Skip to main content

Doubled Haploid Production – Mechanism and Utilization in Plant Breeding

  • Chapter
  • First Online:
Advanced Crop Improvement, Volume 1

Abstract

The discovery of haploids in plants led plant breeders to help to produce double haploids. The chromosome numbers of double haploids are different from haploids. This technique shortens the time to produce homozygous plants as compared to the conventional breeding method. After doubling the chromosome, it produces two identical homologous chromosomes. This helps to achieve homozygosity of crop up to one generation early as compared to conventional breeding. Once an interesting gene combination is achieved through conventional breeding; further mixing of genes is considered a real challenge. The production of double haploids is dependent on haploid inducer lines. The current breakthroughs of molecular actors triggering induction of haploid in plants have an important role of processes related to the development of gamete, interactions, and stability of the genome. These findings allowed translation of induction of haploid, and genome editing technologies can be helpful to produce haploid inducer lines. These recent discoveries can be helpful for improved breeding strategies. Besides that, it also provides deeper information regarding sexual reproduction in plants. In this chapter, we discussed how we can produce haploid inducer lines and with the help of new biotechnological tools to produce double haploid plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdollahi, M. R., & Rashidi, S. (2018). Production and conversion of haploid embryos in chickpea (Cicer arietinum L.) anther cultures using high 2, 4-D and silver nitrate containing media. Plant Cell, Tissue and Organ Culture, 133, 39–49.

    Article  CAS  Google Scholar 

  • Abdollahi, M. R., Najafi, S., Sarikhani, H., & Moosavi, S. S. (2016). Induction and development of anther-derived gametic embryos in cucumber (Cucumis sativus L.) by optimizing the macronutrient and agar concentrations in culture medium. Turkish Journal of Biology, 40(3), 571–579.

    Article  CAS  Google Scholar 

  • AboShama, H. M., & Atwa, M. (2019). Anther culture in potato (Solanum tuberosum L.) in vitro. Journal of Plant Biochemistry and Physiology, 7, 244.

    Google Scholar 

  • Achar, P. N. (2002). A study of factors affecting embryo yields from anther culture of cabbage. Plant Cell, Tissue and Organ Culture, 69(2), 183–188.

    Article  Google Scholar 

  • Alan, A. R., Lim, W., Mutschler, M. A., & Earle, E. D. (2007). Complementary strategies for ploidy manipulations in gynogenic onion (Allium cepa L.). Plant Science, 173, 25–31.

    Google Scholar 

  • Amirian, R., Hojati, Z., & Azadi, P. (2020). Male flower induction significantly affects androgenesis in cucumber (Cucumis sativus L.). The Journal of Horticultural Science and Biotechnology, 95(2), 183–191.

    Article  CAS  Google Scholar 

  • Anonymous. (2013). Plant reproduction http://www.biologyjunction.com/plant_reproduction.htm

  • Arabi, M. I. E., Al-Safadi, B., Jawhar, M., & Mir-Ali, N. (2005). Enhancement of embryogenesis and plant regeneration from barley anther culture by low doses of gamma irradiation. In Vitro Cellular & Developmental Biology-Plant, 41(6), 762–764.

    Google Scholar 

  • Asadi, A., Zebarjadi, A., Abdollahi, M. R., & Seguí-Simarro, J. M. (2018). Assessment of different anther culture approaches to produce doubled haploids in cucumber (Cucumis sativus L.). Euphytica, 214(11), 216.

    Article  Google Scholar 

  • Ashkar Al, M. I. (2013). Anther culture response and salt tolerance in some wheat genotypes. Annals of Agricultural Science, 58(2), 139–145.

    Article  Google Scholar 

  • Atanassov, A., Zagorska, N., Boyadjiev, P., & Djilianov, D. (1995). In vitro production of haploid plants. World Journal of Microbiology & Biotechnology, 11(4), 400–408. https://doi.org/10.1007/BF00364615

    Article  CAS  Google Scholar 

  • Baenziger, P. S., Kudirka, D. T., Schaeffer, G. W., & Lazar, M. D. (1984). The significance of doubled haploid variation. In J. P. Gustafson (Ed.), Gene manipulation in plant improvement (pp. 385–414). Plenum Press.

    Chapter  Google Scholar 

  • Bajaj, Y. P. S. (1990). In vitro production of haploids and their use in cell genetics and plant breeding. In Haploids in crop improvement I. biotechnology in agriculture and forestry (Vol. 12, pp. 3–44). https://doi.org/10.1007/978-3-642-61499-6_1

    Chapter  Google Scholar 

  • Bal, U., & Abak, K. (2003a). Attempts of haploidy induction in tomato (Lycopersicon esculentum mill.) via gynogenesis I: Pollination with Solanum sisymbriifolium Lam. pollen. Pakistan Journal of Biological Sciences, 6, 745–749.

    Article  Google Scholar 

  • Bal, U., & Abak, K. (2003b). Attempts of haploidy induction in tomato (Lycopersicon esculentum Mill.) via gynogenesis II: In vitro non-fertilized ovary culture. Pakistan Journal of Biological Sciences, 6, 750–755.

    Article  Google Scholar 

  • Baum, M., Lagudah, E. S., & Appels, R. (1992). Wide crosses in cereals. Annual Review of Plant Physiology and Plant Molecular Biology, 43, 117–143.

    Article  Google Scholar 

  • Bayliss, K. L., Wroth, J. M., & Cowling, W. A. (2004). Pro-embryos of Lupinus spp. produced from isolated microspore culture. Australian Journal of Agricultural Research, 55(5), 589–593.

