J Phytopathol 152(2):92–97. doi:10.1111/j.1439-0434.2003.00807.x

    Google Scholar 

  • Birzele B, Meier A, Hindorf H, Kramer J, Dehne HW (2002) Epidemiology of Fusarium infection and deoxynivalenol content in winter wheat in the Rhineland, Germany. Eur J Plant Pathol 108(7):667–673. doi:10.1023/a:1020632816441

    CAS  Google Scholar 

  • Blandino M, Pilati A, Reyneri A, Scudellari D (2010) Effect of maize crop residue density on Fusarium head blight and on deoxynivalenol contamination of common wheat grains. Cereal Res Commun 38(4):550–559. doi:10.1556/crc.38.2010.4.12

    CAS  Google Scholar 

  • Bockus WW, Shroyer JP (1998) The impact of reduced tillage on soilborne plant pathogens. Annu Rev Phytopathol 36:485–500. doi:10.1146/annurev.phyto.36.1.485

    PubMed  CAS  Google Scholar 

  • Bottalico A (1998) Fusarium diseases of cereals: species complex and related mycotoxin profiles, in Europe. J Plant Pathol 80(2):85–103. doi:10.4454/jpp.v80i2.807

    CAS  Google Scholar 

  • Bottalico A, Perrone G (2002) Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. Eur J Plant Pathol 108(7):611–624. doi:10.1023/A:1020635214971

    CAS  Google Scholar 

  • Brown GG (1995) How do earthworms affect microfloral and faunal community diversity. Plant Soil 170(1):209–231. doi:10.1007/BF02183068

    CAS  Google Scholar 

  • Bujold I, Paulitz TC, Carisse O (2001) Effect of Microsphaeropsis sp. on the production of perithecia and ascospores of Gibberella zeae. Plant Dis 85(9):977–984. doi:10.1094/PDIS.2001.85.9.977

    Google Scholar 

  • Burgess LW, Griffin DM (1968) The recovery of Gibberella zeae from wheat straws. Aust J Exp Agric Anim Husb 8(32):364–370

    Google Scholar 

  • Cassini R (1970)Facteurs favorables ou défavorables au développement des fusarioses et septorioses du blé. In: Meeting of Sections Cereals and Physiology, Dijon, 1970. Eucarpia, pp 271–279

  • Champeil A, Dore T, Fourbet JF (2004) Fusarium head blight: epidemiological origin of the effects of cultural practices on head blight attacks and the production of mycotoxins by Fusarium in wheat grains. Plant Sci 166(6):1389–1415. doi:10.1016/j.plantsci.2004.02.004

    CAS  Google Scholar 

  • Colbach N, Maurin N, Huet P (1996) Influence of cropping system on foot rot of winter wheat in France. Crop Prot 15(3):295–305. doi:10.1016/0261-2194(95),00150-6

    Google Scholar 

  • Coleman DC, Crossley DA Jr (1996) Fundamentals of soil ecology. Academic Press, London

    Google Scholar 

  • Cromey MG, Shorter SC, Lauren DR, Sinclair KI (2002) Cultivar and crop management influences on Fusarium head blight and mycotoxins in spring wheat (Triticum aestivum) in New Zealand. N Z J Crop Hortic Sci 30(4):235–247. doi:10.1080/01140671.2002.9514220

    Google Scholar 

  • Association Générale des Producteurs de Blé (2012) Récoltes. http://www.agpb.fr/documentation-et-publications/recoltes/

  • Desjardins AE, Proctor RH (2007) Molecular biology of Fusarium mycotoxins. Int J Food Microbiol 119:47–50. doi:10.1016/j.ijfoodmicro.2007.07.024

    PubMed  CAS  Google Scholar 

  • Dill-Macky R, Jones RK (2000) The effect of previous crop residues and tillage on Fusarium head blight of wheat. Plant Dis 84(1):71–76. doi:10.1094/PDIS.2000.84.1.71

