Skip to main content

Bioactive Compounds and Biological Activities of Allium sativum L.

  • Living reference work entry
  • First Online:
Bioactive Compounds in the Storage Organs of Plants

Abstract

The therapeutic properties of the dynamically bioactive components found in garlic (Allium sativum L.), including allicin, alliin, S-allylmercaptocysteine, S-trityl-L-cysteine, ajoene, diallyl sulfide, and S-allyl-cysteine, have attracted a lot of scientific interest from researchers working on related pre-clinical and clinical investigations as well as in the industrial sector. A number of issues about the bioactive chemicals in garlic that are affected by processing, as well as their possible toxicities, pharmacokinetics, and safety profile, need to be investigated in order to confirm garlic’s health benefits for humans. In this chapter, the outcomes of recent experimental and clinical reports are reviewed and the profile of bioactive compounds, metabolism pathway, bioavailability, biological/therapeutic effects, food-related applicability, methods of adulteration detection, potential toxicities, and safety profile of garlic’s derived bio-compounds will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Li J, Dadmohammadi Y, Abbaspourrad A (2022) Flavor components, precursors, formation mechanisms, production and characterization methods: garlic, onion, and chili pepper flavors. Crit Rev Food Sci Nutr 62(30):8265–8287

    Article  CAS  PubMed  Google Scholar 

  2. Ozma MA, Abbasi A, Ahangarzadeh Rezaee M, Hosseini H, Hosseinzadeh N, Sabahi S, Noori SM, Sepordeh S, Khodadadi E, Lahouty M, Kafil HS (2022) A critical review on the nutritional and medicinal profiles of garlic’s (Allium sativum L.) bioactive compounds. Food Rev Int:1–38

    Google Scholar 

  3. El-Saber Batiha G, Magdy Beshbishy A, Wasef LG, Elewa YH, Al-Sagan AA, Abd El-Hack ME, Prasad Devkota H (2020) Chemical constituents and pharmacological activities of garlic (Allium sativum L.): a review. Nutrients 12(3):872

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ilić JD, Nikolovski BG, Petrović LB, Kojić PS, Lončarević IS, Petrović JS (2017) The garlic (A. sativum L.) extracts food grade W1/O/W2 emulsions prepared by homogenization and stirred cell membrane emulsification. J Food Eng 205:1–11

    Article  Google Scholar 

  5. Tavares L, Barros HLB, Vaghetti JCP, Noreña CPZ (2019) Microencapsulation of garlic extract by complex coacervation using whey protein isolate/chitosan and gum Arabic/chitosan as wall materials: influence of anionic biopolymers on the physicochemical and structural properties of microparticles. Food Bioprocess Technol 12(12):2093–2106

    Article  CAS  Google Scholar 

  6. Hu G, Cai K, Li Y, Hui T, Wang Z, Chen C, Xu B, Zhang D (2021) Significant inhibition of garlic essential oil on benzo [a] pyrene formation in charcoal-grilled pork sausages relates to sulfide compounds. Food Res Int 141:110127

    Article  CAS  PubMed  Google Scholar 

  7. Guan M-J, Zhao N, Xie K-Q, Zeng T (2018) Hepatoprotective effects of garlic against ethanol-induced liver injury: a mini-review. Food Chem Toxicol 111:467–473

    Article  CAS  PubMed  Google Scholar 

  8. Ozma MA, Khodadadi E, Pakdel F, Kamounah FS, Yousefi M, Yousefi B, Asgharzadeh M, Ganbarov K, Kafil HS (2021) Baicalin, a natural antimicrobial and anti-biofilm agent. J Herb Med 27:100432

    Article  Google Scholar 

  9. Agarwal KC (1996) Therapeutic actions of garlic constituents. Med Res Rev 16(1):111–124

    Article  CAS  PubMed  Google Scholar 

  10. Oosthuizen CB, Reid A-M, Lall N (2018) Garlic (Allium sativum) and its associated molecules, as medicine. In: Medicinal plants for holistic health and well-being. Elsevier, pp 277–295

    Chapter  Google Scholar 

  11. Wang Y, Guan M, Zhao X, Li X (2018) Effects of garlic polysaccharide on alcoholic liver fibrosis and intestinal microflora in mice. Pharm Biol 56(1):325–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Diretto G, Rubio-Moraga A, Argandoña J, Castillo P, Gómez-Gómez L, Ahrazem O (2017) Tissue-specific accumulation of sulfur compounds and Saponins in different parts of garlic cloves from purple and white ecotypes. Molecules 22(8):1359

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gu C, Howell K, Dunshea FR, Suleria HAR (2019) LC-ESI-QTOF/MS characterisation of phenolic acids and flavonoids in polyphenol-rich fruits and vegetables and their potential antioxidant activities. Antioxidants 8(9):405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Herrera MD, Servín-Palestina M, Reveles-Hernández M, Zegbe JA (2021) Garlic cloves (Allium sativum L.) conditioned at low temperatures and planting dates enhance the polyphenolic content of garlic cataphylls. J Appl Res Med Aroma Plants 25:100316

    CAS  Google Scholar 

  15. Dziri S, Hassen I, Fatnassi S, Mrabet Y, Casabianca H, Hanchi B, Hosni K (2012) Phenolic constituents, antioxidant and antimicrobial activities of rosy garlic (Allium roseum var. odoratissimum). J Funct Foods 4(2):423–432

    Article  CAS  Google Scholar 

  16. Yamaguchi Y, Hirata Y, Saito T, Kumagai H (2021) Combined effects of amino acids in garlic and Buna-shimeji (Hypsizygus marmoreus) on suppression of CCl4-induced hepatic injury in rats. Foods 10(7):1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Subroto E, Cahyana Y, Tensiska M, Lembong F, Filianty E, Kurniati E, Wulandari D, Saputra R, Faturachman F (2021) Bioactive compounds in garlic (Allium sativum L.) as a source of antioxidants and its potential to improve the immune system: a review. Food Res 5(6):1–11

    Article  Google Scholar 

  18. Martins N, Petropoulos S, Ferreira ICFR (2016) Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: a review. Food Chem 211:41–50

    Article  CAS  PubMed  Google Scholar 

  19. Yoshimoto N, Saito K (2017) Biosynthesis of S-alk (en) yl-L-cysteine sulfoxides in allium: retro perspective. In: Sulfur metabolism in higher plants-fundamental, environmental and agricultural aspects. Springer, pp 49–60

    Chapter  Google Scholar 

  20. Aziz M, Karboune S (2016) Natural antimicrobial/antioxidant agents in meat and poultry products as well as fruits and vegetables: a review. Crit Rev Food Sci Nutr 58(3):486–511

    Google Scholar 

  21. Salehi B, Zucca P, Orhan IE, Azzini E, Adetunji CO, Mohammed SA, Banerjee SK, Sharopov F, Rigano D, Sharifi-Rad J, Armstrong L (2019) Allicin and health: a comprehensive review. Trends Food Sci Technol 86:502–516