    Article  Google Scholar 

  • Bhatia, R., Dey, S. S., Parkash, C., Sharma, K., Sood, S., & Kumar, R. (2018). Modification of important factors for efficient microspore embryogenesis and doubled haploid production in field grown white cabbage (Brassica oleracea var. capitata L.) genotypes in India. Scientia Horticulturae, 233, 178–187.

    Article  Google Scholar 

  • Blakeslee, A. F., Belling, J., Farnham, M. E., & Bergner, A. D. (1922). A haploid mutant in the Jimson weed, Datura stramonium. Science, 55, 646–647.

    Google Scholar 

  • Britt, A. B., & Kuppu, S. (2016). Cenh3: An emerging player in haploid induction technology. Frontiers in Plant Science, 7, 357.

    Article  PubMed  PubMed Central  Google Scholar 

  • Broughton, S. (2008). Ovary co-culture improves embryo and green plant production in anther culture of Australian spring wheat (Triticum aestivum L.). Plant Cell, Tissue and Organ Culture, 95(2), 185–195.

    Article  Google Scholar 

  • Chaikam, V., Molenaar, W., Melchinger, A. E., & Boddupalli, P. M. (2019). Doubled haploid technology for line development in maize: Technical advances and prospects. Theoretical and Applied Genetics, 132(12), 3227–3243.

    Article  CAS  PubMed  Google Scholar 

  • Chase, S. S. (1969). Monoploid and monoploid derivatives of maize (Zea mays L.). The Botanical Review, 35, 117–167.

    Article  Google Scholar 

  • Chen, J. F., Cui, L., Malik, A. A., & Mbira, K. G. (2011). In vitro haploid and dihaploid production via unfertilized ovule culture. Plant Cell, Tissue and Organ Culture (PCTOC), 104(3), 311–319.

    Article  Google Scholar 

  • CIMMYT International Maize and Wheat Improvement Center. (2009). Retrieved from http://www.cimmyt.org/

  • Cistué, L., Soriano, M., Castillo, A. M., Valles, M. P., Sanz, J. M., & Echavarri, B. (2006). Production of doubled haploids in durum wheat (Triticum turgidum L.) through isolated microspore culture. Plant Cell Reports, 25(4), 257–264.

    Article  PubMed  Google Scholar 

  • Collard, B. C. Y., Jahufer, M. Z. Z., & Brouwer. (2005). An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica, 142, 169–196.

    Article  CAS  Google Scholar 

  • Deimling, S., Röber, F. K., & Geiger, H. H. (1997). Methodology and genetics of in vivo haploid induction in maize. Vortr. Pflanzenzüchtg, 38, 203–224.

    Google Scholar 

  • Deng, Y., Tang, B., Zhou, X., Fu, W., Tao, L., Zhang, L., & Chen, J. (2020). Direct regeneration of haploid or doubled haploid plantlets in cucumber (Cucumis sativus L.) through ovary culture. Plant Cell, Tissue and Organ Culture (PCTOC), 142, 1–16.

    Article  Google Scholar 

  • Diao, W. P., Jia, Y. Y., Song, H., Zhang, X. Q., Lou, Q. F., & Chen, J. F. (2009). Efficient embryo induction in cucumber ovary culture and homozygous identification of the regenetants using SSR markers. Scientia Horticulturae, 119(3), 246–251.

    Article  CAS  Google Scholar 

  • Dogramaci-Altuntepe, M. (2001). Anther culture-derived regenerants of Durum wheat and their cytological characterization. Journal of Heredity, 92(1), 56–64.

    Article  CAS  PubMed  Google Scholar 

  • Dunemann, F., Unkel, K., & Sprink, T. (2018). Using CRISPR/Cas9 to produce haploid inducers of carrot through targeted mutations of centromeric histone H3 (CENH3). In II international symposium on carrot and other Apiaceae 1264 (pp. 211–220).

    Google Scholar 

  • Dyulgerova, B., Valcheva, D., & Dimova, D. (2014). Anther culture response in winter barley (Hordeum vulgare L.). Genetics and Breeding, 39(1–2), 45–49.

    Google Scholar 

  • Evans, D. A. (1989). Somaclonal variation - genetic basis and breeding applications. Trends in Genetics, 5(C), 46–50.

    Article  CAS  PubMed  Google Scholar 

  • Ferrie, A. M. R., Irmen, K. I., Beattie, A. D., & Rossnagel, B. G. (2014). Isolated microspore culture of oat (Avena sativa L.) for the production of doubled haploids: Effect of pre-culture and post-culture conditions. Plant Cell, Tissue and Organ Culture (PCTOC), 116(1), 89–96.

    Article  CAS  Google Scholar 

  • Forster, B., & Thomas, W. (2005). Double-haploids in genetics and breeding. In J. Janick (Ed.), Plant Breeding Reviews (Vol. 25, pp. 57–88).

    Google Scholar 

  • Forster, B. P., Heberle-Bors, E., Kasha, K. J., & Touraev, A. (2007). The resurgence of haploids in higher plants. Trends in plant science, 12(8), 368–375. from anthers of Triticum aestivum L. cultured in vitro. Scientia Sinica, 16, 79–95.