    Google Scholar 

  • Doohan FM, Brennan J, Cooke BM (2003) Influence of climatic factors on Fusarium species pathogenic to cereals. Eur J Plant Pathol 109(7):755–768. doi:10.1023/a:1026090626994

    Google Scholar 

  • Dufault NS, De Wolf ED, Lipps PE, Madden LV (2006) Role of temperature and moisture in the production and maturation of Gibberella zeae perithecia. Plant Dis 90(5):637–644. doi:10.1094/pd-90-0637

    Google Scholar 

  • Duffy BK, Defago G (1997) Zinc improves biocontrol of Fusarium crown and root rot of tomato by Pseudomonas fluorescens and represses the production of pathogen metabolites inhibitory to bacterial antibiotic biosynthesis. Phytopathology 87(12):1250–1257. doi:10.1094/phyto.1997.87.12.1250

    PubMed  CAS  Google Scholar 

  • Edwards SG (2009) Fusarium mycotoxin content of UK organic and conventional wheat. Food Addit Contam Part A Chem 26(4):496–506. doi:10.1080/02652030802530679

    CAS  Google Scholar 

  • FAO (2011) Food Outlook Report. November 2011. p. 186. FAO Trade and Markets Division. http://www.fao.org/giews/, Rome, Italy

  • Fernandez MR, Huber D, Basnyat P, Zentner RP (2008) Impact of agronomic practices on populations of Fusarium and other fungi in cereal and noncereal crop residues on the Canadian Prairies. Soil Tillage Res 100(1–2):60–71. doi:10.1016/j.still.2008.04.008

    Google Scholar 

  • Fernandez MR, Zentner RP, Basnyat P, Gehl D, Selles F, Huber D (2009) Glyphosate associations with cereal diseases caused by Fusarium spp. in the Canadian Prairies. Eur J Agron 31(3):133–143. doi:10.1016/j.eja.2009.07.003

    CAS  Google Scholar 

  • Finlay RD (2007) The Fungi in soil. In: Elsas JD, Jansson J, Trevors JT (eds) Modern soil microbiology. CRC Press, New York, pp 107–146

    Google Scholar 

  • Frankland JC (1998) Fungal succession – unravelling the unpredictable. Mycol Res 102:1–15. doi:10.1017/S0953756297005364

    Google Scholar 

  • Friberg H, Lagerlöf J, Ramert B (2005) Influence of soil fauna on fungal plant pathogens in agricultural and horticultural systems. Biocontrol Sci Technol 15(7):641–658. doi:10.1080/09583150500086979

    Google Scholar 

  • Fuchs E, Binder EM, Heidler D, Krska R (2002) Structural characterization of metabolites after the microbial degradation of type A trichothecenes by the bacterial strain BBSH 797. Food Addit Contam 19(4):379–386. doi:10.1080/02652030110091154

    PubMed  CAS  Google Scholar 

  • Georgieva S, Christensen S, Petersen H, Gjelstrup P, Thorup-Kristensen K (2005a) Early decomposer assemblages of soil organisms in litterbags with vetch and rye roots. Soil Biol Biochem 37(6):1145–1155. doi:10.1016/j.soilbio.2004.11.012

    CAS  Google Scholar 

  • Georgieva S, Christensen S, Stevnbak K (2005b) Nematode succession and microfauna–microorganism interactions during root residue decomposition. Soil Biol Biochem 37(10):1763–1774. doi:10.1016/j.soilbio.2005.02.010

    CAS  Google Scholar 

  • Gilbert J, Tekauz A (2000) Review: recent developments in research on fusarium head blight of wheat in Canada. Can J Plant Pathol Rev Can Phytopathol 22(1):1–8. doi:10.1080/07060660009501155

    Google Scholar 

  • Goswami RS, Kistler HC (2004) Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol 5:515–525. doi:10.1111/J.1364-3703.2004.00252

    PubMed  CAS  Google Scholar 

  • Gromadzka K, Chelkowski J, Popiel D, Kachlicki P, Kostecki M, Golinski P (2009) Solid substrate bioassay to evaluate the effect of Trichoderma and Clonostachys on the production of zearalenone by Fusarium species. World Mycotoxin J 2(1):45–52. doi:10.3920/WMJ2008.x046