    Article  CAS  Google Scholar 

  22. Rouf R, Uddin SJ, Sarker DK, Islam MT, Ali ES, Shilpi JA, Nahar L, Tiralongo E, Sarker SD (2020) Antiviral potential of garlic (Allium sativum) and its organosulfur compounds: a systematic update of pre-clinical and clinical data. Trends Food Sci Technol 104:219–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sabahi S, Abbasi A, Mortazavi SA (2022) Characterization of cinnamon essential oil and its application in Malva sylvestris seed mucilage edible coating to the enhancement of the microbiological, physicochemical and sensory properties of lamb meat during storage. J Appl Microbiol 133(2):488–502

    Article  CAS  PubMed  Google Scholar 

  24. Nazari M, Ghanbarzadeh B, Samadi Kafil H, Zeinali M, Hamishehkar H (2019) Garlic essential oil nanophytosomes as a natural food preservative: its application in yogurt as food model. J Colloid Interface Sci 30(2):100176

    Article  CAS  Google Scholar 

  25. Lawson LD, Hunsaker SM (2018) Allicin bioavailability and bioequivalence from garlic supplements and garlic foods. Nutrients 10(7):812

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lawson LD, Ransom DK, Hughes BG (1992) Inhibition of whole blood platelet-aggregation by compounds in garlic clove extracts and commercial garlic products. Thromb Res 65(2):141–156

    Article  CAS  PubMed  Google Scholar 

  27. Freeman F, Kodera Y (1995) Garlic chemistry: stability of S-(2-Propenyl)-2-Propene-1-sulfinothioate (Allicin) in blood, solvents, and simulated physiological fluids. J Agric Food Chem 43(9):2332–2338

    Article  CAS  Google Scholar 

  28. Germain E, Auger J, Ginies C, Siess MH, Teyssier C (2002) In vivo metabolism of diallyl disulphide in the rat: identification of two new metabolites. Xenobiotica 32(12):1127–1138

    Article  CAS  PubMed  Google Scholar 

  29. Lawson LD, Hughes BG (1992) Characterization of the formation of allicin and other thiosulfinates from garlic. Planta Med 58(04):345–350

    Article  CAS  PubMed  Google Scholar 

  30. Lefer DJ (2007) A new gaseous signaling molecule emerges: cardioprotective role of hydrogen sulfide. Proc Natl Acad Sci 104(46):17907–17908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ried K, Travica N, Sali A (2018) The effect of Kyolic aged garlic extract on gut microbiota, inflammation, and cardiovascular markers in hypertensives: the GarGIC trial. Front Nutr 5:122

    Article  PubMed  PubMed Central  Google Scholar 

  32. Asdaq SMB, Challa O, Alamri AS, Alsanie WF, Alhomrani M, Almutiri AH, Alshammari MS (2021) Cytoprotective potential of aged garlic extract (AGE) and its active constituent, S-allyl-l-cysteine, in presence of carvedilol during isoproterenol-induced myocardial disturbance and metabolic derangements in rats. Molecules 26(11):3203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Miraghajani M, Rafie N, Hajianfar H, Larijani B, Azadbakht L (2018) Aged garlic and cancer: a systematic review. Int J Prev Med 9:84

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sabahi S, Homayouni Rad A, Aghebati-Maleki L, Sangtarash N, Ozma MA, Karimi A, Hosseini H, Abbasi A (2022) Postbiotics as the new frontier in food and pharmaceutical research. Crit Rev Food Sci Nutr:1–28

    Google Scholar 

  35. Sujithra K, Srinivasan S, Indumathi D, Vinothkumar V (2018) Allyl methyl sulfide, an organosulfur compound alleviates hyperglycemia mediated hepatic oxidative stress and inflammation in streptozotocin – induced experimental rats. Biomed Pharmacother 107:292–302

    Article  CAS  PubMed  Google Scholar 

  36. Song G, Sumit B, Guangyi Y, Arijita D, Ming H (2013) Oral bioavailability challenges of natural products used in cancer chemoprevention. Prog Chem 25(09):1553

    Google Scholar 

  37. Rahman MS (2007) Allicin and other functional active components in garlic: health benefits and bioavailability. Int J Food Prop 10(2):245–268

    Article  CAS  Google Scholar 

  38. Marchese A, Barbieri R, Sanches-Silva A, Daglia M, Nabavi SF, Jafari NJ, Izadi M, Ajami M, Nabavi SM (2016) Antifungal and antibacterial activities of allicin: a review. Trends Food Sci Technol 52:49–56

    Article  CAS  Google Scholar 

  39. Abourashed EA (2013) Bioavailability of plant-derived antioxidants. Antioxidants 2(4):309–325

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nahdi A, Hammami I, Brasse-Lagnel C, Pilard N, Hamdaoui MH, Beaumont C, El May M (2010) Influence of garlic or its main active component diallyl disulfide on iron bioavailability and toxicity. Nut Res 30(2):85–95

    Article  CAS  Google Scholar 

  41. Luo Y, Xie W, Hao Z, Jin X, Wang Q (2014) Use of shallot (Allium ascalonicum) and leek (Allium tuberosum) to improve the in vitro available iron and zinc from cereals and legumes. CYTA J Food 12(2):195–198

    Article  CAS  Google Scholar 

  42. Torres-Palazzolo CA, Ramírez DA, Beretta VH, Camargo AB (2021) Matrix effect on phytochemical bioaccessibility. The case of organosulfur compounds in garlic preparations. Lebensm Wiss Technol 136:110301

    Article  CAS  Google Scholar 

  43. Owen L, Laird K (2018) Synchronous application of antibiotics and essential oils: dual mechanisms of action as a potential solution to antibiotic resistance. Crit Rev Microbiol 44(4):414–435

    Article  CAS  PubMed  Google Scholar 

  44. Curti V, Capelli E, Boschi F, Nabavi SF, Bongiorno AI, Habtemariam S, Nabavi SM, Daglia M (2014) Modulation of human miR-17–3p expression by methyl 3-O-methyl gallate as explanation of its in vivo protective activities. Mol Nutr Food Res 58(9):1776–1784

    Article  CAS  PubMed  Google Scholar 

  45. Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79(3):629–661

    Article  CAS  PubMed  Google Scholar 

  46. Alesaeidi S, Kahrizi MS, Ghorbani Tajani A, Hajipour H, Ghorbani M (2023) Soy protein isolate/sodium alginate hybrid hydrogel embedded with hydroxyapatite for tissue engineering. J Polym Environ 31(1):396–405

    Article  CAS  Google Scholar 

  47. Ghorbani-Tajani A, Mohammadi R, Shahrooz R (2019) Effect of local transplantation of bone marrow derived mast cells (BMMCs) combined with chitosan biofilm on excisional and incisional wound healing: a novel preliminary animal study on lamb. Iran J Vet Surg 14(1):34–43

    Google Scholar 

  48. Bednarek P (2012) Chemical warfare or modulators of defence responses – the function of secondary metabolites in plant immunity. Curr Opin Plant Biol 15(4):407–414

    Article  CAS  PubMed  Google Scholar 

  49. Hoseinifar SH, Sun Y-Z, Zhou Z, Van Doan H, Davies SJ, Harikrishnan R (2020) Boosting immune function and disease bio-control through environment-friendly and sustainable approaches in finfish aquaculture: herbal therapy scenarios. Rev Fish Sci Aquac 28(3):303–321