    Google Scholar 

  • Galvan, R. F., Barranco, V., Galvan, J. C., Batlle, S., & FeliuFajardo, S. (2016). We are IntechOpen, the world ’ s leading publisher of Open Access books Built by scientists, for scientists TOP 1%. Intech, i(tourism)., 13. https://doi.org/10.5772/57353

    Book  Google Scholar 

  • Gamborg, O. L., Miller, R. A., & Ojima, L. (1968). Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research, 50, 151–158.

    Article  CAS  PubMed  Google Scholar 

  • Geiger, H. H. (2009). Doubled haploids. In Bennetzen, J. L. & Hake, S. (eds.), Handbook of Maize. Springer, New York, NY.

    Google Scholar 

  • Geiger, H. H., & Gordillo, G. A. (2009). Doubled haploids in hybrid maize breeding. Maydica, 54, 485–499.

    Google Scholar 

  • Gemes-Juhasz, A., Balogh, P., Ferenczy, A., & Kristóf, Z. (2002). Effect of optimal stage of female gametophyte and heat treatment on in vitro gynogenesis induction in cucumber (Cucumis sativus L.). Plant Cell Reports, 21(2), 105–111.

    Article  CAS  Google Scholar 

  • Germana, M. A. (2011a). Anther culture for haploid and doubled haploid production. Plant Cell, Tissue and Organ Culture, 104(3), 283–300. https://doi.org/10.1007/s11240-010-9852-z

    Article  Google Scholar 

  • Germana, M. A. (2011b). Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Reports, 30(5), 839–857.

    Article  CAS  PubMed  Google Scholar 

  • Gilles, L. M., Khaled, A., Laffaire, J. P., Chaignon, S., Gendort, G., Laplaige, J., Berges, H., Beydon, G., Bayle, V., Barret, P., Comadran, J., Martinant, J.-P., Rogowsky, P. M., & Widiez, T. (2017). Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. The EMBO Journal, 36, 707–717. https://doi.org/10.15252/embj.201796603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordillo, A., & Geiger, H. H. (2010). Optimum hybrid maize breeding strategies using doubled haploids. 46th Illinois Corn Breeders School, Champaign, 1st of March 2010.

    Google Scholar 

  • Górecka, K., Krzyżanowska, D., Kiszczak, W., & Kowalska, U. (2009). Plant regeneration from carrot (Daucus carota L.) anther culture derived embryos. Acta Physiologiae Plantarum, 31(6), 1139–1145.

    Article  Google Scholar 

  • Górecka, K., Kowalska, U., Krzyżanowska, D., & Kiszczak, W. (2010). Obtaining carrot (Daucus carota L.) plants in isolated microspore cultures. Journal of Applied Genetics, 51(2), 141–147.

    Article  PubMed  Google Scholar 

  • Grewal, R. K., Lulsdorf, M., Croser, J., Ochatt, S., Vandenberg, A., & Warkentin, T. D. (2009). Doubled-haploid production in chickpea (Cicer arietinum L.): Role of stress treatments. Plant Cell Reports, 28(8), 1289–1299.

    Article  CAS  PubMed  Google Scholar 

  • Gu, H., Zhao, Z., Sheng, X., Yu, H., & Wang, J. (2014). Efficient doubled haploid production in microspore culture of loose-curd cauliflower (Brassica oleracea var. botrytis). Euphytica, 195(3), 467–475.

    Article  Google Scholar 

  • Guha, S., & Maheshwari, S. C. (1964). In vitro production of embryos from anthers of Datura. Nature, 204, 497.

    Article  Google Scholar 

  • Guha, S., & Maheshwari, S. C. (1966). Cell division and differentiation of embryos in the pollen grains of Datura in vitro. Nature, 212(5057), 27–28.

    Article  Google Scholar 

  • Gürel, S., Gürel, E., & Kaya, Z. (2000). Doubled haploid plant production from unpollinated ovules of sugar beet (Beta vulgaris L.). Plant Cell Reports, 19, 1155–1159.

    Article  PubMed  Google Scholar 

  • Hale, B., Phipps, C., Kelley, C., & Phillips, G. C. (2018). Evaluation of soybean androgenesis by isolated microspore culture. Soybean Research Studies., 663, 31.

    Google Scholar 

  • He, Z. H. A. O., Wang, X. X., Du, Y. C., Zhu, D. W., Guo, Y. M., Gao, J. C., & Snyder, J. C. (2014). Haploid induction via in vitro gynogenesis in tomato (Solanum lycopersicum L.). Journal of Integrative Agriculture, 13(10), 2122–2131.

    Article  Google Scholar 

  • Heberle-Bors, E. (1985). In vitro haploid formation from pollen: A critical review. Theoretical and Applied Genetics, 71(3), 361–374. https://doi.org/10.1007/BF00251175

    Article  CAS  PubMed  Google Scholar 

  • Ho, K. M., & Jones, G. E. (1980). Mingo barley. Can J. Plant Science, 60, 279–280.

    Google Scholar 

  • Humphreys, D. G., & Knox, R. E. (2015). Doubled haploid breeding in cereals. In Advances in plant breeding strategies: Breeding, biotechnology and molecular tools (pp. 241–290). Springer.

    Chapter  Google Scholar 

  • Islam, S. M. S., & Tuteja, N. (2012). Enhancement of androgenesis by abiotic stress and other pretreatments in major crop species. Plant Science, 182(1), 134–144.

    Article  CAS  PubMed  Google Scholar 

  • Islam, S. S., Ara, I., Tuteja, N., & Subramaniam, S. (2013). Efficient microspore isolation methods for high yield embryoids and regeneration in rice (Oryza sativa L.). World Academy of Science, Engineering and Technology (WASET), International Journal of Biological Science and Engineering, 7(12), 891–896.