    CAS  Google Scholar 

  • Hanson KG, Fernandez MR (2003) Effect of glyphosate herbicides on Pyrenophora tritici-repentis and other cereal pathogens. In: Proceedings of Fourth International Wheat Tan Spot and Spot Blotch Workshop, Bemidji, MN, USA, 21–24 July, 2002, 2003. Agricultural Experiment Station, North Dakota State University, pp 128–131

  • Hatsch D, Phalip V, Petkovski E, Jeltsch JM (2006) Fusarium graminearum on plant cell wall: No fewer than 30 xylanase genes transcribed. Biochem Biophys Res Commun 345(3):959–966. doi:10.1016/bbrc.2006.04.171

    PubMed  CAS  Google Scholar 

  • Henriksen TM, Breland TA (2002) Carbon mineralization, fungal and bacterial growth, and enzyme activities as affected by contact between crop residues and soil. Biol Fertil Soils 35(1):41–48. doi:10.1007/s00374-001-0438-0

    CAS  Google Scholar 

  • Huber DM, Watson RD (1974) Nitrogen form and plant disease. Annu Rev Phytopathol 12:139–165. doi:10.1146/annurev.py.12.090174.001035

    CAS  Google Scholar 

  • Inch SA, Gilbert J (2003a) Survival of Gibberella zeae in Fusarium-damaged wheat kernels. Plant Dis 87(3):282–287. doi:10.1094/PDIS.2003.87.3.282

    Google Scholar 

  • Inch S, Gilbert J (2003b) The incidence of Fusarium species recovered from inflorescences of wild grasses in southern Manitoba. Can J Plant Pathol Rev Can Phytopathol 25(4):379–383. doi:10.1080/07060660309507093

    Google Scholar 

  • Ioos R, Belhadj A, Menez M (2004) Occurrence and distribution of Microdochium nivale and Fusarium species isolated from barley, durum and soft wheat grains in France from 2000 to 2002. Mycopathologia 158(3):351–362. doi:10.1007/s11046-004-2228-3

    PubMed  Google Scholar 

  • Jenczmionka NJ, Schafer W (2005) The Gpmk1 MAP kinase of Fusarium graminearum regulates the induction of specific secreted enzymes. Curr Genet 47(1):29–36. doi:10.1007/s00294-004-0547-z

    PubMed  CAS  Google Scholar 

  • Johnson JMF, Barbour NW, Weyers SL (2007) Chemical composition of crop biomass impacts its decomposition. Soil Sci Soc Am J 71(1):155–162. doi:10.2136/sssaj2005.0419

    CAS  Google Scholar 

  • Joint FAO/WHO Expert Committee on Food Additives (2001) Safety evaluation of certain mycotoxins in food. FAO Food and Nutrition Paper (74)

  • Khonga EB, Sutton JC (1988) Inoculum production and survival of Gibberella zeae in maize and wheat residues. Plant Pathol 10:232–239. doi:10.1080/07060668809501730

    Google Scholar 

  • Kikot GE, Hours RA, Alconada TM (2009) Contribution of cell wall degrading enzymes to pathogenesis of Fusarium graminearum: a review. J Basic Microbiol 49(3):231–241. doi:10.1002/jobm.200800231

    PubMed  CAS  Google Scholar 

  • Kikot GE, Hours RA, Alconada TM (2010) Extracellular enzymes of Fusarium graminearum isolates. Braz Arch Biol Technol 53(4):779–783. doi:10.1590/s1516-89132010000400005

    CAS  Google Scholar 

  • Kirkegaard JA, Wong PTW, Desmarchelier JM (1996) In vitro suppression of fungal root pathogens of cereals by Brassica tissues. Plant Pathol 45(3):593–603. doi:10.1046/j.1365-3059.1996.d01-143.x