    Article  Google Scholar 

  50. Ashfaq F, Ali Q, Haider M, Hafeez M, Malik A (2021) Therapeutic activities of garlic constituent phytochemicals. Biol Clin Sci Res J 2021(1):53

    Article  Google Scholar 

  51. Rad AH, Abbasi A, Kafil HS, Ganbarov K (2020) Potential pharmaceutical and food applications of postbiotics: a review. Curr Pharm Biotechnol 21(15):1576–1587

    Article  CAS  PubMed  Google Scholar 

  52. Tajani AG, Carr J, Elbakush A, Bisha B, Gomelsky M (2021) Evaluation of an enzymatic treatment to control listerial biofilm on produce. In: IAFP 2021

    Google Scholar 

  53. Feldberg RS, Chang SC, Kotik AN, Nadler M, Neuwirth Z, Sundstrom DC, Thompson N (1988) In vitro mechanism of inhibition of bacterial cell growth by allicin. Antimicrob Agents Chemother 32(12):1763–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Karimi N, Jabbari V, Nazemi A, Ganbarov K, Karimi N, Tanomand A, Karimi S, Abbasi A, Yousefi B, Khodadadi E, Kafil HS (2020) Thymol, cardamom and Lactobacillus plantarum nanoparticles as a functional candy with high protection against Streptococcus mutans and tooth decay. Microb Pathog 148:104481

    Article  CAS  PubMed  Google Scholar 

  55. Tajani AG, Bisha B (2023) Effect of food matrix and treatment time on the effectiveness of grape seed extract as an Antilisterial treatment in fresh produce. Microorganisms 11(4):1029

    Article  Google Scholar 

  56. Miron T, Listowsky I, Wilchek M (2010) Reaction mechanisms of allicin and allyl-mixed disulfides with proteins and small thiol molecules. Eur J Med Chem Rep 45(5):1912–1918

    Article  CAS  Google Scholar 

  57. Ozma MA, Rashedi J, Poor BM, Vegari A, Asgharzadeh V, Kafil HS, Kazemi A, Sahebi L, Asgharzadeh M (2020) Tuberculosis and diabetes mellitus in northwest of Iran. Infect Disord Drug Targets 20(5):667–671

    Article  CAS  PubMed  Google Scholar 

  58. Pérez-Giraldo C, Cruz-Villalón G, Sánchez-Silos R, Martínez-Rubio R, Blanco MT, Gómez-García AC (2003) In vitro activity of allicin against Staphylococcus epidermidis and influence of subinhibitory concentrations on biofilm formation. J Appl Microbiol 95(4):709–711

    Article  PubMed  Google Scholar 

  59. Cutler RR, Wilson P (2004) Antibacterial activity of a new, stable, aqueous extract of allicin against methicillin-resistant Staphylococcus aureus. Br J Biomed Sci 61(2):71–74

    Article  CAS  PubMed  Google Scholar 

  60. Lihua L, Jianhui W, Jialin Y, Yayin L, Guanxin L (2013) Effects of allicin on the formation of Pseudomonas aeruginosa biofilm and the production of quorum-sensing controlled virulence factors. Pol J Microbiol 62(3):243

    Article  PubMed  Google Scholar 

  61. Shuford JA, Steckelberg JM, Patel R (2005) Effects of fresh garlic extract on Candida albicans biofilms. Ant Age Chem 49(1):473

    CAS  Google Scholar 

  62. Zhai H, Pan J, Pang E, Bai B (2014) Lavage with allicin in combination with vancomycin inhibits biofilm formation by Staphylococcus epidermidis in a rabbit model of prosthetic joint infection. PLoS One 9(7):e102760

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ozma MA, Maroufi P, Khodadadi E, Köse Ş, Esposito I, Ganbarov K, Dao S, Esposito S, Dal T, Zeinalzadeh E, Kafil HS (2020) Clinical manifestation, diagnosis, prevention and control of SARS-CoV-2 (COVID-19) during the outbreak period. Infez Med 28(2):153–165

    CAS  PubMed  Google Scholar 

  64. Abbasi A, Kafil HS, Hosseini SA, Shahbazi N, Sabahi S (2021) Evaluating the role of various food matrices as a potential carrier for SARS-CoV-2. Clin Exc 11:46–63

    Google Scholar 

  65. Hashemifesharaki R, Gharibzahedi SMT (2020) Future nutrient-dense diets rich in vitamin D: a new insight toward the reduction of adverse impacts of viral infections similar to COVID-19. Forum Nutr 45:1–3

    Google Scholar 

  66. Panyod S, Ho C-T, Sheen L-Y (2020) Dietary therapy and herbal medicine for COVID-19 prevention: a review and perspective. J Tradit Complement Med 10(4):420–427

    Article  PubMed  PubMed Central  Google Scholar 

  67. Chakraborty D, Majumder A (2020) Garlic (Lahsun)–an immunity booster against SARS-CoV-2. Biotica Res Today 2(8):755–757

    Google Scholar 

  68. Liu X, Wang X-J (2020) Potential inhibitors against 2019-nCoV coronavirus M protease from clinically approved medicines. J Genet Genom 47(2):119–121

    Article  Google Scholar 

  69. Rajagopal K, Byran G, Jupudi S, Vadivelan R (2020) Activity of phytochemical constituents of black pepper, ginger, and garlic against coronavirus (COVID-19): an in silico approach. Int J Health Allied Sci 9(5):43–50

    Article  Google Scholar 

  70. Pandey P, Khan F, Kumar A, Srivastava A, Jha NK (2021) Screening of potent inhibitors against 2019 novel coronavirus (Covid-19) from Allium sativum and Allium cepa: an in silico approach. Biointerface Res Appl Chem 11(1):7981–7993

    CAS  Google Scholar 

  71. Chen L, Li J, Luo C, Liu H, Xu W, Chen G, Liew OW, Zhu W, Puah CM, Shen X, Jiang H (2006) Binding interaction of quercetin-3-β-galactoside and its synthetic derivatives with SARS-CoV 3CLpro: structure–activity relationship studies reveal salient pharmacophore features. Bioorg Med Chem 14(24):8295–8306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shao X, Sun C, Tang X, Zhang X, Han D, Liang S, Qu R, Hui X, Shan Y, Hu L, Fang H (2020) Anti-inflammatory and intestinal microbiota modulation properties of Jinxiang garlic (Allium sativum L.) polysaccharides toward dextran sodium sulfate-induced colitis. J Agric Food Chem 68(44):12295–12309

    Article  CAS  PubMed  Google Scholar 

  73. Park SY, Seetharaman R, Ko MJ, Kim DY, Kim TH, Yoon MK, Kwak JH, Lee SJ, Bae YS, Choi YW (2014) Ethyl linoleate from garlic attenuates lipopolysaccharide-induced pro-inflammatory cytokine production by inducing heme oxygenase-1 in RAW264.7 cells. Int Immunopharmacol 19(2):253–261

    Article  CAS  PubMed  Google Scholar 

  74. Upadhyay RK (2016) Garlic: a potential source of pharmaceuticals and pesticides: a review. Int J Green Pharm 10(1):1–28

