Skip to main content

Abstract

The interest in Quantum Dots as a class of nanomaterials has grown considerably since their discovery by Ekimov and Efros in the early 1980s. Although this early work focussed primarily on CdSe-based nanocrystals, the field has now expanded to include various classes of nanoparticles with different types of core, shell or passivation chemistry. Such differences can have a profound effect on the optical properties and potential biocompatibility of the resulting constructs. Although QDs have predominantly been used for imaging and sensing applications, more examples of their use as therapeutics are beginning to emerge. In this chapter we discuss the progress made over the past decade in developing QDs for imaging and therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Michalet X, Pinaud F, Lacoste TD, Dahan M, Bruchez MP, Alivisatos AP, Weiss S (2001) Properties of fluorescent semiconductor nanocrystals and their application to biological labelling. Single Mol 2(4):261

    Article  CAS  Google Scholar 

  2. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435

    Article  CAS  Google Scholar 

  3. Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22(1):47

    Article  CAS  Google Scholar 

  4. Anderson KE, Fong CY, Pickett WE (2002) Quantum confinement in CdSe nanocrystallites. J Non Cryst Solids 299:1105

    Article  Google Scholar 

  5. Tomasulo M, Yildiz I, Raymo FM (2006) pH-Sensitive quantum dots. J Phys Chem B 110:3853

    Article  CAS  Google Scholar 

  6. Schmidt KH, Medeiros-Ribeiro G, Garcia J, Petroff PM (1997) Cyclic crystalline-amorphous transformations of mechanically alloyed Co75Ti25. Appl Phys Lett 70:1679

    Article  Google Scholar 

  7. Clapp AR, Medintz IL, Mauro JM, Fisher BR, Bawendi MG, Mattoussi H (2004) Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J Am Chem Soc 126:301

    Article  CAS  Google Scholar 

  8. Lin G, Wang X, Yin F, Yong KT (2015) Passive tumor targeting and imaging by using mercaptosuccinic acid-coated near-infrared quantum dots. Int J Nanomedicine 10:335

    Article  Google Scholar 

  9. Greish K (2010) Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol Biol 624:25

    Article  CAS  Google Scholar 

  10. Iyer AK, He J, Amiji MM (2012) Image-guided nanosystems for targeted delivery in cancer therapy. Curr Med Chem 19:3230

    Article  CAS  Google Scholar 

  11. Gao J, Chen K, Xie R, Lee S, Cheng Z, Peng X, Chen X (2010) Ultrasmall near-infrared non-cadmium quantum dots for in vivo tumor imaging. Small 6:256

    Article  CAS  Google Scholar 

  12. Gao X, Cui Y, Levenson RM, Chung LWK, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976

    Article  CAS  Google Scholar 

  13. Engvall E, Perlmann P (1971) Enzyme-linked immunosorbent assay (Elisa) quantitative assay of immunoglobulin-G. Immunochemistry 8:871

    Article  CAS  Google Scholar 

  14. Vanweeme BK, Schuurs AHW (1971) Immunoassay using antigen-enzyme conjugates. FEBS Lett 15:232

    Article  Google Scholar 

  15. Gao X, Yang L, Petros JA, Marshall FF, Simons JW, Nie S (2005) In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16:63–68

    Article  CAS  Google Scholar 

  16. Chen LD, Liu J, Yu XF, He M, Pei XF, Tang ZY, Wang QQ, Pang DW, Li Y (2008) The biocompatibility of quantum dot probes used for the targeted imaging of hepatocellular carcinoma metastasis. Biomaterials 29(31):4170–4176

    Article  CAS  Google Scholar 

  17. Eichmüller S, Stevenson PA, Paus R (1996) A new method for double immunolabelling with primary antibodies from identical species. J Immunol Methods 190:255

    Article  Google Scholar 

  18. Herbst RS (2004) Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys 59:21

    Article  CAS  Google Scholar 

  19. Zhang H, Berezov A, Wang Q, Zhang G, Drebin J, Murali R, Greene MI (2007) ErbB receptors: from oncogenes to targeted cancer therapies. J Clin Invest 117:2051