    Google Scholar 

  • Ismaili, A., & Mohammadi, P. P. (2016). Effect of genotype, induction medium, carbohydrate source, and polyethylene glycol on embryogenesis in maize (Zea mays L.) anther culture. Acta Physiologiae Plantarum, 38(3), 1–8.

    Article  CAS  Google Scholar 

  • Jensen, C. J. (1974). Chromosome doubling techniques in haploids. In K. J. Kasha (Ed.), Haploids in higher plants (pp. 153–190). University of Guelph.

    Google Scholar 

  • Jia, J., Zhang, Y., Cui, L., & Feng, H. (2019). Effect of thidiazuron on microspore embryogenesis and plantlet regeneration in Chinese flowering cabbage (Brassica rapa. var. parachinenis). Plant Breeding, 138(6), 916–924.

    Article  CAS  Google Scholar 

  • Juðkevièienë, D., Stanys, V., & Bobinas, È. (2005). Gynogenesis peculiarities of Allium L. vegetables grown in Lithuania. Biologija, 3, 6–9.

    Google Scholar 

  • Kasha, K. J., & Maluszynski, M. (2003). Production of doubled haploids in crop plants. An introduction. In Doubled haploid production in crop plants (pp. 1–4). Springer.

    Google Scholar 

  • Kasha, K. J., Simion, E., Miner, M., Letarte, J., & Hu, T. C. (2003). Haploid wheat isolated microspore culture protocol. In M. Maluszynski, K. J. Kasha, B. P. Forster, & I. Szarejko (Eds.), Doubled haploid production in crop plants, a manual (pp. 77–81). Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Keleş, D., Pınar, H., Ata, A., Taşkın, H., Yıldız, S., & Büyükalaca, S. (2015). Effect of pepper types on obtaining spontaneous doubled haploid plants via anther culture. HortScience, 50(11), 1671–1676.

    Article  Google Scholar 

  • Kelliher, T., Starr, D., Richbourg, L., Chintamanani, S., et al. (2017). MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature, 542(7639), 105–109.

    Article  CAS  PubMed  Google Scholar 

  • Khatun, R., Shahinul Islam, S. M., Ara, I., Tuteja, N., & Bari, M. A. (2012). Effect of cold pretreatment and different media in improving anther culture response in rice (Oryza sativa L.) in Bangladesh. Indian Journal of Biotechnology, 11(4), 458–463.

    CAS  Google Scholar 

  • Kiełkowska, A., & Adamus, A. (2010). In vitro culture of unfertilized ovules in carrot (Daucus carota L.). Plant Cell, Tissue and Organ Culture (PCTOC), 102(3), 309–319.

    Article  Google Scholar 

  • Kiełkowska, A., Adamus, A., & Baranski, R. (2014). An improved protocol for carrot haploid and doubled haploid plant production using induced parthenogenesis and ovule excision in vitro. In Vitro Cellular & Developmental Biology-Plant, 50(3), 376–383.

    Article  Google Scholar 

  • Kim, K. M., & Baenziger, P. S. (2005). A simple wheat haploid and doubled haploid production system using anther culture. In Vitro Cellular & Developmental Biology. Plant, 41, 22–27.

    Article  Google Scholar 

  • Kiviharju, E., Moisander, S., & Laurila, J. (2005). Improved green plant regeneration rates from oat anther culture and the agronomic performance of some DH lines. Plant Cell, Tissue and Organ Culture, 81(1), 1–9.

    Article  CAS  Google Scholar 

  • Kozak, K., Galek, R., Waheed, M. T., & Sawicka-Sienkiewicz, E. (2012). Anther culture of Lupinus angustifolius: Callus formation and the development of multicellular and embryo-like structures. Plant Growth Regulation, 66(2), 145–153.

    Article  CAS  Google Scholar 

  • Kumari, M., Clarke, H. J., Small, I., & Siddique, K. H. M. (2009). Albinism in plants: A major bottleneck in wide hybridization, androgenesis and doubled haploid culture. Critical Reviews in Plant Sciences, 28(6), 393–409.

    Article  CAS  Google Scholar 

  • Kumlehn, J., Serazetdinova, L., Hensel, G., Becker, D., & Loerz, H. (2006). Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotechnology Journal, 4, 251–261.

    Article  CAS  PubMed  Google Scholar 

  • Kurtar, E. S., Balkaya, A., & Ozbakir, O. M. (2018). Production of callus mediated gynogenic haploids in winter squash (Cucurbita maxima Duch.) and pumpkin (Cucurbita moschata Duch.). Czech Journal of Genetics and Plant Breeding, 54, 9–16.

    Article  CAS  Google Scholar 

  • Lantos, C., Juhász, A. G., Vági, P., Mihály, R., Kristóf, Z., & Pauk, J. (2012). Androgenesis induction in microspore culture of sweet pepper (Capsicum annuum L.). Plant Biotechnology Reports, 6(2), 123–132.

    Article  Google Scholar 

  • Laurie, D. A., & Bennett, M. D. (1988). The production of haploid wheat plants from wheat x maize crosses. Theoretical and Applied Genetics, 76(3), 393–397.

    Article  CAS  PubMed  Google Scholar 

  • Lazaridou, T., Sistanis, I., Lithourgidis, A., Ambrus, H., & Roupakias, D. (2011). Response to in-vitro anther culture of F3 families originating from high and low yielding F2 barley (Hordeum vulgare L.) plants. Australian Journal of Crop Science, 5(3), 265.

