Skip to main content

Theranostic Applications of Quantum Dots

  • Chapter
  • First Online:
Nanomaterial-Based Drug Delivery Systems

Abstract

Ever since its discovery by Ekimov and Efros in the year 1980s, the interest on quantum dots (QDs) as a category of nanomaterials has increased significantly. While the earlier research was principally directed on cadmium selenide (CdSe)-based nanocrystals, the field has now lengthened to encompass diverse classes of nanoparticles (NPs) with various types of core, shell, as well as passivation chemistry. QDs-based probes have achieved promising advances in cellular and in vivo molecular imaging. Numerous studies have proved that QDs-based technology exhibits tremendous potential in disease diagnosis and therapy. Several classic examples with sound outcomes have been provided in different areas, viz., cell labeling, biosensing, in vivo imaging, fluorescence, immune assay, and toxicity. In addition, possible challenges have been confronted in the use of QDs in nanoformulations with respect to diagnostic and therapeutic purposes. This chapter aims at presenting the utility of QDs as a class of nanomaterials and their varied theranostic applications in modern medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

Atomic Force Microscopy

AFP:

Alpha-Fetoprotein

AMD:

Age-related Macular Degeneration

Aβ:

β-Amyloid

BACE-1:

Beta-site APP Cleaving Enzyme-1

BBB:

Blood-Brain Barrier

BTN:

Biotin

CA125:

Carbohydrate Antigen 125

CD:

Carbon Dot

CdS:

Cadmium Sulfide

CdSe:

Cadmium Selenide

CdTe:

Cadmium Telluride

CT:

Cholera Toxin

CWs:

Cell Walls

DLS:

Dynamic Light Scattering

DMEM:

Dulbecco's Modified Eagle Medium

DSPE:

2-Distearoyl-Sn-glycero-3-Phospho-Ethanolamine

EGFR:

Epidermal Growth Factor Receptor

ELISA:

Enzyme-Linked Immunosorbent Assay

EPR:

Enhanced Permeability and Retention

ER:

Estrogen Receptors

FA-QDs:

Folic Acid-attached Carbon Dots

FBI:

Fluorescence-based Biological Imaging

FISH:

Fluorescence In Situ Hybridization

FITC:

Fluorescein Isothiocyanate

FLT:

Fluorescence lifetime

FM:

Fluorescence Microscopy

FR:

Folic Acid Receptor

FRET:

Fluorescence Resonance Energy Transfer

GFP:

Green Fluorescent Protein

GQDs:

Graphene Quantum Dots

HA:

Hyaluronic acid

HAS:

Human Serum Albumin

HER2:

Human Epidermal Growth Factor receptor 2

IFA:

Immunofluorescent Antibodies

IgG:

Immunoglobulin G

IHC:

Immune-Histochemistry

InAs:

Indium Arsenide

InP:

Indium Phosphide

LEAP:

Local-Electrode Atom-Probe Tomography

MBE:

Molecular Beam Epitaxy

MDL:

Multidentate Ligand

MPA:

3-Mercaptopropionic acid

MPA:

Mercaptopropionic Acid

mTOR:

Mammalian Target of Rapamycin

NA:

Nucleic Acids

NIR:

Near-Infrared

NPs:

Nanoparticles

PAA:

Poly(Acrylic Acid)

PAMAM:

Poly(amidoamine)

PbS:

Lead Sulfide

pDNA:

Plasmid DNA

PDT:

Photodynamic Therapy

PEI:

Polyethyleneimine

PL:

Photoluminescence

PR:

Progesterone Receptor

PSMA:

Prostate Specific Membrane Antigen

QD:

Quantum Dot

QD-APt-DOX:

Quantum Dot-Aptamer-Doxorubicin

QRs:

Quantum Rings

ROS:

Reactive Oxygen Species

SALPC:

Sulfonated Aluminim Phthalocyanine

SEB:

Staphylococcal Enterotoxin B

SEM:

Scanning Electron Microscopy

siRNA:

Small Interfering RNA

SLT-1:

Shiga-like Toxin-1

SNP:

Single Nucleotide Polymorphism

STM:

Scanning Tunneling Microscopy

TEM:

Transmission Electron Microscopy

TET:

Triplet Energy Transfer

TFPZ:

Trifluoperazine

TiO2:

Titanium Dioxide

TOPO:

Trioctyl-Phosphine Oxide

TPSA:

Total Prostate-Specific Antigen

UV-VIS:

Ultraviolet-Visible

XRD:

X-Ray Diffractometry

XSTEM:

Cross-Sectional Scanning Transmission Electron Microscopy

ZnS:

Zinc Sulfide

ZnSe:

Zinc Selenide

References

  1. Zheng XT, Ananthanarayanan A, Luo KQ, Chen P. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small. 2015;11(14):1620–36.

    Article  CAS  PubMed  Google Scholar 

  2. Kargozar S, Hoseini SJ, Milan PB, Hooshmand S, Kim HW, Mozafari M. Quantum dots: a review from concept to clinic. Biotechnol J. 2020;15(12):P2000117. https://doi.org/10.1002/biot.202000117.

    Article  CAS  Google Scholar 

  3. Chan WC, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol. 2002;13(1):40–6.

    Article  CAS  PubMed  Google Scholar 

  4. Valizadeh A, Mikaeili H, Samiei M, Farkhani SM, Zarghami N, Kouhi M, Akbarzadeh A, Davaran S. Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res Lett. 2012;480(7):1–14.

    Google Scholar 

  5. Bakirhan NK, Ozkan SA. Quantum dots as a new generation nanomaterials and their electrochemical applications in pharmaceutical industry. In: Handbook of nanomaterials for industrial applications; 2018. p. 520–9.

    Chapter  Google Scholar 

  6. Smith AM, Nie S. Next-generation quantum dots. Nat Biotechnol. 2009;27(8):732–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Greenhill C, Chang AS, Zech ES, Clark S, Balakrishnan G, Goldman RS. Influence of quantum dot morphology on the optical properties of GaSb/GaAs multilayers. Appl Phys Lett. 2020;116(25):252107-1-4.

    Article  Google Scholar 

  8. Bera D, Qian L, Tseng TK, Holloway PH. Quantum dots and their multimodal applications: a review. Materials. 2010;3(4):2260–345.

    Article  CAS  PubMed Central  Google Scholar 

  9. Smith AM, Duan H, Mohs AM, Nie S. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev. 2008;60(11):1226–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mattoussi H, Palui G, Na HB. Luminescent quantum dots as platforms for probing in vitro and in vivo biological processes. Adv Drug Deliv Rev. 2012;64(2):138–66.

    Article  CAS  PubMed  Google Scholar 

  11. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Quantum dots versus organic dyes as fluorescent labels. Nat Methods. 2008;5(9):763–75.

    Article  CAS  PubMed  Google Scholar 

  12. Melville J. Optical properties of quantum Dots. UC Berkley College of chemistry; 2015. Available at https://www.ocf.berkeley.edu/~jmlvll/lab-reports/quantumDots/quantum Dots.pdf. Retrieved on 18 July 2021.

  13. Xing Y, Rao J. Quantum dot bioconjugates for in vitro diagnostics & in vivo imaging. Cancer Biomarkers. 2008;4(6):307–19.

    Article  CAS  PubMed  Google Scholar 

  14. Brkić S. Optical properties of quantum dots. Eur Int J Sci Technol. 2016;5(9):98–107.

    Google Scholar 

  15. Jang E, Jun S, Pu L. High quality CdSeS nanocrystals synthesized by facile single injection process and their electroluminescence. Chem Commun (Camb). 2003;24:2964–5.

    Article  Google Scholar 

  16. Bertino MF, Gadipalli RR, Martin LA, Rich LE, Yamilov A, Heckman BR, Mancini DC. Quantum dots by ultraviolet and x-ray lithography. Nanotechnology. 2007;18(31):315603.