    Article  CAS  Google Scholar 

  20. Diagaradjane P, Deorukhkar A, Gelovani JG, Maru DM, Krishnan S (2010) Gadolinium chloride augments tumor-specific imaging of targeted quantum dots in vivo. ACS Nano 27:4131

    Article  Google Scholar 

  21. Olivo M, Bhuvaneswari R, Lucky SS, Dendukuri N, Thong PSP (2010) Targeted therapy of cancer using photodynamic therapy in combination with multi-faceted anti-tumor modalities. Pharmaceuticals 3:1507

    Article  Google Scholar 

  22. Hynes R (2002) Integrin: bidirectional, allosteric signalling machines. Cell 110:673

    Article  CAS  Google Scholar 

  23. Jenne D, Stanley KK (1987) Nucleotide sequence and organization of the human S-protein gene: repeating peptide motifs in the “pexin” family and a model for their evolution. Biochemistry 26(21):6735

    Article  CAS  Google Scholar 

  24. Felding-Habermann B, Cheresh DA (1993) Vitronectin and its receptors. Curr Opin Cell Biol 5:864

    Article  CAS  Google Scholar 

  25. Cai W, Shin D-W, Chen K, Gheysens O, Cao Q, Wang SX, Gambhir SS, Chen X (2006) Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 6:669

    Article  CAS  Google Scholar 

  26. Gao J, Chen K, Xie R, Xie J, Yan Y, Cheng Z, Peng X, Chen X (2010) In vivo tumor-targeted fluorescence imaging using near-infrared non-cadmium quantum dots. Bioconjug Chem 21(4):604

    Article  CAS  Google Scholar 

  27. Pringos E, Vignes M, Martinez J, Rolland V (2011) Peptide neurotoxins that affect voltage-gated calcium channels: a close-up on ω-agatoxins. Toxins (Basel) 3:17

    Article  CAS  Google Scholar 

  28. Choi D (1988) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 11:465

    Article  CAS  Google Scholar 

  29. Choi DW, Rothman SM (1990) The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci 13:171

    Article  CAS  Google Scholar 

  30. Skov MJ, Beck JC, de Kater AW, Shopp GM (2007) Nonclinical safety of ziconotide: an intrathecal analgesic of a new pharmaceutical class. Int J Toxicol 26:411

    Article  CAS  Google Scholar 

  31. Orndorff RL, Rosenthal SJ (2009) Neurotoxin quantum dot conjugates detect endogenous targets expressed in live cancer cells. Nano Lett 9:2589

    Article  CAS  Google Scholar 

  32. Didenko VV (2001) DNA probes using fluorescence resonance energy transfer (FRET): designs and applications. Biotechniques 31(5):1106–1110

    CAS  Google Scholar 

  33. Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14(3):303–308

    Article  CAS  Google Scholar 

  34. Zhang CY, Yeh HC, Kuroki MT, Wang TH (2005) Single-quantum-dot-based DNA nanosensor. Nat Mater 4:826

    Article  CAS  Google Scholar 

  35. Kim JH, Morikis D, Ozkan M (2004) Adaptation of inorganic quantum dots for stable molecular beacons. Sens Actuator B Chem 102:315

    Article  CAS  Google Scholar 

  36. Dyadyusha L, Yin H, Jaiswal S, Brown T, Baumberg JJ, Booy FP, Melvin T (2005) Quenching of CdSe quantum dot emission, a new approach for biosensing. Chem Commun 25:3201

    Article  Google Scholar 

  37. Algar WR, Krull UJ (2007) Towards multi-colour strategies for the detection of oligonucleotide hybridization using quantum dots as energy donors in fluorescence resonance energy transfer (FRET). Anal Chim Acta 581:193

    Article  CAS  Google Scholar 

  38. Algar WR, Krull UJ (2009) Toward a multiplexed solid-phase nucleic acid hybridization assay using quantum dots as donors in fluorescence resonance energy transfer. Anal Chem 81:4113