    Google Scholar 

  • Li, H., & Devaux, P. (2003). High frequency regeneration of barley doubled haploid plants from isolated microspore culture. Plant Science, 164(3), 379–386.

    Article  CAS  Google Scholar 

  • Lichter, R. (1982). Induction of haploid plants from isolated pollen of Brassica napus. Zeitschrift für Pflanzenphysiologie, 105(5), 427–434.

    Article  Google Scholar 

  • Liu, W., Zheng, M. Y., Polle, E. A., & Konzak, C. F. (2002). Highly efficient doubled-haploid production in wheat (Triticum aestivum L.) via induced microspore embryogenesis. Crop Science, 42(3), 686–692.

    Google Scholar 

  • Liu, Z., Wang, Y., Ren, J., Mei, M., Frei, U. K., Trampe, B., & Lubberstedt, T. (2016). Maize doubled haploids. Plant Breeding Reviews, 40, 123.

    Article  CAS  Google Scholar 

  • Liu, C., Li, X., Meng, D., Zhong, Y., Chen, C., Dong, X., Xu, X., Chen, B., Li, W., Li, L., Tian, X., Zhao, H., Song, W., Luo, H., Zhang, Q., Lai, J., Jin, W., Yan, J., & Chen, S. (2017). A 4bp insertion at ZmPLA1 encoding a putative phospholipase a generates haploid induction in maize. Molecular Plant, 10(3), 520–522. https://doi.org/10.1016/j.molp.2017.01.011

    Article  CAS  PubMed  Google Scholar 

  • Liu, C., Zhong, Y., Qi, X., Chen, M., Liu, Z., Chen, C., & Li, M. (2019). Extension of the in vivo haploid induction system from maize to wheat. bioRxiv, 609305.

    Google Scholar 

  • Liu, H., Wang, K., Jia, Z., Gong, Q., Lin, Z., Du, L., & Ye, X. (2020). Efficient induction of haploid plants in wheat by editing of TaMTL using an optimized Agrobacterium-mediated CRISPR system. Journal of Experimental Botany, 71(4), 1337–1349.

    Article  CAS  PubMed  Google Scholar 

  • Lübberstedt, T., & Frei, U. K., (2012). Application of doubled haploids for target gene fixation in backcross programmes of maize. Plant Breeding, 131, 449–452.

    Google Scholar 

  • Mahasuk, P., Kullik, A. S., Iqbal, M. C., & Möllers, C. (2017). Effect of boron on microspore embryogenesis and direct embryo to plant conversion in Brassica napus (L.). Plant Cell, Tissue and Organ Culture (PCTOC), 130(2), 443–447.

    Article  CAS  Google Scholar 

  • Makowska, K., & Oleszczuk, S. (2014). Albinism in barley androgenesis. Plant Cell Reports, 33(3), 385–392.

    Article  CAS  PubMed  Google Scholar 

  • Makowska, K., Kałużniak, M., Oleszczuk, S., Zimny, J., Czaplicki, A., & Konieczny, R. (2017a). Arabinogalactan proteins improve plant regeneration in barley (Hordeum vulgare L.) anther culture. Plant Cell, Tissue and Organ Culture (PCTOC), 131(2), 247–257.

    Article  CAS  Google Scholar 

  • Makowska, K., Oleszczuk, S., & Zimny, J. (2017b). The effect of copper on plant regeneration in barley microspore culture. Czech Journal of Genetics and Plant Breeding, 53(1), 17–22.

    Article  CAS  Google Scholar 

  • Mallikarjuna, N., Jadhav, D. R., Clarke, H., Coyne, C., & Muehlbauer, F. J. (2005). Induction of Androgenesis as a consequence of wide crossing in chickpea. Journal of SAT Agricultural Research, 1(1), 1–3.

    Google Scholar 

  • Maluszynski, M. K., Kasha, J., & Szarejko, I. (2003). Published doubled haploid protocols in plant species. In Doubled haploid production in crop plants (pp. 309–335). Springer.

    Chapter  Google Scholar 

  • Min, Z. Y., Li, H., Zou, T., Tong, L., Cheng, J., & Sun, X. W. (2016). Studies of in vitro culture and plant regeneration of unfertilized ovary of pumpkin. Chinese Bulletin of Botany, 51(1), 74–80.

    CAS  Google Scholar 

  • Mishra, R., & Rao, G. J. N. (2016). In-vitro androgenesis in rice: Advantages, constraints and future prospects. Rice Science, 23(2), 57–68.

    Article  Google Scholar 

  • Mishra, R., Rao, G. J. N., Rao, R. N., & Kaushal, P. (2015). Development and characterization of elite doubled haploid lines from two Indica rice hybrids. Rice Science, 22(6), 290–299.

    Article  Google Scholar 

  • Mohamed, M. F., & Refaei, E. F. S. (2004). Enhanced haploids regeneration in anther culture of summer squash (Curcurbita pepo L.). Report-Cucurbit Genetics Cooperative, 27, 57.

    Google Scholar 

  • Moraes, A. P. D., Bonadese-Zanettini, M. H., Callegari-Jacques, S. M., & Kaltchuk-Santos, E. (2004). Effect of temperature shock on soybean microspore embryogenesis. Brazilian Archives of Biology and Technology, 47(4), 537–544.