    Article  Google Scholar 

  17. Qu L, Peng X. Control of photoluminescence properties of CdSe nanocrystals in growth. J Am Chem Soc. 2002;124(9):2049–55.

    Article  CAS  PubMed  Google Scholar 

  18. Murray CB, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc. 1993;115(19):8706–15.

    Article  CAS  Google Scholar 

  19. Drbohlavova J, Adam V, Kizek R, Hubalek J. Quantum dots- characterization, preparation and usage in biological systems. Int J Mol Sci. 2009;10(2):656–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ghanem MA, Bartlett PN, de Groot P, Zhukov A. A double templated electrodeposition method for the fabrication of arrays of metal nanodots. Electrochem Commun. 2004;6:447–53.

    Article  CAS  Google Scholar 

  21. Tansil NC, Gao ZQ. Nanoparticles in biomolecular detection. Nano Today. 2006;1:28–37.

    Article  Google Scholar 

  22. Hazdra P, Voves J, Oswald J, Kuldova K, Hospodkova A, Hulicius E, et al. Optical characterisation of MOVPE grown vertically correlated InAs/GaAs quantum dots. In: Conference on European nano systems. Elsevier Sci. Ltd; 2006. p. 1070–4.

    Google Scholar 

  23. Rameshwar T, Samal S, Lee S, Kim S, Cho J, Kim IS. Determination of the size of water-soluble nanoparticles and quantum dots by field-flow fractionation. J Nanosci Nanotechnol. 2006;6(8):2461–7.

    Article  CAS  PubMed  Google Scholar 

  24. Gu Y, Kuskovsky IL, Fung J, Robinson R, Herman IP, Neumark GF, Tamargo MC. Determination of size and composition of optically active CdZnSe/ZnBeSe quantum dots. Appl Phys Lett. 2003;83(18):3779–81.

    Article  CAS  Google Scholar 

  25. Salman HB. Synthesis, characterization, and fabrication of all inorganic quantum dot LEDs. Theses and Dissertations; 2016. Retrieved from https://scholarworks.uark.edu/etd/1856. Retrieved on 28 July 2021.

  26. Liu X, Luo Y. Surface modifications technology of quantum dots based biosensors and their medical applications. Chin J Anal Chem. 2014;42(7):1061–9.

    Article  CAS  Google Scholar 

  27. Cao YA, Yang K, Li ZG, Zhao C, Shi CM, Yang J. Near-infrared quantum-dot-based non-invasive in vivo imaging of squamous cell carcinoma U14. Nanotechnology. 2010;21(47):475104.

    Article  PubMed  Google Scholar 

  28. Jiang W, Singhal A, Zheng J, Wang C, Chan WC. Optimizing the synthesis of red-to near-IR-emitting CdS-Capped CdTe x Se1-x alloyed quantum dots for biomedical imaging. Chem Mater. 2006;18(20):4845–54.

    Article  CAS  Google Scholar 

  29. Mulder WJ, Koole R, Brandwijk RJ, Storm G, Chin PT, Strijkers GJ, Griffioen AW. Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Lett. 2006;6(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  30. Mulder WJ, Strijkers GJ, Van Tilborg GA, Cormode DP, Fayad ZA, Nicolay K. Nanoparticulate assemblies of amphiphiles and diagnostically active materials for multimodality imaging. Acc Chem Res. 2009;42(7):904–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bang JH, Suh WH, Suslick KS. Quantum dots from chemical aerosol flow synthesis: preparation, characterization, and cellular imaging. Chem Mater. 2008;20(12):4033–8.

    Article  CAS  Google Scholar 

  32. Wolcott A, Gerion D, Visconte M, Sun J, Schwartzberg A, Chen S, Zhang JZ. Silica-coated CdTe quantum dots functionalized with thiols for bioconjugation to IgG proteins. J Phys Chem B. 2006;110(11):5779–89.