    Google Scholar 

  • Kjöller AH, Struwe S (2002) Fungal communities, succession, enzymes, and decomposition. In: Burns RG, Dick RP (eds) Enzymes in the environment: activity, ecology, and applications. Marcel Dekker, New York, pp 267–284

    Google Scholar 

  • Klem K, Vanova M, Hajslova J, Lancova K, Sehnalova M (2007) A neural network model for prediction of deoxynivalenol content in wheat grain based on weather data and preceding crop. Plant Soil Environ 53(10):421–429

    CAS  Google Scholar 

  • Kohl J, de Haas BH, Kastelein P, Burgers S, Waalwijk C (2007) Population dynamics of Fusarium spp. and Microdochium nivale in crops and crop residues of winter wheat. Phytopathology 97(8):971–978. doi:10.1094/phyto-97-8-0971

    PubMed  CAS  Google Scholar 

  • Kumar A, Cameron JB, Flynn PC (2003) Biomass power cost and optimum plant size in western Canada. Biomass Bioenerg 24(6):445–464. doi:10.1016/s0961-9534(02)00149-6

    Google Scholar 

  • Landschoot S, Audenaert K, Waegeman W, Pycke B, Bekaert B, De Baets B, Haesaert G (2011) Connection between primary Fusarium inoculum on gramineous weeds, crop residues and soil samples and the final population on wheat ears in Flanders, Belgium. Crop Prot 30(10):1297–1305. doi:10.1016/j.cropro.2011.05.018

    Google Scholar 

  • Lavelle P, Spain AV (2001) Soil ecology. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Lemmens M, Haim K, Lew H, Ruckenbauer P (2004) The effect of nitrogen fertilization on Fusarium head blight development and deoxynivalenol contamination in wheat. J Phytopathol 152(1):1–8. doi:10.1046/j.1439-0434.2003.00791.x

    Google Scholar 

  • Luongo L, Galli M, Corazza L, Meekes E, De Haas L, Van der Plas CL, Kohl J (2005) Potential of fungal antagonists for biocontrol of Fusarium spp. in wheat and maize through competition in crop debris. Biocontrol. Sci Technol 15(3):229–242. doi:10.1080/09583150400016852

    Google Scholar 

  • Lutz MP, Feichtinger G, Defago G, Duffy B (2003) Mycotoxigenic Fusarium and deoxynivalenol production repress chitinase gene expression in the biocontrol agent Trichoderma atroviride P1. Appl Environ Microbiol 69(6):3077–3084. doi:10.1128/aem.69.6.3077-3084.2003

    PubMed  CAS  Google Scholar 

  • Magan N, Lynch JM (1986) Water potentiel, growth and cellulolysis of fungi involved in decomposition of cereal residues. J Gen Microbiol 132:1181–1187. doi:10.1099/00221287-132-5-1181

    CAS  Google Scholar 

  • Maiorano A, Blandino M, Reyneri A, Vanara F (2008) Effects of maize residues on the Fusarium spp. infection and deoxynivalenol (DON) contamination of wheat grain. Crop Prot 27(2):182–188. doi:10.1016/j.cropro.2007.05.004

    CAS  Google Scholar 

  • Malhi SSMSS, Nyborg M, Goddard T, Puurveen D (2011) Long-term tillage, straw and N rate effects on quantity and quality of organic C and N in a Gray Luvisol soil. Nutr Cycl Agroecosyst 90(1):1–20. doi:10.1007/s10705-010-9399-8

    CAS  Google Scholar 

  • Mantle PG, Shaw S, Doling DA (1977) Role of weed grasses in etiology of ergot disease in wheat. Ann Appl Biol 86(3):339–351. doi:10.1111/j.1744-7348.1977.tb01848.x

    CAS  Google Scholar 

  • McMullen M, Jones R, Gallenberg D (1997) Scab of wheat and barley: A re-emerging disease of devastating impact. Plant Dis 81(12):1340–1348. doi:10.1094/PDIS.1997.81.12.1340