    Article  Google Scholar 

  • Murovec, J., & Bohanec, B. (2011). Haploids and doubled haploids in plant breeding. In I. Abdurakhmonov (Ed.), Plant breeding (pp. 87–106).

    Google Scholar 

  • Murovec, J., & Bohanec, B. (2012). Haploids and doubled haploids in plant breeding. In I. Abdurakhmonov (Ed.), Plant breeding (pp. 87–106).

    Google Scholar 

  • Naik, N., Rout, P., Umakanta, N., Verma, R. L., Katara, J. L., Sahoo, K. K., & Samantaray, S. (2017). Development of doubled haploids from an elite indica rice hybrid (BS6444G) using anther culture. Plant Cell, Tissue and Organ Culture (PCTOC), 128(3), 679–689.

    Article  CAS  Google Scholar 

  • Nakata, K., & Tanaka, M. (1968). Differentiation of embryoids from developing germ cells in anther culture of tobacco. Japan Journal of Genetics, 43, 67–71.

    Google Scholar 

  • Niazian, M., & Shariatpanahi, M. E. (2020). In vitro-based doubled haploid production: Recent improvements. Euphytica, 216(5), 1–21.

    Article  Google Scholar 

  • Niazian, M., Shariatpanahi, M. E., Abdipour, M., & Oroojloo, M. (2019). Modeling callus induction and regeneration in an anther culture of tomato (Lycopersicon esculentum L.) using image processing and artificial neural network method. Protoplasma, 256(5), 1317–1332.

    Article  CAS  PubMed  Google Scholar 

  • Niizeki, H., & Oono, K. (1968). Induction of haploid rice plant from anther culture. Proceedings of Japan Academy, 44, 554–557.

    Article  Google Scholar 

  • Nitsch, J. P. (1969). Experimental androgenesis in Nicotiana. Phytomorphology, 19, 389–404.

    Google Scholar 

  • Nitsch, J. P., & Nitsch, C. (1969). Haploid plants from pollen grains. Science, 163, 85–87.

    Article  CAS  PubMed  Google Scholar 

  • Niu, L., Shi, F., Feng, H., & Zhang, Y. (2019). Efficient doubled haploid production in microspore culture of Zengcheng flowering Chinese cabbage (Brassica campestris L. ssp. chinensis [L.] Makino var. utilis Tsen et Lee). Scientia Horticulturae, 245, 57–64.

    Article  CAS  Google Scholar 

  • Olsen, F. L. (1987). Induction of microspore embryogenesis in cultured anthers of Hordeum vulgare. The effects of ammonium nitrate, glutamine and asparagine as nitrogen sources. Carlsberg Research Communications, 52, 393–404.

    Article  CAS  Google Scholar 

  • Ouyang, T. W., Hu, H., Chuang, C. C., & Tseng, C. C. (1973). Induction of pollen plants from anthers of Triticum aestivum L. cultured in vitro. Scientia Sinica, 16(1), 79–90.

    Google Scholar 

  • Ouyang, J. W., Jia, S. E., Zhang, C., Chen, X., & Feng, G. (1989). A new synthetic medium (W14) for wheat anther culture. In Annu Rep Inst Genet Acad Sin 1987–1988 (pp. 91–92).

    Google Scholar 

  • Pazuki, A., Aflaki, F., Gürel, E., Ergül, A., & Gürel, S. (2018). Gynogenesis induction in sugar beet (Beta vulgaris) improved by 6-benzylaminopurine (BAP) and synergized with cold pretreatment. Sugar Tech, 20(1), 69–77.

    Article  CAS  Google Scholar 

  • Popova, T., Grozeva, S., Todorova, V., Stankova, G., Anachkov, N., & Rodeva, V. (2016). Effects of low temperature, genotype and culture media on in vitro androgenic answer of pepper (Capsicum annuum L.). Acta Physiologiae Plantarum, 38(11), 273.

    Article  Google Scholar 

  • Rahman, M., & de Jiménez, M. M. (2016). Behind the scenes of microspore-based double haploid development in Brassica napus: A review. Journal of Plant Science and Molecular Breeding, 5(1), 1.

    Article  Google Scholar 

  • Ravi, M., & Chan, S. W. (2010). Haploid plants produced by centromere-mediated genome elimination. Nature, 464(7288), 615–618.

    Article  CAS  PubMed  Google Scholar 

  • Rivas-Sendra, A., Campos-Vega, M., Calabuig-Serna, A., & Seguí-Simarro, J. M. (2017). Development and characterization of an eggplant (Solanum melongena) doubled haploid population and a doubled haploid line with high androgenic response. Euphytica, 213(4), 89.

    Article  Google Scholar 

  • Röber, F. K., Gordillo, G. A., & Geiger, H. H. (2005). In vivo haploid induction in maize-performance of new inducers and significance of doubled haploid lines in hybrid breeding. Maydica, 50, 275–283.

    Google Scholar 

  • Rodeva, V. (2001). In vitro regeneration in anther culture of pepper (Capsicum annuum L.). Sci Works Agricultural University of Plovdiv, 3, 211–214.

    Google Scholar 

  • Rodrigues, L. R., Forte, B. D. C., Oliveira, J. M. S., Mariath, J. E. A., & Bodanese-Zanettini, M. H. (2004). Effects of light conditions and 2, 4-D concentration in soybean anther culture. Plant Growth Regulation, 44(2), 125–131.