    Article  CAS  Google Scholar 

  39. Gould EA, Winship T, Philbin PH, Kerr HH (1960) Observations on a “sentinel node” in cancer of the parotid. Cancer 13:77

    Article  CAS  Google Scholar 

  40. Liedberg FCG, Davidsson T, Gudjonsson S, Månsson WJ (2006) Intraoperative sentinel node detection improves nodal staging in invasive bladder cancer. J Urol 175(1):84–88

    Article  Google Scholar 

  41. Ganswindt U, Paulsen F, Corvin S, Eichhorn K, Glocker S, Hundt I, Birkner M, Alber M, Anastasiadis A, Stenzl A, Bares R, Budach W, Bamberg M, Belka C (2005) Intensity modulated radiotherapy for high risk prostate cancer based on sentinel node SPECT imaging for target volume definition. BMC Cancer 28:5–9

    Google Scholar 

  42. Brouwer OR, Valdés Olmos RA, Vermeeren L, Hoefnagel CA, Nieweg OE, Horenblas SJ (2011) SPECT/CT and a portable gamma-camera for image-guided laparoscopic sentinel node biopsy in testicular cancer. Nucl Med 52(4):551–554

    Article  Google Scholar 

  43. Korn JM, Tellez-Diaz A, Bartz-Kurycki M, Gastman B (2014) Indocyanine green SPY elite-assisted sentinel lymph node biopsy in cutaneous melanoma. Plast Reconstr Surg 133(4):914–922

    Article  CAS  Google Scholar 

  44. Ballou B, Ernst LA, Andreko S, Harper T, Fitzpatrick JAJ, Waggoner AS, Bruchez MP (2007) Sentinel lymph node imaging using quantum dots in mouse tumor models. Bioconjug Chem 18:389–396

    Article  CAS  Google Scholar 

  45. Pons T, Pic E, Lequeux N, Cassette E, Bezdetnaya L, Guillemin F, Marchal F, Dubertret B (2010) Cadmium-free CuInS2/ZnS quantum dots for sentinel lymph node imaging with reduced toxicity. ACS Nano 4(5):2531–2538

    Article  CAS  Google Scholar 

  46. Kosaka N, McCann TE, Mitsunaga M, Choyke PL, Kobayashi H (2010) Real-time optical imaging using quantum dot and related nanocrystals. Nanomedicine (Lond) 5:765–776

    Article  CAS  Google Scholar 

  47. Parija SC (2012) Textbook of microbiology and immunology, 2nd edn. Elsevier, New Delhi

    Google Scholar 

  48. Hahn MA, Tabb JS, Krauss TD (2005) Detection of single bacterial pathogens with semiconductor quantum dots. Anal Chem 77:4861–4869

    Article  CAS  Google Scholar 

  49. Aldeek F, Mustin C, Balan L, Roques-Carmes T, Fontaine-Aupart MP, Schneider R (2011) Surface-engineered quantum dots for the labeling of hydrophobic microdomains in bacterial biofilms. Biomaterials 32:5459–5470

    Article  CAS  Google Scholar 

  50. Zhu L, Ang S, Liu W (2004) Quantum dots as a novel immunofluorescent detection system for Cryptosporidium parvum and Giardia lamblia. Appl Environ Microbiol 70:597–598

    Article  CAS  Google Scholar 

  51. Hahn MA, Keng PC, Krauss TD (2008) Flow cytometric analysis to detect pathogens in bacterial cell mixtures using semiconductor quantum dots. Anal Chem 80:864–872

    Article  CAS  Google Scholar 

  52. Zhao Y, Ye M, Chao Q, Jia N, Ge Y, Shen H (2008) Simultaneous detection of multifood-borne pathogenic bacteria based on functionalized quantum dots coupled with immunomagnetic separation in food samples. J Agric Food Chem 57:517–524

    Article  Google Scholar 

  53. Edgar R, McKinstry M, Hwang J, Oppenheim AB, Fekete RA, Giulian G (2006) High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. Proc Natl Acad Sci U S A 103:4841–4845