    Google Scholar 

  75. Metwally DM, Al-Olayan EM, Alanazi M, Alzahrany SB, Semlali A (2018) Antischistosomal and anti-inflammatory activity of garlic and allicin compared with that of praziquantel in vivo. BMC Complement Altern Med 18(1):135

    Article  PubMed  PubMed Central  Google Scholar 

  76. Dehghani S, Alipoor E, Salimzadeh A, Yaseri M, Hosseini M, Feinle-Bisset C, Hosseinzadeh-Attar MJ (2018) The effect of a garlic supplement on the pro-inflammatory adipocytokines, resistin and tumor necrosis factor-alpha, and on pain severity, in overweight or obese women with knee osteoarthritis. Phytomedicine 48:70–75

    Article  CAS  PubMed  Google Scholar 

  77. Gan R-Y, Li H-B, Sui Z-Q, Corke H (2018) Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): an updated review. Crit Rev Food Sci Nutr 58(6):924–941

    Article  CAS  PubMed  Google Scholar 

  78. Tao J, Li Y, Li S, Li H-B (2018) Plant foods for the prevention and management of colon cancer. J Funct Foods 42:95–110

    Article  CAS  Google Scholar 

  79. Rad AH, Aghebati-Maleki L, Kafil HS, Abbasi A (2021) Molecular mechanisms of postbiotics in colorectal cancer prevention and treatment. Crit Rev Food Sci Nutr 61(11):1787–1803

    Article  CAS  PubMed  Google Scholar 

  80. Smith MT, Guyton KZ, Gibbons CF, Fritz JM, Portier CJ, Rusyn I, DeMarini DM, Caldwell JC, Kavlock RJ, Lambert PF, Hecht SS (2016) Key characteristics of carcinogens as a basis for organizing data on mechanisms of carcinogenesis. Environ Health Perspect 124(6):713–721

    Article  CAS  PubMed  Google Scholar 

  81. Nicastro HL, Ross SA, Milner JA (2015) Garlic and onions: their cancer prevention properties. Cancer Res Prev 8(3):181–189

    Article  CAS  Google Scholar 

  82. Rad AH, Maleki LA, Kafil HS, Zavoshti HF, Abbasi A (2021) Postbiotics as promising tools for cancer adjuvant therapy. Adv Pharm Bull 11(1):1

    Google Scholar 

  83. Jakszyn P, Agudo A, Ibáñez R, García-Closas R, Pera G, Amiano P, González CA (2004) Development of a food database of nitrosamines, heterocyclic amines, and polycyclic aromatic hydrocarbons. J Nutr 134(8):2011–2014

    Article  CAS  PubMed  Google Scholar 

  84. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  85. Shin S-S, Song J-H, Hwang B, Noh D-H, Park SL, Kim WT, Park SS, Kim WJ, Moon SK (2017) HSPA6 augments garlic extract-induced inhibition of proliferation, migration, and invasion of bladder cancer EJ cells; implication for cell cycle dysregulation, signaling pathway alteration, and transcription factor-associated MMP-9 regulation. PLoS One 12(2):e0171860

    Article  PubMed  PubMed Central  Google Scholar 

  86. Charron CS, Dawson HD, Albaugh GP, Solverson PM, Vinyard BT, Solano-Aguilar GI, Molokin A, Novotny JA (2015) A single meal containing raw, crushed garlic influences expression of immunity- and cancer-related genes in whole blood of humans1, 2, 3, 4. J Nutr 145(11):2448–2455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Matsuura N, Miyamae Y, Yamane K, Nagao Y, Hamada Y, Kawaguchi N, Katsuki T, Hirata K, Sumi SI, Ishikawa H (2006) Aged garlic extract inhibits angiogenesis and proliferation of colorectal carcinoma cells. J Nutr 136(3):842S–846S

    Article  CAS  PubMed  Google Scholar 

  88. Shang A, Cao S-Y, Xu X-Y, Gan R-Y, Tang G-Y, Corke H, Mavumengwana V, Li HB (2019) Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods 8(7):246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Imran M, Nadeem M, Saeed F, Imran A, Khan MR, Khan MA, Ahmed S, Rauf A (2017) Immunomodulatory perspectives of potential biological spices with special reference to cancer and diabetes. Food Agric Immunol 28(4):543–572

    Article  CAS  Google Scholar 

  90. Li M, Yan Y-X, Yu Q-T, Deng Y, Wu D-T, Wang Y, Ge YZ, Li SP, Zhao J (2017) Comparison of immunomodulatory effects of fresh garlic and black garlic polysaccharides on RAW 264.7 macrophages. J Food Sci 82(3):765–771

    Article  PubMed  Google Scholar 

  91. Hassouna I, Ibrahim H, Abdel Gaffar F, El-Elaimy I, Abdel Latif H (2015) Simultaneous administration of hesperidin or garlic oil modulates diazinon-induced hemato- and immunotoxicity in rats. Immunopharmacol Immunotoxicol 37(5):442–449

    Article  CAS  PubMed  Google Scholar 

  92. Percival SS (2016) Aged garlic extract modifies human immunity1, 2, 3. J Nutr 146(2):433S–436S

    Article  CAS  PubMed  Google Scholar 

  93. Abdel-Hafeez EH, Ahmad AK, Kamal AM, Abdellatif MZ, Abdelgelil NH (2015) In vivo antiprotozoan effects of garlic (Allium sativum) and ginger (Zingiber officinale) extracts on experimentally infected mice with Blastocystis spp. Parasitol Res 114:3439–3444

    Article  PubMed  Google Scholar 

  94. Gruhlke M, Nwachwukwu I, Arbach M, Anwar A, Noll U, Slusarenko A (2010) Allicin from garlic, effective in controlling several plant diseases, is a reactive sulfur species (RSS) that pushes cells into apoptosis. Modern fungicides and antifungal compounds VI 16th international reinhardsbrunn symposium, Friedrichroda, Germany, April 25–29, 2010: Deutsche Phytomedizinische Gesellschaft eV Selbstverlag, pp 325–30

    Google Scholar 

  95. Shi L, Lin Q, Li X, Nie Y, Sun S, Deng X, Wang L, Lu J, Tang Y, Luo F (2017) Alliin, a garlic organosulfur compound, ameliorates gut inflammation through MAPK-NF-κB/AP-1/STAT-1 inactivation and PPAR-γ activation. Mol Nutr Food Res 61(9):1601013

    Article  Google Scholar 

  96. Metwally DM, Al-Olayan EM, Alanazi M, Alzahrany SB, Semlali A (2018) Antischistosomal and anti-inflammatory activity of garlic and allicin compared with that of praziquantel in vivo. BMC Complement Altern Med 18:1–11

    Article  Google Scholar 

  97. Liu S-G, Ren P-Y, Wang G-Y, Yao S-X, He X-J (2015) Allicin protects spinal cord neurons from glutamate-induced oxidative stress through regulating the heat shock protein 70/inducible nitric oxide synthase pathway. Food Funct 6(1):320–329

    Article  CAS  Google Scholar 

  98. Suddek GM (2014) Allicin enhances chemotherapeutic response and ameliorates tamoxifen-induced liver injury in experimental animals. Pharm Biol 52(8):1009–1014