    Article  CAS  PubMed  Google Scholar 

  33. Byers RJ, Di Vizio D, O'connell F, Tholouli E, Levenson RM, Gossard K, Loda M. Semiautomated multiplexed quantum dot-based in situ hybridization and spectral deconvolution. J Mol Diagn. 2007;9(1):20–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hyun BR, Chen H, Rey DA, Wise FW, Batt CA. Near-infrared fluorescence imaging with water-soluble lead salt quantum dots. J Phys Chem B. 2007;111(20):5726–30.

    Article  CAS  PubMed  Google Scholar 

  35. Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, Ge N, Peale F, Bruchez MP. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol. 2003;21:41–6.

    Article  CAS  PubMed  Google Scholar 

  36. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol. 2003;21(1):47–51.

    Article  CAS  PubMed  Google Scholar 

  37. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science. 2002;298(5599):1759–62.

    Article  CAS  PubMed  Google Scholar 

  38. Smith AM. Engineering semiconductor nanocrystals for molecular, cellular, and in vivo imaging. Doctoral dissertation, Georgia Institute of Technology; 2008.

    Google Scholar 

  39. Zrazhevskiy P, Sena M, Gao X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem Soc Rev. 2010;39(11):4326–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Alivisatos AP, Gu W, Larabell C. Quantum dots as cellular probes. Annu Rev Biomed Eng. 2005;7:55–76.

    Article  CAS  PubMed  Google Scholar 

  41. Alivisatos P. The use of nanocrystals in biological detection. Nat Biotechnol. 2004;22(1):47–52.

    Article  CAS  PubMed  Google Scholar 

  42. Lu Y, Low PS. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev. 2002;54(5):675–93.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang J, Zhao X, Xian M, Dong C, Shuang S. Folic acid-conjugated green luminescent carbon dots as a nanoprobe for identifying folate receptor-positive cancer cells. Talanta. 2018;183:39–47.

    Article  CAS  PubMed  Google Scholar 

  44. Boakye-Yiadom KO, Kesse S, Opoku-Damoah Y, Filli MS, Aquib M, Joelle M, et al. Carbon dots: applications in bioimaging and theranostics. Int J Pharm. 2019;564:308–17.

    Article  CAS  PubMed  Google Scholar 

  45. Agarwal S, Sane R, Oberoi R, Ohlfest JR, Elmquist W. Delivery of molecularly targeted therapy to malignant glioma, a disease of the whole brain. Expert Rev Mol Med. 2011;13:e17.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhang M, Zhao X, Fang Z, Niu Y, Lou J, Wu Y, Du F. Fabrication of HA/PEI-functionalized carbon dots for tumor targeting, intracellular imaging and gene delivery. RSC Adv. 2017;7(6):3369–75.

    Article  CAS  Google Scholar 

  47. Chavan RR, Bhinge SD, Bhutkar MA, Randive DS, Wadkar GH, Todkar SS, Urade MN. Characterization, antioxidant, antimicrobial and cytotoxic activities of green synthesized silver and iron nanoparticles using alcoholic Blumea eriantha DC plant extract. Mater Today Commun. 2020;24:101320.

    Article  CAS  Google Scholar 

  48. Patil OA, Patil IS, Mane RU, Randive DS, Bhutkar MA, Bhinge SD. Formulation optimization and evaluation of Cefdinir nanosuspension using 23 factorial design. Marmara Pharm J. 2018;22(4):587–98.

    CAS  Google Scholar 

  49. Shejawal KP, Randive DS, Bhinge SD, Bhutkar MA, Wadkar GH, Jadhav NR. Green synthesis of silver and iron nanoparticles of isolated proanthocyanidin: its characterization, antioxidant, antimicrobial, and cytotoxic activities against COLO320DM and HT29. J Genet Eng Biotechnol. 2020;18(1):1–11.

    Article  Google Scholar 

  50. Randive DS, Shejawal KP, Bhinge SD, Bhutkar MA, Patil PD, Jadhav NR, Patil SB. Green synthesis of gold nanoparticles of isolated citrus bioflavonoid from orange: characterization and in vitro cytotoxicity against colon cancer cellines COLO 320DM and HT29. Indian Drugs. 2020;57(8):61–9.