    Google Scholar 

  • Meister U (2009) Fusarium toxins in cereals of integrated and organic cultivation from the Federal State of Brandenburg (Germany) harvested in the years 2000–2007. Mycotoxin Res 25(3):133–139. doi:10.1007/s12550-009-0017-z

    CAS  Google Scholar 

  • Miedaner T, Schilling AG, Geiger HH (2004) Competition effects among isolates of Fusarium culmorum differing in aggressiveness and mycotoxin production on heads of winter rye. Eur J Plant Pathol 110(1):63–70. doi:10.1023/B:EJPP.0000010136.38523.a9

    CAS  Google Scholar 

  • Miedaner T, Klocke B, Flath K, Geiger HH, Weber WE (2011) Diversity, spatial variation, and temporal dynamics of virulences in the German leaf rust (Puccinia recondita f. sp secalis) population in winter rye. Eur J Plant Pathol 132(1):23–35. doi:10.1007/s10658-011-9845-8

    Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington

    Google Scholar 

  • Moody SA, Piearce TG, Dighton J (1996) Fate of some fungal spores associated with wheat straw decomposition on passage through the guts of Lumbricus terrestris and Aporrectodea longa. Soil Biol Biochem 28(4–5):533–537. doi:10.1016/0038-0717(95)00172-7

    CAS  Google Scholar 

  • Morel R (1996) Cultivated soils; Les sols cultivés – Technique et documentation, 2nd edn. Lavoisier, Paris

    Google Scholar 

  • Muller MEH, Brenning A, Verch G, Koszinski S, Sommer M (2010) Multifactorial spatial analysis of mycotoxin contamination of winter wheat at the field and landscape scale. Agric Ecosyst Environ 139(1–2):245–254. doi:10.1016/j.agee.2010.08.010

    Google Scholar 

  • Naef A, Defago G (2006) Population structure of plant-pathogenic Fusarium species in overwintered stalk residues from Bt-transformed and non-transformed maize crops. Eur J Plant Pathol 116(2):129–143. doi:10.1007/s10658-006-9048-x

    CAS  Google Scholar 

  • Naef A, Senatore M, Defago G (2006) A microsatellite based method for quantification of fungi in decomposing plant material elucidates the role of Fusarium graminearum DON production in the saprophytic competition with Trichoderma atroviride in maize tissue microcosms. FEMS Microbiol Ecol 55(2):211–220. doi:10.1111/j.1574-6941.2005.00023.x

    PubMed  CAS  Google Scholar 

  • Nganje IB, Bangsund DA, Leistritz FL, Wilson WW, Tiapo NM (2002) Estimating the economic impact of crop disease: the case of Fusarium head blight in U.S. wheat and barley. In: 2002 National Fusariul Head Blight Forum. Michigan State University, East Lansing, pp 275–281

    Google Scholar 

  • Nicolardot B, Recous S, Mary B (2001) Simulation of C and N mineralisation during crop residue decomposition: a simple dynamic model based on the C:N ratio of the residues. Plant Soil 228(1):83–103. doi:10.1023/a:1004813801728

    CAS  Google Scholar 

  • Nicolardot B, Bouziri L, Bastian F, Ranjard L (2007) A microcosm experiment to evaluate the influence of location and quality of plant residues on residue decomposition and genetic structure of soil microbial communities. Soil Biol Biochem 39(7):1631–1644. doi:10.1016/j.soilbio.2007.01.012

    CAS  Google Scholar 

  • Nielsen JKS, Vikstroem AC, Turner P, Knudsen LE (2011a) Deoxynivalenol transport across the human placental barrier. Food Chem Toxicol 49:2046–2052. doi:10.1016/j.fct.2011.05.016

    PubMed  CAS  Google Scholar 

  • Nielsen LK, Jensen JD, Nielsen GC, Jensen JE, Spliid NH, Thomsen IK, Justesen AF, Collinge DB, Jorgensen LN (2011b) Fusarium head blight of cereals in Denmark: species complex and related mycotoxins. Phytopathology 101(8):960–969. doi:10.1094/phyto-07-10-0188