    Article  CAS  Google Scholar 

  54. Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, Farokhzad OC (2007) Quantum dot−aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7:3065–3070

    Article  CAS  Google Scholar 

  55. Wang Y, Zhang X, Xu Z, Huang H, Li Y, Wang J (2014) A pH-sensitive theranostics system based on doxorubicin with comb-shaped polymer coating of quantum dots. J Mater Sci 49:7539–7546

    Article  CAS  Google Scholar 

  56. Zheng M, Liu S, Li J, Qu D, Zhao H, Guan X, Hu X, Xie Z, Jing X, Sun Z (2014) Integrating oxaliplatin with highly luminescent carbon dots: an unprecedented theranostic agent for personalized medicine. Adv Mater 26:3554–3560

    Article  CAS  Google Scholar 

  57. Zhang R, Liu Y, Yu L, Li Z, Sun S (2013) Preparation of high-quality biocompatible carbon dots by extraction, with new thoughts on the luminescence mechanisms. Nanotechnology 24:225601

    Article  Google Scholar 

  58. Zhang W, Dai D, Chen X, Guo X, Fan J (2014) Red shift in the photoluminescence of colloidal carbon quantum dots induced by photon reabsorption. Appl Phys Lett 104:091902

    Article  Google Scholar 

  59. Yang S, Wang X, Wang H, Lu F, Luo PG, Cao L, Meziani MJ, Liu J, Liu Y, Chen M, Huang Y, Sun Y (2009) Carbon dots as nontoxic and high-performance fluorescence imaging agents. J Phys Chem 113:18110–18114

    CAS  Google Scholar 

  60. Fakhroueian Z, Dehshiri AM, Katouzian F, Esmaeilzadeh P (2014) In vitro cytotoxic effects of modified zinc oxide quantum dots on breast cancer cell lines (MCF7), colon cancer cell lines (HT29) and various fungi. J Nanopart Res 16:2483

    Article  Google Scholar 

  61. Donnelly RF, McCarron PA, Woolfson D (2009) Drug delivery systems for photodynamic therapy. Recent Pat Drug Deliv Formul 3:1–7

    Article  CAS  Google Scholar 

  62. NHS Clinical trials and Medical Research Website (2015) Clinical trials for photodynamic therapy. http://www.nhs.uk/Conditions/photodynamic-therapy-NGPDT-sonodynamic-therapy/Pages/clinical-trial.aspx

  63. Wainwright M (2010) Therapeutic applications of near-infrared dyes. Color Technol 126:115–126

    Article  CAS  Google Scholar 

  64. Ochsner M (1996) Light scattering of human skin: a comparison between zinc (II)-phthalocyanine and photofrin II. J Photochem Photobiol B 32:3–9

    Article  CAS  Google Scholar 

  65. Samia ACS, Dayal S, Burda CJ (2006) Quantum dot-based energy transfer: perspectives and potential for applications in photodynamic therapy. Photochem Photobiol 82:617–625

    Article  CAS  Google Scholar 

  66. Choi Y, Kim S, Choi M, Ryoo S, Park J, Min D, Kim B (2014) Highly biocompatible carbon nanodots for simultaneous bioimaging and targeted photodynamic therapy in vitro and in vivo. Adv Funct Mater 24:5781–5789

    Article  CAS  Google Scholar 

  67. Fowley C, Nomikou N, McHale AP, McCarron PA, McCaughan B, Callan JF (2012) Water soluble quantum dots as hydrophilic carriers and two-photon excited energy donors in photodynamic therapy. J Mater Chem 22:6456–6462

    Article  CAS  Google Scholar 

  68. Qi Z, Li D, Jiang P, Jiang F, Li Y, Liu Y, Wong W, Cheah K (2011) Biocompatible CdSe quantum dot-based photosensitizer under two-photon excitation for photodynamic therapy. J Mater Chem 8:2455–2458

    Article  Google Scholar 

  69. Tsay JM, Trzoss M, Shi L, Kong X, Selke M, Jung ME, Weiss S (2007) Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates. J Am Chem Soc 129:6865–6871

    Article  CAS  Google Scholar 

  70. Starkey JR, Rebane AK, Drobizhev MA, Meng F, Gong A, Elliott A, McInnerney K, Spangler CW (2008) New two-photon activated photodynamic therapy sensitizers induce xenograft tumor regressions after near-IR laser treatment through the body of the host mouse. Clin Cancer Res 14:6564–6576

    Article  CAS  Google Scholar 

  71. Khurana M, Karotki A, Collins H, Anderson HL, Wilson BC (2006) In vitro studies of the efficiency of two-photon activation of photodynamic therapy agents. Proc SPIE 6343, Photonics North 634306: doi:10.1117/12.706554

  72. Liu Q, Guo B, Rao Z, Zhang B, Gong JR (2013) Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett 13:2436–2441

    Article  CAS  Google Scholar 

  73. Kratz F, Senter P, Steinhagen H (2011) Drug delivery in oncology. Wiley, Weinheim. doi:10.1002/9783527634057.index, Published Online: 16 DEC 2011

    Book  Google Scholar 

  74. Samia AC, Chen X, Burda C (2003) Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc 125:15736–15737

    Article  CAS  Google Scholar 

  75. Fowley C, Nomikou N, McHale AP, McCaughan B, Callan JF (2013) Extending the tissue penetration capability of conventional photosensitisers: a carbon quantum dot-protoporphyrin IX conjugate for use in two-photon excited photodynamic therapy. Chem Commun 49:8934–8936

    Article  CAS  Google Scholar 

  76. Ge J, Lan M, Zhou B, Liu W, Guo L, Wang H, Jia Q, Niu G, Huang X, Zhou H, Meng X, Wang P, Lee CS, Zhang W, Han X (2014) A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat Commun 5:4596

    CAS  Google Scholar 

  77. Vaupel P, Kallinowski F, Okunief F (1989) Blood flow, oxygen and nutrient supply and metabolic microenvironment of human tumors: a review. Cancer Res 49:6449–6465

    CAS  Google Scholar 

  78. Moulder JE, Rockwell S (1984) Hypoxic fractions of solid tumors: experimental techniques, methods of analysis, and a survey of existing data. Int J Radiat Oncol Biol Phys 10:695–712

    Article  CAS  Google Scholar 

  79. Chen Q, Huang Z, Chen H, Shapiro H, Beckers J, Hetzel FW (2002) Improvement of tumor response by manipulation of tumor oxygenation during photodynamic therapy. Photochem Photobiol 76:197–203

    Article  CAS  Google Scholar 

  80. Caruso EB, Petralia S, Conoci S, Giuffrida S, Sortino S (2006) Photodelivery of nitric oxide from water-soluble platinum nanoparticles. J Am Chem Soc 129:480–481

    Article  Google Scholar 

  81. Ignarro LJ (2010) Nitric oxide: biology and pathobiology, 2nd edn. Elsevier, Burlington

    Google Scholar 

  82. Wilson BC, Patterson MS, Burns DM (1986) Effect of photosensitizer concentration in tissue on the penetration depth of photoactivating light. Lasers Med Sci 1:235–244

    Article  Google Scholar 

  83. Fowley C, McHale AP, McCaughan B, Fraix A, Sortino S, Callan JF (2014) Carbon quantum dot–NO photoreleaser nanohybrids for two-photon phototherapy of hypoxic tumors. Chem Commum 51:81–84

    Article  Google Scholar 

Download references

Acknowledgements

JFC acknowledges support from Norbrook Laboratories Ltd for an endowed chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Callan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kamila, S. et al. (2016). Diagnostic and Therapeutic Applications of Quantum Dots in Nanomedicine. In: Sortino, S. (eds) Light-Responsive Nanostructured Systems for Applications in Nanomedicine. Topics in Current Chemistry, vol 370. Springer, Cham. https://doi.org/10.1007/978-3-319-22942-3_7

Download citation

Publish with us

Policies and ethics