    Article  Google Scholar 

  51. Langer R, Tirrell DA. Designing materials for biology and medicine. Nature. 2004;428(6982):487–92.

    Article  CAS  PubMed  Google Scholar 

  52. Wang AZ, Bagalkot V, Vasilliou CC, Gu F, Alexis F, Zhang L, et al. Superparamagnetic iron oxide nanoparticle–aptamer bioconjugates for combined prostate cancer imaging and therapy. Chem Med Chem. 2008;3(9):1311–5.

    Article  CAS  PubMed  Google Scholar 

  53. Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, Farokhzad OC. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett. 2007;7(10):3065–70.

    Article  CAS  PubMed  Google Scholar 

  54. Chandra A, Deshpande S, Shinde DB, Pillai VK, Singh N. Mitigating the cytotoxicity of graphene quantum dots and enhancing their applications in bioimaging and drug delivery. ACS Macro Lett. 2014;3(10):1064–8.

    Article  CAS  PubMed  Google Scholar 

  55. Schroeder KL, Goreham RV, Nann T. Graphene quantum dots for theranostics and bioimaging. Pharm Res. 2016;33(10):2337–57.

    Article  CAS  PubMed  Google Scholar 

  56. Nigam P, Waghmode S, Louis M, Wangnoo S, Chavan P, Sarkar D. Graphene quantum dots conjugated albumin nanoparticles for targeted drug delivery and imaging of pancreatic cancer. J Mater Chem B. 2014;2(21):3190–5.

    Article  CAS  PubMed  Google Scholar 

  57. Zheng XT, He HL, Li CM. Multifunctional graphene quantum dots-conjugated titanate nanoflowers for fluorescence-trackable targeted drug delivery. RSC Adv. 2013;3(47):24853–7.

    Article  CAS  Google Scholar 

  58. Li S, Liu Z, Ji F, Xiao Z, Wang M, Peng Y, et al. Delivery of quantum dot-siRNA nanoplexes in SK-N-SH cells for BACE1 gene silencing and intracellular imaging. Mol Ther Nucleic Acids. 2012;1:e20.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lin G, Wang X, Yin F, Yong KT. Passive tumor targeting and imaging by using mercaptosuccinic acid-coated near-infrared quantum dots. Int J Nanomedicine. 2015;10:335.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Greish K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. In: Cancer nanotechnology, vol. 624. Humana Press; 2010. p. 25–37.

    Chapter  Google Scholar 

  61. Gao J, Chen K, Xie R, Xie J, Lee S, Cheng Z, Peng X, Chen X. Ultrasmall near-infrared non-cadmium quantum dots for in vivo tumor imaging. Small. 2010;6(2):256–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gao X, Cui Y, Levenson RM, Chung LW, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004;22(8):969–76.

    Article  CAS  PubMed  Google Scholar 

  63. Gao X, Yang L, Petros JA, Marshall FF, Simons JW, Nie S. In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol. 2005;16(1):63–72.

    Article  CAS  PubMed  Google Scholar 

  64. Chen LD, Liu J, Yu XF, He M, Pei XF, Tang ZY, Li Y. The biocompatibility of quantum dot probes used for the targeted imaging of hepatocellular carcinoma metastasis. Biomaterials. 2008;29(31):4170–6.

    Article  CAS  PubMed  Google Scholar 

  65. Daniela I, Alessandro P, Marina S, Signorino G, Roberto R, Salvatore VG, Caterina B, Giuseppa V, Angela DP. Graphene quantum dots for cancer targeted drug delivery. Int J Pharm. 2017;518:185–92.

    Article  Google Scholar 

  66. Morris RL, Azizuddin K, Lam M, Berlin J, Nieminen AL, Kenney ME, et al. Fluorescence resonance energy transfer reveals a binding site of a photosensitizer for photodynamic therapy. Cancer Res. 2003;63(17):5194–7.