    PubMed  CAS  Google Scholar 

  • Oldenburg E, Kramer S, Schrader S, Weinert J (2008) Impact of the earthworm Lumbricus terrestris on the degradation of Fusarium-infected and deoxynivalenol-contaminated wheat straw. Soil Biol Biochem 40(12):3049–3053. doi:10.1016/j.soilbio.2008.09.004

    CAS  Google Scholar 

  • Osborne LE, Stein JM (2007) Epidemiology of Fusarium head blight on small-grain cereals. Int J Food Microbiol 119(1–2):103–108. doi:10.1016/j.ijfoodmicro.2007.07.032

    Google Scholar 

  • Parry DW, Jenkinson P, McLeod L (1995) Fusarium ear blight (scab) in small-grain cereals — a review. Plant Pathol 44(2):207–238. doi:10.1111/j.1365-3059.1995.tb02773.x

    Google Scholar 

  • Pereyra SA, Dill-Macky R (2005) Colonization and inoculum production of Gibberella zeae in components of wheat residue. Cereal Res Commun 33(4):755–762. doi:10.1556/CRC.33.2005.2-3.145

    Google Scholar 

  • Pereyra SA, Dill-Macky R (2008) Colonization of the residues of diverse plant species by Gibberella zeae and their contribution to Fusarium head blight inoculum. Plant Dis 92(5):800–807. doi:10.1094/pdis-92-5-0800

    Google Scholar 

  • Pereyra SA, Dill-Macky R, Sims AL (2004) Survival and inoculum production of Gibberella zeae in wheat residue. Plant Dis 88(7):724–730. doi:10.1094/PDIS.2004.88.7.724

    Google Scholar 

  • Pestka JJ (2010) Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance. Arch Toxicol 84(9):663–679. doi:10.1007/s00204-010-0579-8

    PubMed  CAS  Google Scholar 

  • Phalip V, Delalande F, Carapito C, Goubet F, Hatsch D, Leize-Wagner E, Dupree P, Van Dorsselaer A, Jeltsch JM (2005) Diversity of the exoproteome of Fusarium graminearum grown on plant cell wall. Curr Genet 48(6):366–379. doi:10.1007/s00294-005-0040-3

    PubMed  CAS  Google Scholar 

  • Pianka E (1970) On r- and K-selection. Am Nat 104:592–597

    Google Scholar 

  • Ponge JF (2005) Fungal communities: relation to resource succession. In: Dighton J, White JF, Oudemans P (eds) The fungal community: its organisation and role in the ecosystem. Taylor & Francis, New York, pp 169–180

    Google Scholar 

  • Postic J, Cosic J, Vrandecic K, Jurkovic D, Saleh AA, Leslie JF (2012) Diversity of Fusarium species isolated from weeds and plant debris in Croatia. J Phytopathol 160(2):76–81. doi:10.1111/j.1439-0434.2011.01863.x

    Google Scholar 

  • Ramirez ML, Chulze S, Magan N (2006) Temperature and water activity effects on growth and temporal deoxynivalenol production by two Argentinean strains of Fusarium graminearum on irradiated wheat grain. Int J Food Microbiol 106(3):291–296. doi:10.1016/j.ijfoodmicro.2005.09.004

    PubMed  CAS  Google Scholar 

  • Sampietro DA, Marin P, Iglesias J, Presello DA, Vattuone MA, Catalan CAN, Gonzalez Jaen MT (2010) A molecular based strategy for rapid diagnosis of toxigenic Fusarium species associated to cereal grains from Argentina. Fungal Biol 114:74–81. doi:10.1016/j.mycres.2009.10.008

    PubMed  CAS  Google Scholar 

  • Sarwar M, Kirkegaard JA, Wong PTW, Desmarchelier JM (1998) Biofumigation potential of brassicas – III. In vitro toxicity of isothiocyanates to soil-borne fungal pathogens. Plant Soil 201(1):103–112. doi:10.1023/a:1004381129991

    CAS  Google Scholar 

  • Scarlat N, Blujdea V, Dallemand JF (2011) Assessment of the availability of agricultural and forest residues for bioenergy production in Romania. Biomass Bioenerg 35(5):1995–2005. doi:10.1016/j.biombioe.2011.01.057

    Google Scholar 

  • Schaafsma AW, Tamburic-Ilincic L, Hooker DC (2005) Effect of previous crop, tillage, field size, adjacent crop, and sampling direction on airborne propagules of Gibberella zeae/Fusarium graminearum, Fusarium head blight severity, and deoxynivalenol accumulation in winter wheat. Can J Plant Pathol Rev Can Phytopathol 27(2):217–224. doi:10.1080/07060660509507219

    CAS  Google Scholar 

  • Schrader S, Kramer S, Oldenburg E, Weinert J (2009) Uptake of deoxynivalenol by earthworms from Fusarium-infected wheat straw. Mycotoxin Res 25(1):53–58. doi:10.1007/s12550-009-0007-1

    CAS  Google Scholar 

  • Shaner G (2003) Epidemiology of Fusarium head blight of small grain cereals in North America. In: Leonard KJ, Bushnell WR (eds) Fusarium head blight of wheat and barley. American Phytopathological Society Press, St. Paul, MN, pp 84–119

  • Simpson DR, Thomsett MA, Nicholson P (2004) Competitive interactions between Microdochium nivale var. majus, M. nivale var. nivale and Fusarium culmorum in planta and in vitro. Environ Microbiol 6(1):79–87. doi:10.1046/j.1462-2920.2003.00540.x

    PubMed  Google Scholar 

  • Singh DP, Backhouse D, Kristiansen P (2009) Interactions of temperature and water potential in displacement of Fusarium pseudograminearum from cereal residues by fungal antagonists. Biol Control 48(2):188–195. doi:10.1016/j.biocontrol.2008.10.015

    Google Scholar 

  • Sinsabaugh RL (2005) Fungal enzymes at the community scale. In: Dighton J, White JF, Oudemans P (eds) The fungal community: its organisation and role in the ecosystem. Taylor & Francis, New York, pp 349–360

    Google Scholar 

  • Smiley RW, Collins HP, Rasmussen PE (1996) Diseases of wheat in long-term agronomic experiments at Pendleton, Oregon. Plant Dis 80(7):813–820. doi:10.1094/PD-80-0813

    Google Scholar 

  • Smiley RW, Gourlie JA, Easley SA, Patterson LM (2005) Pathogenicity of fungi associated with the wheat crown rot complex in Oregon and Washington. Plant Dis 89(9):949–957. doi:10.1094/pd-89-0949

    Google Scholar 

  • Steinkellner S, Langer I (2004) Impact of tillage on the incidence of Fusarium spp. in soil. Plant Soil 267(1–2):13–22. doi:10.1007/s11104-005-2574-z

    CAS  Google Scholar 

  • Stromberg ME (2005) Fungal communities of agroecosystems. In: Dighton J, White JF, Oudemans P (eds) The fungal community: its organisation and role in the ecosystem. Taylor & Francis, New York, pp 813–822

    Google Scholar 

  • Sutton JC (1982) Epidemiology of wheat head blight and maize ear rot caused by Fusarium graminearum. Can J Plant Pathol Rev Can Phytopathol 4:195–209. doi:10.1080/07060668209501326

    Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Teich AH (1989) Epidemiology of wheat (Triticum aestivum L.) scab caused by Fusarium spp. In: Chelkovski J (ed) Fusarium: mycotoxins, taxonomy and pathogenicity. Elsevier Science, Amsterdam, pp 269–282

    Google Scholar 

  • Teich AH, Hamilton JR (1985) Effect of cultural practices, soil phosphorus, potassium, and pH on the incidence of Fusarium head blight and deoxynivalenol levels in wheat. Appl Environ Microbiol 49(6):1429–1431

    PubMed  CAS  Google Scholar 

  • Thirup L, Johnsen K, Torsvik V, Spliid NH, Jacobsen CS (2001) Effects of fenpropimorph on bacteria and fungi during decomposition of barley roots. Soil Biol Biochem 33(11):1517–1524. doi:10.1016/s0038-0717(01)00067-0

    CAS  Google Scholar 

  • Thompson DP, Metevia L, Vessel T (1993) Influence of pH alone and in combination with phenolic antioxydants on growth and germination of mycotoxigenic species of Fusarium and Penicillium. J Food Prot 56(2):134–138

    CAS  Google Scholar 

  • Toyota K, Young IM, Ritz K (1996) Effects of soil matric potential and bulk density on the growth of Fusarium oxysporum f. sp. raphani. Soil Biol Biochem 28(9):1139–1145. doi:10.1016/0038-0717(96)00134-4

    CAS  Google Scholar 

  • Trail F (2009) For blighted waves of grain: Fusarium graminearum in the postgenomics era. Plant Physiol 149(1):103–110. doi:10.1104/pp.108.129684

    PubMed  CAS  Google Scholar 

  • Trail F, Xu JR, San Miguel P, Halgren RG, Kistler HC (2003) Analysis of expressed sequence tags from Gibberella zeae (anamorph Fusarium graminearum). Fungal Genet Biol 38(2):187–197. doi:10.1016/s1087-1845(02)00529-7

    PubMed  Google Scholar 

  • Tschanz AT, Horst RK, Nelson PE (1976) Effect of environment on sexual reproduction of Gibberrella zeae. Mycologia 68(2):327–340. doi:10.2307/3759003

    Google Scholar 

  • Van den Brink J, de Vries RP (2011) Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol 91(6):1477–1492. doi:10.1007/s00253-011-3473-2

    PubMed  CAS  Google Scholar 

  • Velluti A, Marin S, Bettucci L, Ramos AJ, Sanchis V (2000) The effect of fungal competition on colonization of maize grain by Fusarium moniliforme, F. proliferatum and F. graminearum and on fumonisin B-1 and zearalenone formation. Int J Food Microbiol 59(1–2):59–66. doi:10.1016/S0168-1605(00)00289-0

    PubMed  CAS  Google Scholar 

  • Vilain M (1989) Plant production volume 2. La production vegetale. Volume 2 – La maîtrise technique de la production. Lavoisier, Paris

    Google Scholar 

  • Wanjiru WM, Kang ZS, Buchenauer H (2002) Importance of cell wall degrading enzymes produced by Fusarium graminearum during infection of wheat heads. Eur J Plant Pathol 108(8):803–810. doi:10.1023/A:1020847216155

    CAS  Google Scholar 

  • Yi CL, Kaul HP, Kubler E, Aufhammer W (2002) Populations of Fusarium graminearum on crop residues as affected by incorporation depth, nitrogen and fungicide application. Z Pflanzenk Pflanzens J Plant Dis Prot 109(3):252–263

    CAS  Google Scholar 

  • Yuen GY, Schoneweis SD (2007) Strategies for managing Fusarium head blight and deoxynivalenol accumulation in wheat. Int J Food Microbiol 119(1–2):126–130. doi:10.1016/j.ijfoodmicro.2007.07.033

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This review is part of a PhD work funded by the Vitagora-FUI programme Farine + 2007-11. We thank the Swedish Farmers’ Foundation for Agricultural Research (SLF) and La Fondation Franco-Suédoise for financing H. Friberg. We are grateful to P. Mangin and L. Falchetto (INRA, UE Epoisses-France) for fruitful discussions. We thank A. Buchwalter and C. Woods, proofreaders, for correcting the English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Steinberg.

About this article

Cite this article

Leplat, J., Friberg, H., Abid, M. et al. Survival of Fusarium graminearum, the causal agent of Fusarium head blight. A review. Agron. Sustain. Dev. 33, 97–111 (2013). https://doi.org/10.1007/s13593-012-0098-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-012-0098-5

Keywords

Navigation