    Article  CAS  Google Scholar 

  • Rodrigues, L. R., Oliveira, J. M. S., Mariath, J. E., & Bodanese-Zanettini, M. H. (2005). Histology of embryogenic responses in soybean anther culture. Plant Cell, Tissue and Organ Culture, 80(2), 129–137.

    Article  Google Scholar 

  • San, L., & Gelebart, P. (1984). Production of gynogenetic haploids. In I. K. Vasil (Ed.), Cell culture and somatic cell genetics of plants: Plant regeneration and genetic variability (pp. 305–322). Academic Press.

    Google Scholar 

  • Santra, M., Ankrah, N., Santra, D. K., & Kidwell, K. K. (2012). An improved wheat microspore culture technique for the production of doubled haploid plants. Crop Science, 52(5), 2314–2320.

    Article  Google Scholar 

  • Seguí-Simarro, J. M. (2010). Androgenesis Revisited. Botanical Review, 76(3), 377–404. https://doi.org/10.1007/s12229-010-9056-6

    Article  Google Scholar 

  • Shalaby, T. A. (2007). Factors affecting haploid induction through in vitro gynogenesis in summer squash (Cucurbita pepo L.). Scientia Horticulturae, 115(1), 1–6.

    Article  Google Scholar 

  • Sibi, M. L., Kobaissi, A., & Shekafandeh, A. (2001). Green haploid plants from unpollinated ovary culture in tetraploid wheat (Triticum durum Defs.). Euphytica, 122(2), 351–359.

    Article  Google Scholar 

  • Sidhu, P. K., & Davies, P. A. (2009). Regeneration of fertile green plants from oat isolated microspore culture. Plant Cell Reports, 28(4), 571–577.

    Article  CAS  PubMed  Google Scholar 

  • Slama-Ayed, O., & Slim-Amara, H. (2007). Production of doubled haploids in durum wheat (Triticum durum Desf.) through culture of unpollinated ovaries. Plant Cell, Tissue and Organ Culture, 91(2), 125–133.

    Article  Google Scholar 

  • Snape, J. W. (1986). Criteria for the selection and use of doubled haploid systems in cereal breeding programmes. In Genetic manipulation in plant breeding (pp. 217–228). Walter de Gruyter.

    Google Scholar 

  • Song, H., Lou, Q. F., Luo, X. D., Wolukau, J. N., Diao, W. P., Qian, C. T., & Chen, J. F. (2007). Regeneration of doubled haploid plants by androgenesis of cucumber (Cucumis sativus L.). Plant Cell, Tissue and Organ Culture, 90(3), 245–254.

    Article  CAS  Google Scholar 

  • Sood, S., & Dwivedi, S. (2015). Doubled haploid platform: An accelerated breeding approach for crop improvement. In Plant biology and biotechnology (pp. 89–111). Springer.

    Chapter  Google Scholar 

  • Sorntip, A., Poolsawat, O., Kativat, C., & Tantasawat, P. A. (2017). Gynogenesis and doubled haploid production from unpollinated ovary culture of cucumber (Cucumis sativus L.). Canadian Journal of Plant Science, 98(2), 353–361.

    Google Scholar 

  • Stephen, B. P. (1996). Reflections on doubled haploids in plant breeding. In In vitro haploid production in higher plants (pp. 35–48). Springer.

    Google Scholar 

  • Szarejko, I., Falk, D. E., & Janusz, A. (1997). Cytological and genetic evaluation of anther culture derived doubled haploids in barley. Journal of Applied Genetics, 38(4), 437–452.

    Google Scholar 

  • Szechy, M., Dubas, E., & Got, G. (2009). Progress in doubled haploid technology. In Advances in haploid production in higher plants (pp. 1–33). https://doi.org/10.1007/978-1-4020-8854-4_1

    Chapter  Google Scholar 

  • Tadesse, W., Inagaki, M., & Tawkaz, S. (2012). Recent advances and application of doubled haploids in wheat breeding. African Journal of Biotechnology, 11(89), 15484–15492.

    Article  Google Scholar 

  • Tai, G. C. C., & Xiong, X. Y. (2003). Haploid production of potatoes by anther culture. In Doubled haploid production in crop plants (pp. 229–234). Springer.

    Chapter  Google Scholar 

  • Takahira, J., Cousin, A., Nelson, M. N., & Cowling, W. A. (2011). Improvement in efficiency of microspore culture to produce doubled haploid canola (Brassica napus L.) by flow cytometry. Plant Cell, Tissue and Organ Culture (PCTOC), 104(1), 51–59.

    Article  Google Scholar 

  • Talebi, R., Rahemi, M. R., Arefi, H., Nourozi, M., & Bagheri, N. (2007). In vitro plant regeneration through anther culture of some Iranian local rice (Oryza sativa L.) cultivars. Pakistan Journal of Biological Sciences: PJBS, 10(12), 2056–2060.

    Article  CAS  PubMed  Google Scholar 

  • Tang, F., Tao, Y., Zhao, T., & Wang, G. (2006). In vitro production of haploid and doubled haploid plants from pollinated ovaries of maize (Zea mays). Plant Cell, Tissue and Organ Culture, 84(2), 233–237.

    Article  Google Scholar 

  • Thomas, E., & Wenzel, G. (1975). Embryogenesis from microspores of Brassica napus. Z. Pflanzenziicht., 74, 77–81.

    Google Scholar 

  • Thompson, K. F. (1972). Oil-seed rape. In Reports of the Plant Breeding Institute (pp. 94–96). Cambridge University Press.

    Google Scholar 

  • Tiainen, T. (1993). The influence of hormones on anther culture response of tetraploid potato (Solanum tuberosum L.). Plant Science, 88(1), 83–90.

    Article  CAS  Google Scholar 

  • Touraev, A., Brian, P., & Forster, M. J. S. (Eds.). (2009). Advances in haploid production in higher plants. Springer.

    Google Scholar 

  • Trejo-Tapia, G., Maldonado Amaya, U., Salcedo Morales, G. et al., (2002). The effects of coldpretreatment, auxins and carbon source on anther culture of rice. Plant Cell, Tissue and Organ Culture 71, 41–46.

    Google Scholar 

  • Vanous, A. E. (2011). Optimization of doubled haploid production in maize (Zea mays L.). Graduate Theses and Dissertations. Paper 12974.

    Google Scholar 

  • Vanous, K., Vanous, A., Frei, U. K., & Lubberstedt, T. (2017). Generation of maize (Zea mays) doubled haploids via traditional methods. Current Protocols in Plant Biology, 2, 147–157.

    Article  Google Scholar 

  • Wang, B., Zhu, L., Zhao, B., Zhao, Y., Xie, Y., Zheng, Z., & Wang, H. (2019a). Development of a haploid-inducer mediated genome editing system for accelerating maize breeding. Molecular Plant, 12(4), 597–602.

    Article  PubMed  Google Scholar 

  • Wang, H. M., Enns, J. L., Nelson, K. L., Brost, J. M., Orr, T. D., & Ferrie, A. M. R. (2019b). Improving the efficiency of wheat microspore culture methodology: Evaluation of pretreatments, gradients, and epigenetic chemicals. Plant Cell, Tissue and Organ Culture (PCTOC), 139(3), 589–599.

    Article  CAS  Google Scholar 

  • Wang, S., Jin, W., & Wang, K. (2019c). Centromere histone H3-and phospholipase-mediated haploid induction in plants. Plant Methods, 15(1), 1–10.

    Article  Google Scholar 

  • Wedzony, M., Zur, I., Golemiec, E., Szechin’ska-Hebda, M., & Dubas, E. (2006). Progress in doubled haploid technology. Euphytica. https://doi.org/10.1007/s10681-006-9241-1

  • Wojnarowiez, G., Jacquard, C., Devaux, P., Sangwan, R. S., & Clement, C. (2002). Influence of copper sulfate on anther culture in barley (Hordeum vulgare L.). Plant Science, 162, 843–847.

    Article  CAS  Google Scholar 

  • Yao, L., Zhang, Y., Liu, C., Liu, Y., Wang, Y., Liang, D., & Kelliher, T. (2018). OsMATL mutation induces haploid seed formation in indica rice. Nature Plants, 4(8), 530–533.

    Article  CAS  PubMed  Google Scholar 

  • Yerzhebayeva, R. S., Abekova, A. M., Ainebekova, B. A., Urazaliyev, K. R., Bazylova, T. A., Daniyarova, A. K., & Bersimbayeva, G. K. (2017). Influence of different concentrations of ascorbic and gibberellic acids and pH of medium on embryogenesis and regeneration in anther culture of spring triticale. Cytology and Genetics, 51(6), 448–454.

    Article  Google Scholar 

  • Yuan, S. X., Liu, Y. M., Fang, Z. Y., Yang, L. M., Zhuang, M., Zhang, Y. Y., & Sun, P. T. (2011). Effect of combined cold pretreatment and heat shock on microspore cultures in broccoli. Plant Breeding, 130(1), 80–85.

    Article  Google Scholar 

  • Zeng, A., Song, L., Cui, Y., & Yan, J. (2017). Reduced ascorbate and reduced glutathione improve embryogenesis in broccoli microspore culture. South African Journal of Botany, 109, 275–280.

    Article  CAS  Google Scholar 

  • Zhang, W., Wang, K., Lin, Z. S., Du, L. P., Ma, H. L., Xiao, L. L., & Ye, X. G. (2014). Production and identification of haploid dwarf male sterile wheat plants induced by corn inducer. Botanical Studies, 55(1), 26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao, J., Simmonds, D. H., & Newcomb, W. (1996). High frequency production of doubled haploid plants of Brassica napus cv. Topas derived from colchicine-induced microspore embryogenesis without heat shock. Plant Cell Reports, 15(9), 668–671.

    Article  CAS  PubMed  Google Scholar 

  • Zou, T., Su, H. N., Wu, Q., & Sun, X. W. (2018). Haploid induction via unfertilized ovary culture in watermelon. Plant Cell, Tissue and Organ Culture (PCTOC), 135(2), 179–187.

    Article  CAS  Google Scholar 

  • Zur, I., Dubas, E., Krzewska, M., Zieliński, K., Fodor, J., & Janowiak, F. (2019). Glutathione provides antioxidative defence and promotes microspore-derived embryo development in isolated microspore cultures of triticale (× Triticosecale Wittm.). Plant Cell Reports, 38(2), 195–209.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allah Bakhsh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yel, I., Dönmez, B.A., Yeşil, B., Tekinsoy, M., Saeed, F., Bakhsh, A. (2023). Doubled Haploid Production – Mechanism and Utilization in Plant Breeding. In: Raina, A., Wani, M.R., Laskar, R.A., Tomlekova, N., Khan, S. (eds) Advanced Crop Improvement, Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-031-28146-4_13

Download citation

Publish with us

Policies and ethics