    CAS  PubMed  Google Scholar 

  67. Allen CM, Sharman WM, Van Lier JE. Current status of phthalocyanines in the photodynamic therapy of cancer. J Porphyrins Phthalocyanines. 2001;5(02):161–9.

    Article  CAS  Google Scholar 

  68. Samia AC, Chen X, Burda C. Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc. 2003;125(51):15736–7.

    Article  CAS  PubMed  Google Scholar 

  69. Bakalova R, Ohba H, Zhelev Z, Nagase T, Jose R, Ishikawa M, Baba Y. Quantum dot anti-CD conjugates: are they potential photosensitizers or potentiators of classical photosensitizing agents in photodynamic therapy of cancer? Nano Lett. 2004;4(9):1567–73.

    Article  CAS  Google Scholar 

  70. Shi L, Hernandez B, Selke M. Singlet oxygen generation from water-soluble quantum dot-organic dye nanocomposites. J Am Chem Soc. 2006;128(19):6278–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tsay JM, Trzoss M, Shi L, Kong X, Selke M, Jung ME, Weiss S. Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates. J Am Chem Soc. 2007;129(21):6865–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kamila S, McEwan C, Costley D, Atchison J, Sheng Y, Hamilton GR, Fowley C, Callan JF. Diagnostic and therapeutic applications of quantum dots in nanomedicine. In: Light-responsive nanostructured systems for applications in nanomedicine; 2016. p. 203–24.

    Chapter  Google Scholar 

  73. Zhu L, Ang S, Liu WT. Quantum dots as a novel immunofluorescent detection system for Cryptosporidium parvum and Giardia lamblia. Appl Environ Microbiol. 2004;70(1):597–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hahn MA, Keng PC, Krauss TD. Flow cytometric analysis to detect pathogens in bacterial cell mixtures using semiconductor quantum dots. Anal Chem. 2008;80(3):864–72.

    Article  CAS  PubMed  Google Scholar 

  75. Xue H, Zhao J, Zhou Q, Pan D, Zhang Y, Zhang Y, Shen Y. Boosting the sensitivity of a photoelectrochemical immunoassay by using SiO2@ polydopamine core–shell nanoparticles as a highly efficient quencher. ACS Appl Nano Mater. 2019;2(3):1579–88.

    Article  CAS  Google Scholar 

  76. Jie G, Li C, Zhao Y, Kuang Q, Niu S. Fluorescent Mn: ZnCdS@ ZnS and CdTe quantum dots probes on SiO2 microspheres for versatile detection of carcinoembryonic antigen and monitoring T4 polynucleotide kinase activity. ACS Appl Nano Mater. 2019;2(7):4637–45.

    Article  CAS  Google Scholar 

  77. Høgdall EV, Christensen L, Kjaer SK, Blaakaer J, Kjærbye-Thygesen A, Gayther S, Høgdall CK. CA125 expression pattern, prognosis and correlation with serum CA125 in ovarian tumor patients: from the Danish “MALOVA” ovarian cancer study. Gynecol Oncol. 2007;104(3):508–15.

    Article  PubMed  Google Scholar 

  78. Tothill RW, Tinker AV, George J, Brown R, Fox SB, Lade S, et al. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin Cancer Res. 2008;14(16):5198–208.

    Article  CAS  PubMed  Google Scholar 

  79. Zheng Y, Katsaros D, Shan SJ, De La Longrais IR, Porpiglia M, Scorilas A, et al. A multiparametric panel for ovarian cancer diagnosis, prognosis, and response to chemotherapy. Clin Cancer Res. 2007;13(23):6984–92.

    Article  CAS  PubMed  Google Scholar 

  80. Wang HZ, Wang HY, Liang RQ, Ruan KC. Detection of tumor marker CA125 in ovarian carcinoma using quantum dots. Acta Biochem Biophys Sin. 2004;36(10):681–6.