    Article  CAS  PubMed  Google Scholar 

  99. Zhen H, Fang F, Ye D-y, Shu S-n, Zhou Y-f, Dong Y-s, Nie XC, Li G (2006) Experimental study on the action of allitridin against human cytomegalovirus in vitro: inhibitory effects on immediate-early genes. Antivir Res 72(1):68–74

    Article  CAS  PubMed  Google Scholar 

  100. Mansingh DP, Dalpati N, Sali VK, Vasanthi AHR (2018) Alliin the precursor of allicin in garlic extract mitigates proliferation of gastric adenocarcinoma cells by modulating apoptosis. Pharmacogn Mag 14:S84–S91

    Article  Google Scholar 

  101. Jiang X, Zhu X, Huang W, Xu H, Zhao Z, Li S, Cai J, Cao J (2017) Garlic-derived organosulfur compound exerts antitumor efficacy via activation of MAPK pathway and modulation of cytokines in SGC-7901 tumor-bearing mice. Int Immunopharmacol 48:135–145

    Article  CAS  PubMed  Google Scholar 

  102. Kuda T, Iwai A, Yano T (2004) Effect of red pepper Capsicum annuum var. conoides and garlic Allium sativum on plasma lipid levels and cecal microflora in mice fed beef tallow. Food Chem Toxicol 42(10):1695–1700

    Article  CAS  PubMed  Google Scholar 

  103. Abdel-Daim MM, Abushouk AI, Bungău SG, Bin-Jumah M, El-Kott AF, Shati AA, Aleya L, Alkahtani S (2020) Protective effects of thymoquinone and diallyl sulphide against malathion-induced toxicity in rats. Environ Sci Pollut Res 27:10228–10235

    Article  CAS  Google Scholar 

  104. Abdel-Daim MM, Shaheen HM, Abushouk AI, Toraih EA, Fawzy MS, Alansari WS, Aleya L, Bungau ST (2018) Hymoquinone and diallyl sulfide protect against fipronil-induced oxidative injury in rats. Environ Sci Pollut Res 25:23909–23916

    Article  CAS  Google Scholar 

  105. Lai Y-S, Chen W-C, Ho C-T, Lu K-H, Lin S-H, Tseng H-C, Lin SY, Sheen LY (2014) Garlic essential oil protects against obesity-triggered nonalcoholic fatty liver disease through modulation of lipid metabolism and oxidative stress. J Agric Food Chem 62(25):5897–5906

    Article  CAS  PubMed  Google Scholar 

  106. Fasolino I, Izzo AA, Clavel T, Romano B, Haller D, Borrelli F (2015) Orally administered allyl sulfides from garlic ameliorate murine colitis. Mol Nutr Food Res 59(3):434–442

    Article  CAS  PubMed  Google Scholar 

  107. Xiao J, Xing F, Liu Y, Lv Y, Wang X, Ling M-T, Gao H, Ouyang S, Yang M, Zhu J, Xia Y (2018) Garlic-derived compound S-allylmercaptocysteine inhibits hepatocarcinogenesis through targeting LRP6/Wnt pathway. Acta Pharm Sin B 8(4):575–586

    Article  PubMed  Google Scholar 

  108. Zhang Y, Li HY, Zhang ZH, Bian HL, Lin G (2014) Garlic-derived compound S-allylmercaptocysteine inhibits cell growth and induces apoptosis via the JNK and p38 pathways in human colorectal carcinoma cells. Oncol Lett 8(6):2591–2596

    Article  PubMed  PubMed Central  Google Scholar 

  109. Xu Y-s, Feng J-g, Zhang D, Zhang B, Luo M, Su D, Lin NM (2014) S-allylcysteine, a garlic derivative, suppresses proliferation and induces apoptosis in human ovarian cancer cells in vitro. Acta Pharmacol Sin 35(2):267–274

    Article  CAS  PubMed  Google Scholar 

  110. Zarezadeh M, Baluchnejadmojarad T, Kiasalari Z, Afshin-Majd S, Roghani M (2017) Garlic active constituent s-allyl cysteine protects against lipopolysaccharide-induced cognitive deficits in the rat: possible involved mechanisms. Eur J Pharmacol 795:13–21

    Article  CAS  PubMed  Google Scholar 

  111. Lee H-S, Lim W-C, Lee S-J, Lee S-H, Lee J-H, Cho H-Y (2016) Antiobesity effect of garlic extract fermented by lactobacillus plantarum BL2 in diet-induced obese mice. J Med Food 19(9):823–829

    Article  CAS  PubMed  Google Scholar 

  112. Kim H-N, Kang S-G, Roh YK, Choi M-K, Song S-W (2017) Efficacy and safety of fermented garlic extract on hepatic function in adults with elevated serum gamma-glutamyl transpeptidase levels: a double-blind, randomized, placebo-controlled trial. Eur J Nutr 56(5):1993–2002

    Article  CAS  PubMed  Google Scholar 

  113. Wang W, Cheng J, Zhu Y (2015) The JNK signaling pathway is a novel molecular target for S-propargyl-L-cysteine, a naturally-occurring garlic derivatives: link to its anticancer activity in pancreatic cancer in vitro and in vivo. Curr Cancer Drug Targets 5(7):613–623

    Article  Google Scholar 

  114. Chen Y, Sun J, Dou C, Li N, Kang F, Wang Y, Cao Z, Yang X, Dong S (2016) Alliin attenuated RANKL-induced osteoclastogenesis by scavenging reactive oxygen species through inhibiting Nox1. Int J Mol Sci 17(9):1516

    Article  PubMed  PubMed Central  Google Scholar 

  115. Zhang X, Zhu Y, Duan W, Feng C, He X (2015) Allicin induces apoptosis of the MGC-803 human gastric carcinoma cell line through the p38 mitogen-activated protein kinase/caspase-3 signaling pathway. Mol Med Rep 11(4):2755–2760

    Article  CAS  PubMed  Google Scholar 

  116. Yang C, Li L, Yang L, Lǚ H, Wang S, Sun G (2018) Anti-obesity and Hypolipidemic effects of garlic oil and onion oil in rats fed a high-fat diet. Nutr Metab 15(1):1–8

    Article  Google Scholar 

  117. Bagul M, Kakumanu S, Wilson TA (2015) Crude garlic extract inhibits cell proliferation and induces cell cycle arrest and apoptosis of cancer cells in vitro. J Med Food 18(7):731–737

    Article  CAS  PubMed  Google Scholar 

  118. Gallwitz H, Bonse S, Martinez-Cruz A, Schlichting I, Schumacher K, Krauth-Siegel RL (1999) Ajoene is an inhibitor and subversive substrate of human glutathione reductase and Trypanosoma cruzi trypanothione reductase: crystallographic, kinetic, and spectroscopic studies. J Med Chem 42(3):364–372

    Article  CAS  PubMed  Google Scholar 

  119. Han CY, Ki SH, Kim YW, Noh K, Lee DY, Kang B, Ryu JH, Jeon R, Kim EH, Hwang SJ, Kim SG (2010) Ajoene, a stable garlic by-product, inhibits high fat diet-induced hepatic steatosis and oxidative injury through LKB1-dependent AMPK activation. Antioxid Redox Signal 14(2):187–202