    Article  CAS  Google Scholar 

  81. Peng CW, Li Y. Application of quantum dots-based biotechnology in cancer diagnosis: current status and future perspectives. J Nanomater. 2010:1–11.

    Google Scholar 

  82. Zhang Y, Liu JM, Yan XP. Self-assembly of folate onto polyethyleneimine-coated CdS/ZnS quantum dots for targeted turn-on fluorescence imaging of folate receptor overexpressed cancer cells. Anal Chem. 2013;85(1):228–34.

    Article  CAS  PubMed  Google Scholar 

  83. Medintz IL, Mattoussi H, Clapp AR. Potential clinical applications of quantum dots. Int J Nanomedicine. 2008;3(2):151–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Gerion D, Chen F, Kannan B, Fu A, Parak WJ, Chen DJ, et al. Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays. Anal Chem. 2003;75(18):4766–72.

    Article  CAS  PubMed  Google Scholar 

  85. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater. 2005;4(6):435–46.

    Article  CAS  PubMed  Google Scholar 

  86. Tokumasu F, Fairhurst RM, Ostera GR, Brittain NJ, Hwang J, Wellems TE, Dvorak JA. Band 3 modifications in Plasmodium falciparum-infected AA and CC erythrocytes assayed by autocorrelation analysis using quantum dots. J Cell Sci. 2005;118(5):1091–8.

    Article  CAS  PubMed  Google Scholar 

  87. Ku MJ, Dossin FM, Choi Y, Moraes CB, Ryu J, Song R, Freitas-Junior LH. Quantum dots: a new tool for anti-malarial drug assays. Malar J. 2011;10(1):1–5.

    Article  Google Scholar 

  88. Ma W, Liu HT, Long YT. Monitoring dopamine quinone-induced dopaminergic neurotoxicity using dopamine functionalized quantum dots. ACS Appl Mater Interfaces. 2015;7(26):14352–8.

    Article  CAS  PubMed  Google Scholar 

  89. Akbarzadeh A, Zarghami N, Mikaeili H, Asgari D, Goganian AM, Khiabani HK, et al. Synthesis, characterization, and in vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled delivery of doxorubicin. Nanotechnol Sci Appl. 2012;7(5):13–25.

    Google Scholar 

  90. Sapsford KE, Pons T, Medintz IL, Mattoussi H. Biosensing with luminescent semiconductor quantum dots. Sensors. 2006;6(8):925–53.

    Article  CAS  PubMed Central  Google Scholar 

  91. Chen W, Wang X, Tu X, Pei D, Zhao Y, Guo X. Water soluble off–on spin labeled quantum dots conjugate. Small. 2008;4(6):759–64.

    Article  CAS  PubMed  Google Scholar 

  92. Kerman K, Endo T, Tsukamoto M, Chikae M, Takamura Y, Tamiya E. Quantum dot-based immunosensor for the detection of prostate-specific antigen using fluorescence microscopy. Talanta. 2007;71(4):1494–9.

    Article  CAS  PubMed  Google Scholar 

  93. Wang J, Liu G, Wu H, Lin Y. Quantum dot based electrochemical immunoassay for high throughput screening of the prostate specific antigen. Small. 2008;4(1):82–6.

    Article  CAS  PubMed  Google Scholar 

  94. Vu TQ, Lam WY, Hatch EW, Lidke DS. Quantum dots for quantitative imaging: from single molecules to tissue. Cell Tissue Res. 2015;360(1):71–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang C, Han Y, Lin L, Deng N, Chen B, Liu Y. Development of quantum dots-labeled antibody fluorescence immunoassays for the detection of morphine. J Agric Food Chem. 2017;65(6):1290–5.

    Article  CAS  PubMed  Google Scholar 

  96. Tully E, Hearty S, Leonard P, O’Kennedy R. The development of rapid fluorescence-based immunoassays, using quantum dot-labelled antibodies for the detection of Listeria monocytogenes cell surface proteins. Int J Biol Macromol. 2006;39(1-3):127–34.

    Article  CAS  PubMed  Google Scholar 

  97. Kloepfer JA, Mielke RE, Wong MS, Nealson KH, Stucky G, Nadeau JL. Quantum dots as strain-and metabolism-specific microbiological labels. Appl Environ Microbiol. 2003;69(7):4205–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov. 2009;8(2):129–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mansoori B, Shotorbani SS, Baradaran B. RNA interference and its role in cancer therapy. Adv Pharma Bull. 2014;4(4):313–21.

    Google Scholar 

  100. Cognet L, Lounis B, Choquet D. Tracking receptors using individual fluorescent and nonfluorescent nanolabels. Cold Spring Harb Protoc. 2014;2014(2):207–13.

    Article  PubMed  Google Scholar 

  101. Bruchez MP. Quantum dots find their stride in single molecule tracking. Curr Opin Chem Biol. 2011;15(6):775–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Courty S, Dahan M. Ultrasensitive imaging in live cells using fluorescent quantum dots. Cold Spring Harb Protoc. 2013;2013(11):1017–22.

    Article  Google Scholar 

  103. Santos AR, Miguel AS, Tomaz L, Malhó R, Maycock C, Vaz Patto MC, Fevereiro P, Oliva A. The impact of CdSe/ZnS quantum dots in cells of Medicago sativa in suspension culture. J Nanobiotechnol. 2010;7(8):24.

    Article  Google Scholar 

  104. Djikanović D, Kalauzi A, Jeremić M, Xu J, Mićić M, Whyte JD, Radotić K. Interaction of the CdSe quantum dots with plant cell walls. Colloids Surf B: Biointerfaces. 2012;91:41–7.

    Article  PubMed  Google Scholar 

  105. Derfus AM, Chan WC, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004;4(1):11–8.

    Article  CAS  PubMed  Google Scholar 

  106. Schipper ML, Iyer G, Koh AL, Cheng Z, Ebenstein Y, Aharoni A, et al. Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small. 2009;5(1):126–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Schipper ML, Cheng Z, Lee SW, Bentolila LA, Iyer G, Rao J, Chen X, Wu AM, Weiss S, Gambhir SS. Micro PET- based biodistribution of quantum dots in living mice. J Nucl Med. 2007;48(9):1511–8.

    Article  CAS  PubMed  Google Scholar 

  108. Zhou D, Ying L, Hong X, Hall EA, Abell C, Klenerman D. A compact functional quantum Dot-DNA conjugate: preparation, hybridization, and specific label-free DNA detection. Langmuir. 2008;24(5):1659–64.

    Article  CAS  PubMed  Google Scholar 

  109. Chen Z, Chen H, Meng H, Xing G, Gao X, Sun B, Fang X. Bio-distribution and metabolic paths of silica coated CdSeS quantum dots. Toxicol Appl Pharmacol. 2008;230(3):364–71.

    Article  CAS  PubMed  Google Scholar 

  110. Scherz-Shouval R, Shvets E, Elazar Z. Oxidation as a post-translational modification that regulates autophagy. Autophagy. 2007;3(4):371–3.

    Article  CAS  PubMed  Google Scholar 

  111. Tang W, Shaikh ZA. Renal cortical mitochondrial dysfunction upon cadmium metallothionein administration to Sprague-Dawley rats. J Toxicol Environ Health A. 2001;63(3):221–35.

    Article  CAS  PubMed  Google Scholar 

  112. Shaikh ZA, Vu TT, Zaman K. Oxidative stress as a mechanism of chronic cadmium-induced hepatotoxicity and renal toxicity and protection by antioxidants. Toxicol Appl Pharmacol. 1999;154(3):256–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dheeraj S. Randive .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Randive, D.S., Bhutkar, M.A., Bhinge, S.D., Wadkar, G.H., Pattekari, S.N. (2023). Theranostic Applications of Quantum Dots. In: Pardeshi, C.V. (eds) Nanomaterial-Based Drug Delivery Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-30529-0_7

Download citation

Publish with us

Policies and ethics