    Article  PubMed  Google Scholar 

  120. Bayan L, Koulivand PH (2014) Gorji A. Garlic: a review of potential therapeutic effects. Avicenna J Phytomed 4(1):1

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Yoo DY, Kim W, Nam SM, Yoo M, Lee S, Yoon YS, Won MH, Hwang IK, Choi JH (2014) Neuroprotective effects of Z-ajoene, an organosulfur compound derived from oil-macerated garlic, in the gerbil hippocampal CA1 region after transient forebrain ischemia. Food Chem Toxicol 72:1–7

    Article  CAS  PubMed  Google Scholar 

  122. Qiu S, Chen J, Qin T, Hu Y, Wang D, Fan Q, Zhang C, Chen X, Chen X, Liu C, Gao Z (2014) Effects of selenylation modification on immune-enhancing activity of garlic polysaccharide. PLoS One 9(1):e86377

    Article  PubMed  PubMed Central  Google Scholar 

  123. Jin P, Kim J-A, Choi D-Y, Lee Y-J, Jung HS, Hong JT (2013) Anti-inflammatory and anti-amyloidogenic effects of a small molecule, 2, 4-bis (p-hydroxyphenyl)-2-butenal in Tg2576 Alzheimer’s disease mice model. J Neuroinflammation 10:1–13

    Article  Google Scholar 

  124. Faroughi F, Charandabi S, Javadzadeh Y, Mirghafourvand M (2018) Effects of garlic pill on blood glucose level in borderline gestational diabetes mellitus: a randomized controlled trial. Iran Red Crescent Med J 20(5):1–9

    Google Scholar 

  125. Keophiphath M, Priem F, Jacquemond-Collet I, Clément K, Lacasa D (2009) 1,2-Vinyldithiin from garlic inhibits differentiation and inflammation of human preadipocytes1, 2. J Nutr 139(11):2055–2060

    Article  CAS  PubMed  Google Scholar 

  126. Qidwai W, Ashfaq T (2013) Role of garlic usage in cardiovascular disease prevention: an evidence-based approach. Evid Based Complement Alternat Med 2013:125649

    Article  PubMed  PubMed Central  Google Scholar 

  127. Drobiova H, Thomson M, Al-Qattan K, Peltonen-Shalaby R, Al-Amin Z, Ali M (2011) Garlic increases antioxidant levels in diabetic and hypertensive rats determined by a modified peroxidase method. Evid Based Complement Alternat Med 2011:703049

    Article  PubMed  Google Scholar 

  128. Takashima M, Kanamori Y, Kodera Y, Morihara N, Tamura K (2017) Aged garlic extract exerts endothelium-dependent vasorelaxant effect on rat aorta by increasing nitric oxide production. Phytomedicine 24:56–61

    Article  CAS  PubMed  Google Scholar 

  129. Abbasi A, Rad AH, Ghasempour Z, Sabahi S, Kafil HS, Hasannezhad P, Rahbar Saadat Y, Shahbazi N (2022) The biological activities of postbiotics in gastrointestinal disorders. Crit Rev Food Sci Nutr 62(22):5983–6004

    Article  CAS  PubMed  Google Scholar 

  130. Ushijima M, Takashima M, Kunimura K, Kodera Y, Morihara N, Tamura K (2018) Effects of S-1-propenylcysteine, a sulfur compound in aged garlic extract, on blood pressure and peripheral circulation in spontaneously hypertensive rats. J Pharm Pharmacol 70(4):559–565

    Article  CAS  PubMed  Google Scholar 

  131. Park BM, Chun H, Chae SW, Kim SH (2017) Fermented garlic extract ameliorates monocrotaline-induced pulmonary hypertension in rats. J Funct Foods 30:247–253

    Article  CAS  Google Scholar 

  132. Asdaq SM, Inamdar MN (2010) Potential of garlic and its active constituent, S-allyl cysteine, as antihypertensive and cardioprotective in presence of captopril. Phytomedicine 17(13):1016–1026

    Article  CAS  PubMed  Google Scholar 

  133. Han C-H, Liu J-C, Chen K-H, Lin Y-S, Chen C-T, Fan C-T, Lee HL, Liu DZ, Hou WC (2011) Antihypertensive activities of processed garlic on spontaneously hypertensive rats and hypertensive humans. Bot Stud 52(3):277–283

    Google Scholar 

  134. Seckiner I, Bayrak O, Can M, Mungan AG, Mungan NA (2014) Garlic supplemented diet attenuates gentamicin nephrotoxicity in rats. Int Braz J Urol 40(4):562–567

    Article  PubMed  Google Scholar 

  135. Homayouni Rad A, Aghebati Maleki L, Samadi Kafil H, Abbasi A (2021) Postbiotics: a novel strategy in food allergy treatment. Crit Rev Food Sci Nutr 61(3):492–499

    Article  CAS  PubMed  Google Scholar 

  136. Nasiri A, Ziamajidi N, Abbasalipourkabir R, Goodarzi MT, Saidijam M, Behrouj H, Solemani Asl S (2017) Beneficial effect of aqueous garlic extract on inflammation and oxidative stress status in the kidneys of type 1 diabetic rats. Indian J Clin Biochem 32(3):329–336

    Article  CAS  PubMed  Google Scholar 

  137. Aprioku J, Amah-Tariah F (2017) Garlic (Allium sativum L.) protects hepatic and renal toxicity of alloxan in rats. Br J Pharm Res 17:34909

    Google Scholar 

  138. Meng X, Li S, Li Y, Gan R-Y, Li H-B (2018) Gut microbiota’s relationship with liver disease and role in hepatoprotection by dietary natural products and probiotics. Nutrients 10(10):1457

    Article  PubMed  PubMed Central  Google Scholar 

  139. Abbasi A, Aghebati-Maleki A, Yousefi M, Aghebati-Maleki L (2021) Probiotic intervention as a potential therapeutic for managing gestational disorders and improving pregnancy outcomes. J Reprod Immunol 143:103244

    Article  CAS  PubMed  Google Scholar 

  140. Lee KC, Teng CC, Shen CH, Huang WS, Lu CC, Kuo HC, Tung SY (2018) Protective effect of black garlic extracts on tert-butyl hydroperoxide-induced injury in hepatocytes via a c-Jun N-terminal kinase-dependent mechanism. Exp Ther Med 15(3):2468–2474

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Kaur S, Sharma S (2015) A histometric study to assess preventive action of ascorbic acid and garlic on cadmium induced hepatotoxicity in albino mice. Int J Pharma Phytopharmacolo Res 5(3):8–14

    Google Scholar 

  142. Naji KM, Al-Shaibani ES, Alhadi FA, Al-Soudi SAA, D’souza MR (2017) Hepatoprotective and antioxidant effects of single clove garlic against CCl4-induced hepatic damage in rabbits. BMC Complement Altern Med 17(1):411

    Article  PubMed  PubMed Central  Google Scholar 

  143. Chen Y-A, Tsai J-C, Cheng K-C, Liu K-F, Chang C-K, Hsieh C-W (2018) Extracts of black garlic exhibits gastrointestinal motility effect. Food Res Int 107:102–109

    Article  CAS  PubMed  Google Scholar 

  144. Ben Hadda T, ElSawy NA, Header EAM, Mabkhot YN, Mubarak MS (2014) Effect of garlic and cabbage on healing of gastric ulcer in experimental rats. Med Chem Res 23(12):5110–5119

    Article  CAS  Google Scholar 

  145. El-Ashmawy NE, Khedr EG, El-Bahrawy HA, Selim HM (2016) Gastroprotective effect of garlic in indomethacin induced gastric ulcer in rats. Nutrition 32(7):849–854

    Article  CAS  PubMed  Google Scholar 

  146. Zardast M, Namakin K, Kaho JE, Hashemi SS (2016) Assessment of antibacterial effect of garlic in patients infected with helicobacter pylori using urease breath test. Avicenna J Phytomed 6(5):495

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, Das SR, Delling FN (2018) Heart disease and stroke statistics—2018 update: a report from the American Heart Association. Circulation 137(12):e67–e492

    Article  PubMed  Google Scholar 

  148. Zhao C-N, Meng X, Li Y, Li S, Liu Q, Tang G-Y, Li HB (2017) Fruits for prevention and treatment of cardiovascular diseases. Nutrients 9(6):598

    Article  PubMed  PubMed Central  Google Scholar 

  149. Kwak JS, Kim JY, Paek JE, Lee YJ, Kim H-R, Park D-S, Kwon O (2014) Garlic powder intake and cardiovascular risk factors: a meta-analysis of randomized controlled clinical trials. Nutr Res Pract 8(6):644–654

    Article  PubMed  PubMed Central  Google Scholar 

  150. Supakul L, Pintana H, Apaijai N, Chattipakorn S, Shinlapawittayatorn K, Chattipakorn N (2014) Protective effects of garlic extract on cardiac function, heart rate variability, and cardiac mitochondria in obese insulin-resistant rats. Eur J Nutr 53(3):919–928

    Article  PubMed  Google Scholar 

  151. Bradley JM, Organ CL, Lefer DJ (2016) Garlic-derived organic polysulfides and myocardial protection1, 2, 3. J Nutr 146(2):403S–409S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Zhou H, Qu Z, Mossine VV, Nknolise DL, Li J, Chen Z, Cheng J, Greenlief CM, Mawhinney TP, Brown PN, Fritsche KL (2014) Proteomic analysis of the effects of aged garlic extract and its FruArg component on lipopolysaccharide-induced neuroinflammatory response in microglial cells. PLoS One 9(11):e113531

    Article  PubMed  PubMed Central  Google Scholar 

  153. Ho S-C, Su M-S (2014) Evaluating the anti-neuroinflammatory capacity of raw and steamed garlic as well as five organosulfur compounds. Molecules 19(11):17697–17714

    Article  PubMed  PubMed Central  Google Scholar 

  154. Ebrahimzadeh-Bideskan A-R, Hami J, Alipour F, Haghir H, Fazel A-R, Sadeghi A (2016) Protective effects of ascorbic acid and garlic extract against lead-induced apoptosis in developing rat hippocampus. Metab Brain Dis 31(5):1123–1132

    Article  CAS  PubMed  Google Scholar 

  155. Cemil B, Gokce EC, Kahveci R, Gokce A, Aksoy N, Sargon MF, Erdogan B, Kosem B (2016) Aged garlic extract attenuates neuronal injury in a rat model of spinal cord ischemia/reperfusion injury. J Med Food 19(6):601–606

    Article  CAS  PubMed  Google Scholar 

  156. Thorajak P, Pannangrong W, Welbat JU, Chaijaroonkhanarak W, Sripanidkulchai K, Sripanidkulchai B (2017) Effects of aged garlic extract on cholinergic, glutamatergic and GABAergic systems with regard to cognitive impairment in Aβ-induced rats. Nutrients 9(7):686

    Article  PubMed  PubMed Central  Google Scholar 

  157. Semuyaba I, Safiriyu AA, Tiyo EA, Niurka RF (2017) Memory improvement effect of ethanol garlic (A. sativum) extract in Streptozotocin-nicotinamide induced diabetic Wistar rats is mediated through increasing of hippocampal sodium-potassium ATPase, glutamine synthetase, and calcium ATPase activities. Evid Based Complement Alternat Med 2017:3720380

    Article  PubMed  PubMed Central  Google Scholar 

  158. Nurmasitoh T, Sari DCR, Partadiredja G (2018) The effects of black garlic on the working memory and pyramidal cell number of medial prefrontal cortex of rats exposed to monosodium glutamate. Drug Chem Toxicol 41(3):324–329

    Article  CAS  PubMed  Google Scholar 

  159. Abbasi A, Sheykhsaran E, Kafil HS (2021) Postbiotics: science, technology and applications. Bentham Science Publishers

    Book  Google Scholar 

  160. Gutiérrez-del-Río I, Fernández J, Lombó F (2018) Plant nutraceuticals as antimicrobial agents in food preservation: terpenoids, polyphenols and thiols. Int J Antimicrob Agents 52(3):309–315

    Article  PubMed  Google Scholar 

  161. El-Sayed SM, El-Sayed HS (2021) Antimicrobial nanoemulsion formulation based on thyme (Thymus vulgaris) essential oil for UF labneh preservation. J Mater Res Technol 10:1029–1041

    Article  CAS  Google Scholar 

  162. Dhifi W, Bellili S, Jazi S, Bahloul N, Mnif W (2016) Essential oils’ chemical characterization and investigation of some biological activities: a critical review. Medicines 3(4):25

    Article  PubMed  PubMed Central  Google Scholar 

  163. Kannaiyan SK, Jeyakumari A, Nagalakshmi K, Venkateshwarlu G (2014) Shelf life extension of tuna fillets using natural preservatives isolated from garlic. Fish Technol 51(3):179–186

    Google Scholar 

  164. Kombat E, Bonu-Ire M, Adetunde L, Owusu-Frimpong M (2017) Preservative effect of garlic (Allium sativum) paste on fresh Nile tilapia, Oreochromis niloticus (Cichlidae). Ghana J Sci Tech Develop 5(1):1–6

    Google Scholar 

  165. Liu Q, Zhang M, Bhandari B, Xu J, Yang C (2020) Effects of nanoemulsion-based active coatings with composite mixture of star anise essential oil, polylysine, and nisin on the quality and shelf life of ready-to-eat Yao meat products. Food Control 107:106771

    Article  CAS  Google Scholar 

  166. Diao X, Huan Y, Chitrakar B (2020) Extending the shelf life of ready-to-eat spiced chicken meat: garlic aqueous extracts-carboxymethyl chitosan ultrasonicated coating solution. Food Bioprocess Technol 13(5):786–796

    Article  CAS  Google Scholar 

  167. Gruskiene R, Bockuviene A, Sereikaite J (2021) Microencapsulation of bioactive ingredients for their delivery into fermented milk products: a review. Molecules 26(15):4601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Pateiro M, Gómez B, Munekata PES, Barba FJ, Putnik P, Kovačević DB, Lorenzo JM (2021) Nanoencapsulation of promising bioactive compounds to improve their absorption, stability, functionality and the appearance of the final food products. Molecules 26(6):1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Youssef AM, El-Sayed HS, El-Nagar I, El-Sayed SM (2021) Preparation and characterization of novel bionanocomposites based on garlic extract for preserving fresh Nile tilapia fish fillets. RSC Adv 11(37):22571–22584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Moustafa H, El-Sayed SM, Youssef AM (2023) Synergistic impact of cumin essential oil on enhancing of UV-blocking and antibacterial activity of biodegradable poly (butylene adipate-co-terephthalate)/clay platelets nanocomposites. J Thermoplast Compos Mater 36(1):96–117

    Article  CAS  Google Scholar 

  171. Galvin-King P, Haughey SA, Elliott CT (2018) Herb and spice fraud; the drivers, challenges and detection. Food Control 88:85–97

    Article  CAS  Google Scholar 

  172. Ozma AM, Khodadadi E, Rezaee AM, Asgharzadeh M, Aghazadeh M, Zeinalzadeh E, Ganbarov K, Kafil HS (2022) Bacterial proteomics and its application in pathogenesis studies. Curr Pharm Biotechnol 23(10):1245–1256

    Article  CAS  PubMed  Google Scholar 

  173. Terazono E, Li W, Hornby L (2016) China grapples with garlic price bubble. Financial Times

    Google Scholar 

  174. Branigan T (2010) Garlic bubble leaves bad taste in Chinese mouths. The Guardian

    Google Scholar 

  175. Galvin-King P, Haughey SA, Elliott CT (2021) Garlic adulteration detection using NIR and FTIR spectroscopy and chemometrics. J Food Compost Anal 96:103757

    Article  CAS  Google Scholar 

  176. Lee S, Lohumi S, Cho B-K, Kim MS, Lee S-H (2014) Development of nondestructive detection method for adulterated powder products using Raman spectroscopy and partial least squares regression. J Korean Soc Nondestructive Test 34(4):283–289

    Article  Google Scholar 

  177. Lohumi S, Lee S, Cho B-K (2015) Optimal variable selection for Fourier transform infrared spectroscopic analysis of starch-adulterated garlic powder. Sens Actuators B Chem 216:622–628

    Article  CAS  Google Scholar 

  178. Black C, Haughey SA, Chevallier OP, Galvin-King P, Elliott CT (2016) A comprehensive strategy to detect the fraudulent adulteration of herbs: the oregano approach. Food Chem 210:551–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Hosseini SA, Abbasi A, Sabahi S, Khani N (2021) Application of postbiotics produced by lactic acid bacteria in the development of active food packaging. Biointerface Res Appl Chem 12:6164–6183

    Article  Google Scholar 

  180. McGrath TF, Haughey SA, Patterson J, Fauhl-Hassek C, Donarski J, Alewijn M, van Ruth S, Elliott CT (2018) What are the scientific challenges in moving from targeted to non-targeted methods for food fraud testing and how can they be addressed? – spectroscopy case study. Trends Food Sci Technol 76:38–55

    Article  CAS  Google Scholar 

  181. Wilde AS, Haughey SA, Galvin-King P, Elliott CT (2019) The feasibility of applying NIR and FT-IR fingerprinting to detect adulteration in black pepper. Food Control 100:1–7

    Article  CAS  Google Scholar 

  182. Petrakis EA, Polissiou MG (2017) Assessing saffron (Crocus sativus L.) adulteration with plant-derived adulterants by diffuse reflectance infrared Fourier transform spectroscopy coupled with chemometrics. Talanta 162:558–566

    Article  CAS  PubMed  Google Scholar 

  183. Kucharska-Ambrożej K, Karpinska J (2020) The application of spectroscopic techniques in combination with chemometrics for detection adulteration of some herbs and spices. Microchem J 153:104278

    Article  Google Scholar 

  184. Tattelman E (2005) Health effects of garlic. Am Fam Physician 72(1):103–106

    PubMed  Google Scholar 

  185. Rana SV, Pal R, Vaiphei K, Sharma SK, Ola RP (2011) Garlic in health and disease. Nutr Res Rev 24(1):60–71

    Article  CAS  PubMed  Google Scholar 

  186. Mikaili P, Maadirad S, Moloudizargari M, Aghajanshakeri S, Sarahroodi S (2013) Therapeutic uses and pharmacological properties of garlic, shallot, and their biologically active compounds. Iran J Basic Med Sci 16(10):1031

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Asdaq SMB, Inamdar MN (2011) The potential benefits of a garlic and hydrochlorothiazide combination as antihypertensive and cardioprotective in rats. J Nat Med 65(1):81–88

    Article  CAS  PubMed  Google Scholar 

  188. Asdaq SMB, Inamdar MN (2011) Pharmacodynamic and pharmacokinetic interactions of propranolol with garlic (Allium sativum) in rats. Evid Based Complement Alternat Med 2011:824042

    Article  PubMed  PubMed Central  Google Scholar 

  189. Piasek A, Bartoszek A, Namieśnik J (2009) Phytochemicals that counteract the cardiotoxic side effects of cancer chemotherapy. Postepy Hig Med Dosw 63:142–158

    Google Scholar 

  190. Rahman K, Lowe GM (2006) Garlic and cardiovascular disease: a critical review1,2. J Nutr 136(3):736S–740S

    Article  CAS  PubMed  Google Scholar 

  191. Salgado B, Monteiro L, Rocha NS (2011) Allium species poisoning in dogs and cats. J Venom Anim Toxins Incl Trop Dis 17:4–11

    Article  Google Scholar 

  192. Lee LS, Andrade ASA, Flexner C (2006) Interactions between natural health products and antiretroviral drugs: pharmacokinetic and pharmacodynamic effects. Clin Infect Dis 43(8):1052–1059

    Article  CAS  PubMed  Google Scholar 

  193. Borrelli F, Capasso R, Izzo AA (2007) Garlic (Allium sativum L.): adverse effects and drug interactions in humans. Mol Nutr Food Res 51(11):1386–1397

    Article  CAS  PubMed  Google Scholar 

  194. Chen K, Xie K, Liu Z, Nakasone Y, Sakao K, Hossain MA, Hou DX (2019) Preventive effects and mechanisms of garlic on dyslipidemia and gut microbiome dysbiosis. Nutrients 11(6):1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Yüncü M, Eralp A, Celõk A (2006) Effect of aged garlic extract against methotrexate-induced damage to the small intestine in rats. Phytother Res 20(6):504–510

    Article  PubMed  Google Scholar 

  196. Miron T, Rabinkov A, Mirelman D, Wilchek M, Weiner L (2000) The mode of action of allicin: its ready permeability through phospholipid membranes may contribute to its biological activity. Biochim Biophys Acta Biomembr 1463(1):20–30

    Article  CAS  Google Scholar 

  197. Gruhlke MCH, Nicco C, Batteux F, Slusarenko AJ (2017) The effects of allicin, a reactive sulfur species from garlic, on a selection of mammalian cell lines. Antioxidants 6(1):1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hedayat Hosseini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Abbasi, A. et al. (2023). Bioactive Compounds and Biological Activities of Allium sativum L.. In: Murthy, H.N., Paek, K.Y., Park, SY. (eds) Bioactive Compounds in the Storage Organs of Plants. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-29006-0_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29006-0_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29006-0

  • Online ISBN: 978-3-031-29006-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics