Skip to main content

Nox4: From Discovery to Pathophysiology

  • Chapter
  • First Online:
NADPH Oxidases Revisited: From Function to Structure

Abstract

Nox4, originally termed Renox, was discovered in 2000. Since that time, our understanding of its structure and function has expanded enormously. Nox4 is ubiquitously expressed and is regulated at multiple levels, including epigenetic modification, transcriptional regulation, post-translational modification and interaction with partner proteins. It is unique among Nox enzymes in its lack of required cytosolic regulatory subunits and a propensity to produce hydrogen peroxide (H2O2) rather than superoxide. Nox4 has multiple subcellular localizations depending on cell type and environmental context. It regulates a number of fundamental cellular processes, including cytoskeletal structure and dynamics, proliferation, differentiation, survival, apoptosis, senescence, oxygen sensing, and metabolic homeostasis. Nox4 is required for normal organ functioning and certain physiological signaling processes, but it also contributes to multiple disease processes, especially fibrosis and diabetic vascular disease. It has been linked to cancer, myocardial hypertrophy, pulmonary disease, kidney disease and neurological conditions. Much remains to be learned about Nox4 in human disease and controversies remain about its contribution to physiology and pathophysiology. Attention has shifted to the development of specific Nox4 inhibitors, which will not only serve as a much-needed experimental tool, but also will help to realize the potential clinical utility of therapies targeting Nox4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geiszt M, Kopp JB, Varnai P, Leto TL (2000) Identification of renox, an NAD(P)H oxidase in kidney. Proc Natl Acad Sci U S A 97(14):8010–8014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shiose A, Kuroda J, Tsuruya K, Hirai M, Hirakata H, Naito S, Hattori M, Sakaki Y, Sumimoto H (2001) A novel superoxide-producing NAD(P)H oxidase in kidney. J Biol Chem 276(2):1417–1423

    Article  CAS  PubMed  Google Scholar 

  3. Yang S, Madyastha P, Bingel S, Ries W, Key L (2001) A new superoxide-generating oxidase in murine osteoclasts. J Biol Chem 276(8):5452–5458

    Article  CAS  PubMed  Google Scholar 

  4. Nisimoto Y, Diebold BA, Cosentino-Gomes D, Lambeth JD (2014) Nox4: a hydrogen peroxide-generating oxygen sensor. Biochemistry 53(31):5111–5120. https://doi.org/10.1021/bi500331y

    Article  CAS  PubMed  Google Scholar 

  5. Ambasta RK, Kumar P, Griendling KK, Schmidt HH, Busse R, Brandes RP (2004) Direct interaction of the novel Nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase. J Biol Chem 279(44):45935–45941

    Article  CAS  PubMed  Google Scholar 

  6. Martyn KD, Frederick LM, von Loehneysen K, Dinauer MC, Knaus UG (2006) Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. Cell Signal 18(1):69–82

    Article  CAS  PubMed  Google Scholar 

  7. Prior KK, Leisegang MS, Josipovic I, Lowe O, Shah AM, Weissmann N, Schroder K, Brandes RP (2016) CRISPR/Cas9-mediated knockout of p22phox leads to loss of Nox1 and Nox4, but not Nox5 activity. Redox Biol 9:287–295. https://doi.org/10.1016/j.redox.2016.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kawahara T, Ritsick D, Cheng G, Lambeth JD (2005) Point mutations in the proline-rich region of p22phox are dominant inhibitors of Nox1- and Nox2-dependent reactive oxygen generation. J Biol Chem 280(36):31859–31869

    Article  CAS  PubMed  Google Scholar 

  9. von Lohneysen K, Noack D, Jesaitis AJ, Dinauer MC, Knaus UG (2008) Mutational analysis reveals distinct features of the Nox4-p22 phox complex. J Biol Chem 283(50):35273–35282. https://doi.org/10.1074/jbc.M804200200

    Article  CAS  Google Scholar 

  10. Nisimoto Y, Jackson HM, Ogawa H, Kawahara T, Lambeth JD (2010) Constitutive NADPH-dependent electron transferase activity of the Nox4 dehydrogenase domain. Biochemistry 49(11):2433–2442. https://doi.org/10.1021/bi9022285

    Article  CAS  PubMed  Google Scholar 

  11. Ago T, Kuroda J, Pain J, Fu C, Li H, Sadoshima J (2010) Upregulation of Nox4 by hypertrophic stimuli promotes apoptosis and mitochondrial dysfunction in cardiac myocytes. Circ Res 106(7):1253–1264. https://doi.org/10.1161/CIRCRESAHA.109.213116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. von Lohneysen K, Noack D, Wood MR, Friedman JS, Knaus UG (2010) Structural insights into Nox4 and Nox2: motifs involved in function and cellular localization. Mol Cell Biol 30(4):961–975. https://doi.org/10.1128/MCB.01393-09

    Article  CAS  Google Scholar 

  13. Mahadev K, Motoshima H, Wu X, Ruddy JM, Arnold RS, Cheng G, Lambeth JD, Goldstein BJ (2004) The NAD(P)H oxidase homolog Nox4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insulin signal transduction. Mol Cell Biol 24(5):1844–1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jackson HM, Kawahara T, Nisimoto Y, Smith SM, Lambeth JD (2010) Nox4 B-loop creates an interface between the transmembrane and dehydrogenase domains. J Biol Chem 285(14):10281–10290. https://doi.org/10.1074/jbc.M109.084939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dikalov SI, Dikalova AE, Bikineyeva AT, Schmidt HH, Harrison DG, Griendling KK (2008) Distinct roles of Nox1 and Nox4 in basal and angiotensin II-stimulated superoxide and hydrogen peroxide production. Free Radic Biol Med. https://doi.org/10.1016/j.freeradbiomed.2008.08.013

  16. Serrander L, Cartier L, Bedard K, Banfi B, Lardy B, Plastre O, Sienkiewicz A, Forro L, Schlegel W, Krause KH (2007) NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation. Biochem J 406(1):105–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Takac I, Schroder K, Zhang L, Lardy B, Anilkumar N, Lambeth JD, Shah AM, Morel F, Brandes RP (2011) The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4. J Biol Chem 286(15):13304–13313. https://doi.org/10.1074/jbc.M110.192138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Goyal P, Weissmann N, Rose F, Grimminger F, Schafers HJ, Seeger W, Hanze J (2005) Identification of novel Nox4 splice variants with impact on ROS levels in A549 cells. Biochem Biophys Res Commun 329(1):32–39. https://doi.org/10.1016/j.bbrc.2005.01.089

    Article  CAS  PubMed  Google Scholar 

  19. Anilkumar N, San Jose G, Sawyer I, Santos CX, Sand C, Brewer AC, Warren D, Shah AM (2013) A 28-kDa splice variant of NADPH oxidase-4 is nuclear-localized and involved in redox signaling in vascular cells. Arterioscler Thromb Vasc Biol 33(4):e104–e112. https://doi.org/10.1161/ATVBAHA.112.300956

    Article  CAS  PubMed  Google Scholar 

  20. Varga ZV, Pipicz M, Baan JA, Baranyai T, Koncsos G, Leszek P, Kusmierczyk M, Sanchez-Cabo F, Garcia-Pavia P, Brenner GJ, Giricz Z, Csont T, Mendler L, Lara-Pezzi E, Pacher P, Ferdinandy P (2017) Alternative splicing of NOX4 in the failing human heart. Front Physiol 8:935. https://doi.org/10.3389/fphys.2017.00935

    Article  PubMed  PubMed Central  Google Scholar 

  21. Moloney JN, Jayavelu AK, Stanicka J, Roche SL, O'Brien RL, Scholl S, Bohmer FD, Cotter TG (2017) Nuclear membrane-localised NOX4D generates pro-survival ROS in FLT3-ITD-expressing AML. Oncotarget 8(62):105440–105457. https://doi.org/10.18632/oncotarget.22241

    Article  PubMed  PubMed Central  Google Scholar 

  22. Krause KH (2004) Tissue distribution and putative physiological function of NOX family NADPH oxidases. Jpn J Infect Dis 57(5):S28–S29

    PubMed  Google Scholar 

  23. He C, Larson-Casey JL, Davis D, Hanumanthu VS, Longhini ALF, Thannickal VJ, Gu L, Carter AB (2019) NOX4 modulates macrophage phenotype and mitochondrial biogenesis in asbestosis. JCI. Insight 4(16). https://doi.org/10.1172/jci.insight.126551

  24. Moon JS, Nakahira K, Chung KP, DeNicola GM, Koo MJ, Pabon MA, Rooney KT, Yoon JH, Ryter SW, Stout-Delgado H, Choi AM (2016) NOX4-dependent fatty acid oxidation promotes NLRP3 inflammasome activation in macrophages. Nat Med 22(9):1002–1012. https://doi.org/10.1038/nm.4153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee CF, Qiao M, Schroder K, Zhao Q, Asmis R (2010) Nox4 is a novel inducible source of reactive oxygen species in monocytes and macrophages and mediates oxidized low density lipoprotein-induced macrophage death. Circ Res 106(9):1489–1497. https://doi.org/10.1161/CIRCRESAHA.109.215392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zelko IN, Folz RJ (2015) Regulation of oxidative stress in pulmonary artery endothelium. modulation of extracellular superoxide dismutase and NOX4 expression using histone deacetylase class I inhibitors. Am J Respir Cell Mol Biol 53(4):513–524. https://doi.org/10.1165/rcmb.2014-0260OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sturrock A, Cahill B, Norman K, Huecksteadt TP, Hill K, Sanders K, Karwande SV, Stringham JC, Bull DA, Gleich M, Kennedy TP, Hoidal JR (2006) Transforming growth factor-beta1 induces Nox4 NAD(P)H oxidase and reactive oxygen species-dependent proliferation in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 290(4):L661–L673

    Article  CAS  PubMed  Google Scholar 

  28. Carnesecchi S, Deffert C, Donati Y, Basset O, Hinz B, Preynat-Seauve O, Guichard C, Arbiser JL, Banfi B, Pache JC, Barazzone-Argiroffo C, Krause KH (2011) A key role for NOX4 in epithelial cell death during development of lung fibrosis. Antioxid Redox Signal 15(3):607–619. https://doi.org/10.1089/ars.2010.3829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hecker L, Logsdon NJ, Kurundkar D, Kurundkar A, Bernard K, Hock T, Meldrum E, Sanders YY, Thannickal VJ (2014) Reversal of persistent fibrosis in aging by targeting Nox4-Nrf2 redox imbalance. Sci Transl Med 6(231):231ra247. https://doi.org/10.1126/scitranslmed.3008182

    Article  CAS  Google Scholar 

  30. Tsubouchi K, Araya J, Minagawa S, Hara H, Ichikawa A, Saito N, Kadota T, Sato N, Yoshida M, Kurita Y, Kobayashi K, Ito S, Fujita Y, Utsumi H, Yanagisawa H, Hashimoto M, Wakui H, Yoshii Y, Ishikawa T, Numata T, Kaneko Y, Asano H, Yamashita M, Odaka M, Morikawa T, Nakayama K, Nakanishi Y, Kuwano K (2017) Azithromycin attenuates myofibroblast differentiation and lung fibrosis development through proteasomal degradation of NOX4. Autophagy 13(8):1420–1434. https://doi.org/10.1080/15548627.2017.1328348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cheng G, Cao Z, Xu X, van Meir EG, Lambeth JD (2001) Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5. Gene 269(1–2):131–140

    Article  CAS  PubMed  Google Scholar 

  32. Bartsch C, Bekhite MM, Wolheim A, Richter M, Ruhe C, Wissuwa B, Marciniak A, Muller J, Heller R, Figulla HR, Sauer H, Wartenberg M (2011) NADPH oxidase and eNOS control cardiomyogenesis in mouse embryonic stem cells on ascorbic acid treatment. Free Radic Biol Med 51(2):432–443. https://doi.org/10.1016/j.freeradbiomed.2011.04.029

    Article  CAS  PubMed  Google Scholar 

  33. Piccoli C, Ria R, Scrima R, Cela O, D'Aprile A, Boffoli D, Falzetti F, Tabilio A, Capitanio N (2005) Characterization of mitochondrial and extra-mitochondrial oxygen consuming reactions in human hematopoietic stem cells. Novel evidence of the occurrence of NAD(P)H oxidase activity. J Biol Chem 280(28):26467–26476. https://doi.org/10.1074/jbc.M500047200

    Article  CAS  PubMed  Google Scholar 

  34. Yang S, Zhang Y, Ries W, Key L (2004) Expression of Nox4 in osteoclasts. J Cell Biochem 92(2):238–248

    Article  CAS  PubMed  Google Scholar 

  35. Chamulitrat W, Stremmel W, Kawahara T, Rokutan K, Fujii H, Wingler K, Schmidt HH, Schmidt R (2004) A constitutive NADPH oxidase-like system containing gp91phox homologs in human keratinocytes. J Invest Dermatol 122(4):1000–1009. https://doi.org/10.1111/j.0022-202X.2004.22410.x

    Article  CAS  PubMed  Google Scholar 

  36. Brar SS, Kennedy TP, Sturrock AB, Huecksteadt TP, Quinn MT, Whorton AR, Hoidal JR (2002) An NAD(P)H oxidase regulates growth and transcription in melanoma cells. Am J Physiol Cell Physiol 282(6):C1212–C1224

    Article  CAS  PubMed  Google Scholar 

  37. Vallet P, Charnay Y, Steger K, Ogier-Denis E, Kovari E, Herrmann F, Michel JP, Szanto I (2005) Neuronal expression of the NADPH oxidase NOX4, and its regulation in mouse experimental brain ischemia. Neuroscience 132(2):233–238. https://doi.org/10.1016/j.neuroscience.2004.12.038

    Article  CAS  PubMed  Google Scholar 

  38. Kleinschnitz C, Grund H, Wingler K, Armitage ME, Jones E, Mittal M, Barit D, Schwarz T, Geis C, Kraft P, Barthel K, Schuhmann MK, Herrmann AM, Meuth SG, Stoll G, Meurer S, Schrewe A, Becker L, Gailus-Durner V, Fuchs H, Klopstock T, de Angelis MH, Jandeleit-Dahm K, Shah AM, Weissmann N, Schmidt HH (2010) Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biol 8(9). https://doi.org/10.1371/journal.pbio.1000479

  39. Kanda Y, Hinata T, Kang SW, Watanabe Y (2011) Reactive oxygen species mediate adipocyte differentiation in mesenchymal stem cells. Life Sci 89(7–8):250–258. https://doi.org/10.1016/j.lfs.2011.06.007

    Article  CAS  PubMed  Google Scholar 

  40. Grange L, Nguyen MV, Lardy B, Derouazi M, Campion Y, Trocme C, Paclet MH, Gaudin P, Morel F (2006) NAD(P)H oxidase activity of Nox4 in chondrocytes is both inducible and involved in collagenase expression. Antioxid Redox Signal 8(9–10):1485–1496. https://doi.org/10.1089/ars.2006.8.1485

    Article  CAS  PubMed  Google Scholar 

  41. Kim KS, Choi HW, Yoon HE, Kim IY (2010) Reactive oxygen species generated by NADPH oxidase 2 and 4 are required for chondrogenic differentiation. J Biol Chem 285(51):40294–40302. https://doi.org/10.1074/jbc.M110.126821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ikeda R, Ishii K, Hoshikawa Y, Azumi J, Arakaki Y, Yasui T, Matsuura S, Matsumi Y, Kono Y, Mizuta Y, Kurimasa A, Hisatome I, Friedman SL, Kawasaki H, Shiota G (2011) Reactive oxygen species and NADPH oxidase 4 induced by transforming growth factor beta1 are the therapeutic targets of polyenylphosphatidylcholine in the suppression of human hepatic stellate cell activation. Inflamm Res 60(6):597–604. https://doi.org/10.1007/s00011-011-0309-6

    Article  CAS  PubMed  Google Scholar 

  43. Piwkowska A, Rogacka D, Audzeyenka I, Jankowski M, Angielski S (2011) High glucose concentration affects the oxidant-antioxidant balance in cultured mouse podocytes. J Cell Biochem 112(6):1661–1672. https://doi.org/10.1002/jcb.23088

    Article  CAS  PubMed  Google Scholar 

  44. Palumbo S, Shin YJ, Ahmad K, Desai AA, Quijada H, Mohamed M, Knox A, Sammani S, Colson BA, Wang T, Garcia JG, Hecker L (2017) Dysregulated Nox4 ubiquitination contributes to redox imbalance and age-related severity of acute lung injury. Am J Physiol Lung Cell Mol Physiol 312(3):L297–L308. https://doi.org/10.1152/ajplung.00305.2016

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ago T, Kitazono T, Kuroda J, Kumai Y, Kamouchi M, Ooboshi H, Wakisaka M, Kawahara T, Rokutan K, Ibayashi S, Iida M (2005) NAD(P)H oxidases in rat basilar arterial endothelial cells. Stroke 36(5):1040–1046. https://doi.org/10.1161/01.STR.0000163111.05825.0b

    Article  CAS  PubMed  Google Scholar 

  46. Hu T, Ramachandrarao SP, Siva S, Valancius C, Zhu Y, Mahadev K, Toh I, Goldstein BJ, Woolkalis M, Sharma K (2005) Reactive oxygen species production via NADPH oxidase mediates TGF-beta-induced cytoskeletal alterations in endothelial cells. Am J Physiol Renal Physiol 289(4):F816–F825. https://doi.org/10.1152/ajprenal.00024.2005

    Article  CAS  PubMed  Google Scholar 

  47. Van Buul JD, Fernandez-Borja M, Anthony EC, Hordijk PL (2005) Expression and localization of NOX2 and NOX4 in primary human endothelial cells. Antioxid Redox Signal 7(3–4):308–317. https://doi.org/10.1089/ars.2005.7.308

    Article  PubMed  Google Scholar 

  48. Ellmark SH, Dusting GJ, Fui MN, Guzzo-Pernell N, Drummond GR (2005) The contribution of Nox4 to NADPH oxidase activity in mouse vascular smooth muscle. Cardiovasc Res 65(2):495–504

    Article  CAS  PubMed  Google Scholar 

  49. Janiszewski M, Lopes LR, Carmo AO, Pedro MA, Brandes RP, Santos CX, Laurindo FR (2005) Regulation of NAD(P)H oxidase by associated protein disulfide isomerase in vascular smooth muscle cells. J Biol Chem 280(49):40813–40819

    Article  CAS  PubMed  Google Scholar 

  50. Laude K, Cai H, Fink B, Hoch N, Weber DS, McCann L, Kojda G, Fukai T, Schmidt HH, Dikalov S, Ramasamy S, Gamez G, Griendling KK, Harrison DG (2005) Hemodynamic and biochemical adaptations to vascular smooth muscle overexpression of p22phox in mice. Am J Physiol Heart Circ Physiol 288(1):H7–H12

    Article  CAS  PubMed  Google Scholar 

  51. Pedruzzi E, Guichard C, Ollivier V, Driss F, Fay M, Prunet C, Marie JC, Pouzet C, Samadi M, Elbim C, O’Dowd Y, Bens M, Vandewalle A, Gougerot-Pocidalo MA, Lizard G, Ogier-Denis E (2004) NAD(P)H oxidase Nox-4 mediates 7-ketocholesterol-induced endoplasmic reticulum stress and apoptosis in human aortic smooth muscle cells. Mol Cell Biol 24(24):10703–10717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hilenski LL, Clempus RE, Quinn MT, Lambeth JD, Griendling KK (2004) Distinct subcellular localizations of Nox1 and Nox4 in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 24(4):677–683

    Article  CAS  PubMed  Google Scholar 

  53. Pendyala S, Gorshkova IA, Usatyuk PV, He D, Pennathur A, Lambeth JD, Thannickal VJ, Natarajan V (2009) Role of Nox4 and Nox2 in hyperoxia-induced reactive oxygen species generation and migration of human lung endothelial cells. Antioxid Redox Signal 11(4):747–764. https://doi.org/10.1089/ARS.2008.2203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sturrock A, Huecksteadt TP, Norman K, Sanders K, Murphy TM, Chitano P, Wilson K, Hoidal JR, Kennedy TP (2007) Nox4 mediates TGF-beta1-induced retinoblastoma protein phosphorylation, proliferation, and hypertrophy in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 292(6):L1543–L1555. https://doi.org/10.1152/ajplung.00430.2006

    Article  CAS  PubMed  Google Scholar 

  55. Pendergrass KD, Gwathmey TM, Michalek RD, Grayson JM, Chappell MC (2009) The angiotensin II-AT1 receptor stimulates reactive oxygen species within the cell nucleus. Biochem Biophys Res Commun 384(2):149–154. https://doi.org/10.1016/j.bbrc.2009.04.126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lee CF, Ullevig S, Kim HS, Asmis R (2013) Regulation of monocyte adhesion and migration by Nox4. PLoS One 8(6):e66964. https://doi.org/10.1371/journal.pone.0066964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sciarretta S, Volpe M, Sadoshima J (2014) NOX4 regulates autophagy during energy deprivation. Autophagy 10(4):699–701. https://doi.org/10.4161/auto.27955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen K, Kirber MT, Xiao H, Yang Y, Keaney JF Jr (2008) Regulation of ROS signal transduction by NADPH oxidase 4 localization. J Cell Biol 181(7):1129–1139. https://doi.org/10.1083/jcb.200709049

    Article  PubMed  PubMed Central  Google Scholar 

  59. Helmcke I, Heumuller S, Tikkanen R, Schroder K, Brandes RP (2009) Identification of structural elements in Nox1 and Nox4 controlling localization and activity. Antioxid Redox Signal 11(6):1279–1287. https://doi.org/10.1089/ARS.2008.2383

    Article  CAS  PubMed  Google Scholar 

  60. Wu RF, Ma Z, Liu Z, Terada LS (2010) Nox4-derived H2O2 mediates endoplasmic reticulum signaling through local Ras activation. Mol Cell Biol 30(14):3553–3568. https://doi.org/10.1128/MCB.01445-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kuroda J, Ago T, Matsushima S, Zhai P, Schneider MD, Sadoshima J (2010) NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proc Natl Acad Sci U S A 107(35):15565–15570. https://doi.org/10.1073/pnas.1002178107

    Article  PubMed  PubMed Central  Google Scholar 

  62. Block K, Gorin Y, Abboud HE (2009) Subcellular localization of Nox4 and regulation in diabetes. Proc Natl Acad Sci U S A 106(34):14385–14390. https://doi.org/10.1073/pnas.0906805106

    Article  PubMed  PubMed Central  Google Scholar 

  63. Graham KA, Kulawiec M, Owens KM, Li X, Desouki MM, Chandra D, Singh KK (2010) NADPH oxidase 4 is an oncoprotein localized to mitochondria. Cancer Biol Ther 10(3):223–231. https://doi.org/10.4161/cbt.10.3.12207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shanmugasundaram K, Nayak BK, Friedrichs WE, Kaushik D, Rodriguez R, Block K (2017) NOX4 functions as a mitochondrial energetic sensor coupling cancer metabolic reprogramming to drug resistance. Nat Commun 8(1):997. https://doi.org/10.1038/s41467-017-01106-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Beretta M, Santos CX, Molenaar C, Hafstad AD, Miller CC, Revazian A, Betteridge K, Schroder K, Streckfuss-Bomeke K, Doroshow JH, Fleck RA, Su TP, Belousov VV, Parsons M, Shah AM (2020) Nox4 regulates InsP3 receptor-dependent Ca(2+) release into mitochondria to promote cell survival. EMBO J 39(19):e103530. https://doi.org/10.15252/embj.2019103530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Datla SR, McGrail DJ, Vukelic S, Huff LP, Lyle AN, Pounkova L, Lee M, Seidel-Rogol B, Khalil MK, Hilenski LL, Terada LS, Dawson MR, Lassegue B, Griendling KK (2014) Poldip2 controls vascular smooth muscle cell migration by regulating focal adhesion turnover and force polarization. Am J Physiol Heart Circ Physiol 307(7):H945–H957. https://doi.org/10.1152/ajpheart.00918.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lyle AN, Deshpande NN, Taniyama Y, Seidel-Rogol B, Pounkova L, Du P, Papaharalambus C, Lassegue B, Griendling KK (2009) Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells. Circ Res 105(3):249–259. https://doi.org/10.1161/CIRCRESAHA.109.193722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen F, Haigh S, Barman S, Fulton DJ (2012) From form to function: the role of Nox4 in the cardiovascular system. Front Physiol 3:412. https://doi.org/10.3389/fphys.2012.00412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dikalov S (2011) Cross talk between mitochondria and NADPH oxidases. Free Radic Biol Med 51(7):1289–1301. https://doi.org/10.1016/j.freeradbiomed.2011.06.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Richter K, Konzack A, Pihlajaniemi T, Heljasvaara R, Kietzmann T (2015) Redox-fibrosis: impact of TGFbeta1 on ROS generators, mediators and functional consequences. Redox Biol 6:344–352. https://doi.org/10.1016/j.redox.2015.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. von Lohneysen K, Noack D, Hayes P, Friedman JS, Knaus UG (2012) Constitutive NADPH oxidase 4 activity resides in the composition of the B-loop and the penultimate C terminus. J Biol Chem 287(12):8737–8745. https://doi.org/10.1074/jbc.M111.332494

    Article  CAS  Google Scholar 

  72. Clempus RE, Sorescu D, Dikalova AE, Pounkova L, Jo P, Sorescu GP, Schmidt HH, Lassegue B, Griendling KK (2007) Nox4 is required for maintenance of the differentiated vascular smooth muscle cell phenotype. Arterioscler Thromb Vasc Biol 27(1):42–48

    Article  CAS  PubMed  Google Scholar 

  73. Guo S, Chen X (2015) The human Nox4: gene, structure, physiological function and pathological significance. J Drug Target 23(10):888–896. https://doi.org/10.3109/1061186X.2015.1036276

    Article  CAS  PubMed  Google Scholar 

  74. Anilkumar N, Weber R, Zhang M, Brewer A, Shah AM (2008) Nox4 and nox2 NADPH oxidases mediate distinct cellular redox signaling responses to agonist stimulation. Arterioscler Thromb Vasc Biol 28(7):1347–1354. https://doi.org/10.1161/ATVBAHA.108.164277

    Article  CAS  PubMed  Google Scholar 

  75. Gorin Y, Kim NH, Feliers D, Bhandari B, Choudhury GG, Abboud HE (2001) Angiotensin II activates Akt/protein kinase B by an arachidonic acid/redox-dependent pathway and independent of phosphoinositide 3-kinase. Faseb J 15(11):1909–1920

    Article  CAS  PubMed  Google Scholar 

  76. Park HS, Chun JN, Jung HY, Choi C, Bae YS (2006) Role of NADPH oxidase 4 in lipopolysaccharide-induced proinflammatory responses by human aortic endothelial cells. Cardiovasc Res 72(3):447–455

    Article  CAS  PubMed  Google Scholar 

  77. Mittal M, Roth M, Konig P, Hofmann S, Dony E, Goyal P, Selbitz AC, Schermuly RT, Ghofrani HA, Kwapiszewska G, Kummer W, Klepetko W, Hoda MA, Fink L, Hanze J, Seeger W, Grimminger F, Schmidt HH, Weissmann N (2007) Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature. Circ Res 101(3):258–267. https://doi.org/10.1161/CIRCRESAHA.107.148015

    Article  CAS  PubMed  Google Scholar 

  78. Pendyala S, Moitra J, Kalari S, Kleeberger SR, Zhao Y, Reddy SP, Garcia JG, Natarajan V (2011) Nrf2 regulates hyperoxia-induced Nox4 expression in human lung endothelium: identification of functional antioxidant response elements on the Nox4 promoter. Free Radic Biol Med 50(12):1749–1759. https://doi.org/10.1016/j.freeradbiomed.2011.03.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lu X, Murphy TC, Nanes MS, Hart CM (2010) PPAR{gamma} regulates hypoxia-induced Nox4 expression in human pulmonary artery smooth muscle cells through NF-{kappa}B. Am J Physiol Lung Cell Mol Physiol. https://doi.org/10.1152/ajplung.00090.2010

  80. Sedeek M, Callera G, Montezano A, Gutsol A, Heitz F, Szyndralewiez C, Page P, Kennedy CR, Burns KD, Touyz RM, Hebert RL (2010) Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: implications in type 2 diabetic nephropathy. Am J Physiol Renal Physiol 299(6):F1348–F1358. https://doi.org/10.1152/ajprenal.00028.2010

    Article  CAS  PubMed  Google Scholar 

  81. Hwang J, Ing MH, Salazar A, Lassegue B, Griendling K, Navab M, Sevanian A, Hsiai TK (2003) Pulsatile versus oscillatory shear stress regulates NADPH oxidase subunit expression: implication for native LDL oxidation. Circ Res 93(12):1225–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cunningham KS, Gotlieb AI (2005) The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest 85(1):9–23. https://doi.org/10.1038/labinvest.3700215

    Article  CAS  PubMed  Google Scholar 

  83. Hashikabe Y, Suzuki K, Jojima T, Uchida K, Hattori Y (2006) Aldosterone impairs vascular endothelial cell function. J Cardiovasc Pharmacol 47(4):609–613. https://doi.org/10.1097/01.fjc.0000211738.63207.c3

    Article  CAS  PubMed  Google Scholar 

  84. Cucoranu I, Clempus R, Dikalova A, Phelan PJ, Ariyan S, Dikalov S, Sorescu D (2005) NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res 97(9):900–907

    Article  CAS  PubMed  Google Scholar 

  85. Lozhkin A, Vendrov AE, Pan H, Wickline SA, Madamanchi NR, Runge MS (2017) NADPH oxidase 4 regulates vascular inflammation in aging and atherosclerosis. J Mol Cell Cardiol 102:10–21. https://doi.org/10.1016/j.yjmcc.2016.12.004

    Article  CAS  PubMed  Google Scholar 

  86. Manickam N, Patel M, Griendling KK, Gorin Y, Barnes JL (2014) RhoA/Rho kinase mediates TGF-beta1-induced kidney myofibroblast activation through Poldip2/Nox4-derived reactive oxygen species. Am J Physiol Renal Physiol 307(2):F159–F171. https://doi.org/10.1152/ajprenal.00546.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bondi CD, Manickam N, Lee DY, Block K, Gorin Y, Abboud HE, Barnes JL (2010) NAD(P)H oxidase mediates TGF-beta1-induced activation of kidney myofibroblasts. J Am Soc Nephrol 21(1):93–102. https://doi.org/10.1681/ASN.2009020146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hecker L, Vittal R, Jones T, Jagirdar R, Luckhardt TR, Horowitz JC, Pennathur S, Martinez FJ, Thannickal VJ (2009) NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med 15(9):1077–1081. https://doi.org/10.1038/nm.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Piera-Velazquez S, Makul A, Jimenez SA (2015) Increased expression of NAPDH oxidase 4 in systemic sclerosis dermal fibroblasts: regulation by transforming growth factor beta. Arthritis Rheumatol 67(10):2749–2758. https://doi.org/10.1002/art.39242

    Article  PubMed  PubMed Central  Google Scholar 

  90. Sancho P, Mainez J, Crosas-Molist E, Roncero C, Fernandez-Rodriguez CM, Pinedo F, Huber H, Eferl R, Mikulits W, Fabregat I (2012) NADPH oxidase NOX4 mediates stellate cell activation and hepatocyte cell death during liver fibrosis development. PLoS One 7(9):e45285. https://doi.org/10.1371/journal.pone.0045285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Moe KT, Aulia S, Jiang F, Chua YL, Koh TH, Wong MC, Dusting GJ (2006) Differential upregulation of Nox homologues of NADPH oxidase by tumor necrosis factor-alpha in human aortic smooth muscle and embryonic kidney cells. J Cell Mol Med 10(1):231–239. https://doi.org/10.1111/j.1582-4934.2006.tb00304.x

    Article  CAS  PubMed  Google Scholar 

  92. Goettsch C, Goettsch W, Arsov A, Hofbauer LC, Bornstein SR, Morawietz H (2009) Long-term cyclic strain downregulates endothelial Nox4. Antioxid Redox Signal. https://doi.org/10.1089/ARS.2009.2561

  93. Wang F, Wang H, Liu X, Yu H, Huang X, Huang W, Wang G (2021) Neuregulin-1 alleviate oxidative stress and mitigate inflammation by suppressing NOX4 and NLRP3/caspase-1 in myocardial ischaemia-reperfusion injury. J Cell Mol Med 25(3):1783–1795. https://doi.org/10.1111/jcmm.16287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Elhadidy MG, Elmasry A, Elsayed HRH, El-Nablaway M, Hamed S, Elalfy MM, Rabei MR (2021) Modulation of COX-2 and NADPH oxidase-4 by alpha-lipoic acid ameliorates busulfan-induced pulmonary injury in rats. Heliyon 7(10):e08171. https://doi.org/10.1016/j.heliyon.2021.e08171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shi Y, Hou SA (2021) Protective effects of metformin against myocardial ischemiareperfusion injury via AMPKdependent suppression of NOX4. Mol Med Rep 24(4). https://doi.org/10.3892/mmr.2021.12351

  96. Stock CJW, Michaeloudes C, Leoni P, Durham AL, Mumby S, Wells AU, Chung KF, Adcock IM, Renzoni EA, Lindahl GE (2019) Bromodomain and extraterminal (BET) protein inhibition restores redox balance and inhibits myofibroblast activation. Biomed Res Int 2019:1484736. https://doi.org/10.1155/2019/1484736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sanders YY, Lyv X, Zhou QJ, Xiang Z, Stanford D, Bodduluri S, Rowe SM, Thannickal VJ (2020) Brd4-p300 inhibition downregulates Nox4 and accelerates lung fibrosis resolution in aged mice. JCI. Insight 5(14). https://doi.org/10.1172/jci.insight.137127

  98. Zhang L, Sheppard OR, Shah AM, Brewer AC (2008) Positive regulation of the NADPH oxidase NOX4 promoter in vascular smooth muscle cells by E2F. Free Radic Biol Med 45(5):679–685. https://doi.org/10.1016/j.freeradbiomed.2008.05.019

    Article  CAS  PubMed  Google Scholar 

  99. Rozycki M, Bialik JF, Speight P, Dan Q, Knudsen TE, Szeto SG, Yuen DA, Szaszi K, Pedersen SF, Kapus A (2016) Myocardin-related transcription factor regulates Nox4 protein expression: linking cytoskeletal organization to redox statE. J Biol Chem 291(1):227–243. https://doi.org/10.1074/jbc.M115.674606

    Article  CAS  PubMed  Google Scholar 

  100. Goettsch C, Goettsch W, Brux M, Haschke C, Brunssen C, Muller G, Bornstein SR, Duerrschmidt N, Wagner AH, Morawietz H (2011) Arterial flow reduces oxidative stress via an antioxidant response element and Oct-1 binding site within the NADPH oxidase 4 promoter in endothelial cells. Basic Res Cardiol 106(4):551–561. https://doi.org/10.1007/s00395-011-0170-3

    Article  CAS  PubMed  Google Scholar 

  101. Kyriazis ID, Hoffman M, Gaignebet L, Lucchese AM, Markopoulou E, Palioura D, Wang C, Bannister TD, Christofidou-Solomidou M, Oka SI, Sadoshima J, Koch WJ, Goldberg IJ, Yang VW, Bialkowska AB, Kararigas G, Drosatos K (2021) KLF5 Is induced by FOXO1 and causes oxidative stress and diabetic cardiomyopathy. Circ Res 128(3):335–357. https://doi.org/10.1161/CIRCRESAHA.120.316738

    Article  CAS  PubMed  Google Scholar 

  102. Manea SA, Todirita A, Raicu M, Manea A (2014) C/EBP transcription factors regulate NADPH oxidase in human aortic smooth muscle cells. J Cell Mol Med 18(7):1467–1477. https://doi.org/10.1111/jcmm.12289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Diebold I, Petry A, Hess J, Gorlach A (2010) The NADPH oxidase subunit NOX4 is a new target gene of the hypoxia-inducible factor-1. Mol Biol Cell 21(12):2087–2096. https://doi.org/10.1091/mbc.E09-12-1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Katsuyama M, Hirai H, Iwata K, Ibi M, Matsuno K, Matsumoto M, Yabe-Nishimura C (2011) Sp3 transcription factor is crucial for transcriptional activation of the human NOX4 gene. FEBS J 278(6):964–972. https://doi.org/10.1111/j.1742-4658.2011.08018.x

    Article  CAS  PubMed  Google Scholar 

  105. Manea A, Tanase LI, Raicu M, Simionescu M (2010) Jak/STAT signaling pathway regulates Nox1 and Nox4-based NADPH oxidase in human aortic smooth muscle cells. Arterioscler Thromb Vasc Biol 30(1):105–112. https://doi.org/10.1161/ATVBAHA.109.193896

    Article  CAS  PubMed  Google Scholar 

  106. Sun J, Chen J, Li T, Huang P, Li J, Shen M, Gao M, Sun Y, Liang J, Li X, Wang Y, Xiao Y, Shi X, Hu Y, Feng J, Jia H, Liu T, Sun X (2020) ROS production and mitochondrial dysfunction driven by PU.1-regulated NOX4-p22(phox) activation in Aβ-induced retinal pigment epithelial cell injury. Theranostics 10(25):11637–11655. https://doi.org/10.7150/thno.48064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hu F, Xue M, Li Y, Jia YJ, Zheng ZJ, Yang YL, Guan MP, Sun L, Xue YM (2018) Early growth response 1 (Egr1) is a transcriptional activator of NOX4 in oxidative stress of diabetic kidney disease. J Diabetes Res 2018:3405695. https://doi.org/10.1155/2018/3405695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Liu Z, Gu S, Lu T, Wu K, Li L, Dong C, Zhou Y (2020) IFI6 depletion inhibits esophageal squamous cell carcinoma progression through reactive oxygen species accumulation via mitochondrial dysfunction and endoplasmic reticulum stress. J Exp Clin Cancer Res 39(1):144. https://doi.org/10.1186/s13046-020-01646-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Xu H, Wang Z, Sun Z, Ni Y, Zheng L (2018) GATA4 protects against hyperglycemiainduced endothelial dysfunction by regulating NOX4 transcription. Mol Med Rep 17(1):1485–1492. https://doi.org/10.3892/mmr.2017.8062

    Article  CAS  PubMed  Google Scholar 

  110. Fierro-Fernandez M, Busnadiego O, Sandoval P, Espinosa-Diez C, Blanco-Ruiz E, Rodriguez M, Pian H, Ramos R, Lopez-Cabrera M, Garcia-Bermejo ML, Lamas S (2015) miR-9-5p suppresses pro-fibrogenic transformation of fibroblasts and prevents organ fibrosis by targeting NOX4 and TGFBR2. EMBO Rep 16(10):1358–1377. https://doi.org/10.15252/embr.201540750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Jadhav VS, Krause KH, Singh SK (2014) HIV-1 Tat C modulates NOX2 and NOX4 expressions through miR-17 in a human microglial cell line. J Neurochem 131(6):803–815. https://doi.org/10.1111/jnc.12933

    Article  CAS  PubMed  Google Scholar 

  112. Gordillo GM, Biswas A, Khanna S, Pan X, Sinha M, Roy S, Sen CK (2014) Dicer knockdown inhibits endothelial cell tumor growth via microRNA 21a-3p targeting of Nox-4. J Biol Chem 289(13):9027–9038. https://doi.org/10.1074/jbc.M113.519264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Li J, Chen J, Yang Y, Ding R, Wang M, Gu Z (2021) Ginkgolide A attenuates sepsis-associated kidney damage via upregulating microRNA-25 with NADPH oxidase 4 as the target. Int Immunopharmacol 95:107514. https://doi.org/10.1016/j.intimp.2021.107514

    Article  CAS  PubMed  Google Scholar 

  114. Zhang Y, Song C, Liu J, Bi Y, Li H (2018) Inhibition of miR-25 aggravates diabetic peripheral neuropathy. Neuroreport 29(11):945–953. https://doi.org/10.1097/WNR.0000000000001058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Varga ZV, Kupai K, Szucs G, Gaspar R, Paloczi J, Farago N, Zvara A, Puskas LG, Razga Z, Tiszlavicz L, Bencsik P, Gorbe A, Csonka C, Ferdinandy P, Csont T (2013) MicroRNA-25-dependent up-regulation of NADPH oxidase 4 (NOX4) mediates hypercholesterolemia-induced oxidative/nitrative stress and subsequent dysfunction in the heart. J Mol Cell Cardiol 62:111–121. https://doi.org/10.1016/j.yjmcc.2013.05.009

    Article  CAS  PubMed  Google Scholar 

  116. Cheng Y, Zhou M, Zhou W (2019) MicroRNA-30e regulates TGF-beta-mediated NADPH oxidase 4-dependent oxidative stress by Snai1 in atherosclerosis. Int J Mol Med 43(4):1806–1816. https://doi.org/10.3892/ijmm.2019.4102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Xiao L, Gu Y, Ren G, Chen L, Liu L, Wang X, Gao L (2021) miRNA-146a mimic inhibits NOX4/P38 signalling to ameliorate mouse myocardial ischaemia reperfusion (I/R) injury. Oxid Med Cell Longev 2021:6366254. https://doi.org/10.1155/2021/6366254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Smolka C, Schlosser D, Koentges C, Tarkhnishvili A, Gorka O, Pfeifer D, Bemtgen X, Asmussen A, Gross O, Diehl P, Moser M, Bode C, Bugger H, Grundmann S, Pankratz F (2021) Cardiomyocyte-specific miR-100 overexpression preserves heart function under pressure overload in mice and diminishes fatty acid uptake as well as ROS production by direct suppression of Nox4 and CD36. FASEB J 35(11):e21956. https://doi.org/10.1096/fj.202100829RR

    Article  CAS  PubMed  Google Scholar 

  119. Kriegel AJ, Baker MA, Liu Y, Liu P, Cowley AW Jr, Liang M (2015) Endogenous microRNAs in human microvascular endothelial cells regulate mRNAs encoded by hypertension-related genes. Hypertension 66(4):793–799. https://doi.org/10.1161/HYPERTENSIONAHA.115.05645

    Article  CAS  PubMed  Google Scholar 

  120. Zhang Y, Liu MW, He Y, Deng N, Chen Y, Huang J, Xie W (2020) Protective effect of resveratrol on estrogen deficiency-induced osteoporosis though attenuating NADPH oxidase 4/nuclear factor kappa B pathway by increasing miR-92b-3p expression. Int J Immunopathol Pharmacol 34:2058738420941762. https://doi.org/10.1177/2058738420941762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li P, Fan C, Cai Y, Fang S, Zeng Y, Zhang Y, Lin X, Zhang H, Xue Y, Guan M (2020) Transplantation of brown adipose tissue up-regulates miR-99a to ameliorate liver metabolic disorders in diabetic mice by targeting NOX4. Adipocyte 9(1):57–67. https://doi.org/10.1080/21623945.2020.1721970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sun M, Hong S, Li W, Wang P, You J, Zhang X, Tang F, Wang P, Zhang C (2016) MiR-99a regulates ROS-mediated invasion and migration of lung adenocarcinoma cells by targeting NOX4. Oncol Rep 35(5):2755–2766. https://doi.org/10.3892/or.2016.4672

    Article  CAS  PubMed  Google Scholar 

  123. Shi Y, Bo Z, Pang G, Qu X, Bao W, Yang L, Ma Y (2017) MiR-99a-5p regulates proliferation, migration and invasion abilities of human oral carcinoma cells by targeting NOX4. Neoplasma 64(5):666–673. https://doi.org/10.4149/neo_2017_503

    Article  CAS  PubMed  Google Scholar 

  124. Liu X, Zhong L, Li P, Zhao P (2020) MicroRNA-100 enhances autophagy and suppresses migration and invasion of renal cell carcinoma cells via disruption of NOX4-dependent mTOR pathway. Clin Transl Sci. https://doi.org/10.1111/cts.12798

  125. Li X, Wang Y, Cai Z, Zhou Q, Li L, Fu P (2021) Exosomes from human umbilical cord mesenchymal stem cells inhibit ROS production and cell apoptosis in human articular chondrocytes via the miR-100-5p/NOX4 axis. Cell Biol Int 45(10):2096–2106. https://doi.org/10.1002/cbin.11657

    Article  CAS  PubMed  Google Scholar 

  126. Wu QQ, Zheng B, Weng GB, Yang HM, Ren Y, Weng XJ, Zhang SW, Zhu WZ (2019) Downregulated NOX4 underlies a novel inhibitory role of microRNA-137 in prostate cancer. J Cell Biochem 120(6):10215–10227. https://doi.org/10.1002/jcb.28306

    Article  CAS  PubMed  Google Scholar 

  127. Wan RJ, Li YH (2018) MicroRNA146a/NAPDH oxidase4 decreases reactive oxygen species generation and inflammation in a diabetic nephropathy model. Mol Med Rep 17(3):4759–4766. https://doi.org/10.3892/mmr.2018.8407

    Article  CAS  PubMed  Google Scholar 

  128. Wang HJ, Huang YL, Shih YY, Wu HY, Peng CT, Lo WY (2014) MicroRNA-146a decreases high glucose/thrombin-induced endothelial inflammation by inhibiting NAPDH oxidase 4 expression. Mediators Inflamm 2014:379537. https://doi.org/10.1155/2014/379537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Milano G, Biemmi V, Lazzarini E, Balbi C, Ciullo A, Bolis S, Ameri P, Di Silvestre D, Mauri P, Barile L, Vassalli G (2020) Intravenous administration of cardiac progenitor cell-derived exosomes protects against doxorubicin/trastuzumab-induced cardiac toxicity. Cardiovasc Res 116(2):383–392. https://doi.org/10.1093/cvr/cvz108

    Article  CAS  PubMed  Google Scholar 

  130. Zhu Y, Ni T, Lin J, Zhang C, Zheng L, Luo M (2019) Long non-coding RNA H19, a negative regulator of microRNA-148b-3p, participates in hypoxia stress in human hepatic sinusoidal endothelial cells via NOX4 and eNOS/NO signaling. Biochimie 163:128–136. https://doi.org/10.1016/j.biochi.2019.04.006

    Article  CAS  PubMed  Google Scholar 

  131. Wang Y, Zhao X, Wu X, Dai Y, Chen P, Xie L (2016) microRNA-182 mediates Sirt1-induced diabetic corneal nerve regeneration. Diabetes 65(7):2020–2031. https://doi.org/10.2337/db15-1283

    Article  CAS  PubMed  Google Scholar 

  132. Li ZN, Ge MX, Yuan ZF (2020) MicroRNA-182-5p protects human lens epithelial cells against oxidative stress-induced apoptosis by inhibiting NOX4 and p38 MAPK signalling. BMC Ophthalmol 20(1):233. https://doi.org/10.1186/s12886-020-01489-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tao W, Yu L, Shu S, Liu Y, Zhuang Z, Xu S, Bao X, Gu Y, Cai F, Song W, Xu Y, Zhu X (2021) miR-204-3p/Nox4 mediates memory deficits in a mouse model of Alzheimer’s disease. Mol Ther 29(1):396–408. https://doi.org/10.1016/j.ymthe.2020.09.006

    Article  CAS  PubMed  Google Scholar 

  134. Liu YS, Gu H, Huang TC, Wei XW, Ma W, Liu D, He YW, Luo WT, Huang JT, Zhao D, Jia SS, Wang F, Zhang T, Bai YZ, Wang WL, Yuan ZW (2020) miR-322 treatment rescues cell apoptosis and neural tube defect formation through silencing NADPH oxidase 4. CNS Neurosci Ther 26(9):902–912. https://doi.org/10.1111/cns.13383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Geng Y, Zhao X, Xu J, Zhang X, Hu G, Fu SC, Dai K, Chen X, Patrick YS, Zhang X (2020) Overexpression of mechanical sensitive miR-337-3p alleviates ectopic ossification in rat tendinopathy model via targeting IRS1 and Nox4 of tendon-derived stem cells. J Mol Cell Biol 12(4):305–317. https://doi.org/10.1093/jmcb/mjz030

    Article  CAS  PubMed  Google Scholar 

  136. Zhou T, Li S, Yang L, Xiang D (2021) microRNA-363-3p reduces endothelial cell inflammatory responses in coronary heart disease via inactivation of the NOX4-dependent p38 MAPK axis. Aging (Albany NY) 13(8):11061–11082. https://doi.org/10.18632/aging.202721

    Article  CAS  PubMed  Google Scholar 

  137. Xu Y, Zhang J, Fan L, He X (2018) miR-423-5p suppresses high-glucose-induced podocyte injury by targeting Nox4. Biochem Biophys Res Commun 505(2):339–345. https://doi.org/10.1016/j.bbrc.2018.09.067

    Article  CAS  PubMed  Google Scholar 

  138. Gu C, Draga D, Zhou C, Su T, Zou C, Gu Q, Lahm T, Zheng Z, Qiu Q (2019) miR-590-3p inhibits pyroptosis in diabetic retinopathy by targeting NLRP1 and inactivating the NOX4 signaling pathway. Invest Ophthalmol Vis Sci 60(13):4215–4223. https://doi.org/10.1167/iovs.19-27825

    Article  CAS  PubMed  Google Scholar 

  139. Shi Q, Lee DY, Feliers D, Abboud HE, Bhat MA, Gorin Y (2020) Interplay between RNA-binding protein HuR and Nox4 as a novel therapeutic target in diabetic kidney disease. Mol Metab 36:100968. https://doi.org/10.1016/j.molmet.2020.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Prior KK, Wittig I, Leisegang MS, Groenendyk J, Weissmann N, Michalak M, Jansen-Durr P, Shah AM, Brandes RP (2016) The endoplasmic reticulum chaperone calnexin is a NADPH oxidase NOX4 interacting protein. J Biol Chem 291(13):7045–7059. https://doi.org/10.1074/jbc.M115.710772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Park HS, Jung HY, Park EY, Kim J, Lee WJ, Bae YS (2004) Cutting edge: direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-kappa B. J Immunol 173(6):3589–3593

    Article  CAS  PubMed  Google Scholar 

  142. Desai LP, Zhou Y, Estrada AV, Ding Q, Cheng G, Collawn JF, Thannickal VJ (2014) Negative regulation of NADPH oxidase 4 by hydrogen peroxide-inducible clone 5 (Hic-5) protein. J Biol Chem 289(26):18270–18278. https://doi.org/10.1074/jbc.M114.562249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Fernandez I, Martin-Garrido A, Zhou DW, Clempus RE, Seidel-Rogol B, Valdivia A, Lassegue B, Garcia AJ, Griendling KK, San Martin A (2015) Hic-5 mediates TGFbeta-induced adhesion in vascular smooth muscle cells by a Nox4-dependent mechanism. Arterioscler Thromb Vasc Biol 35(5):1198–1206. https://doi.org/10.1161/ATVBAHA.114.305185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Chen Z, Sun X, Chen Q, Lan T, Huang K, Xiao H, Lin Z, Yang Y, Liu P, Huang H (2020) Connexin32 ameliorates renal fibrosis in diabetic mice by promoting K48-linked NADPH oxidase 4 polyubiquitination and degradation. Br J Pharmacol 177(1):145–160. https://doi.org/10.1111/bph.14853

    Article  CAS  PubMed  Google Scholar 

  145. Gil Lorenzo AF, Costantino VV, Appiolaza ML, Cacciamani V, Benardon ME, Bocanegra V, Valles PG (2015) Heat shock protein 70 and CHIP promote Nox4 ubiquitination and degradation within the Losartan antioxidative effect in proximal tubule cells. Cell Physiol Biochem 36(6):2183–2197. https://doi.org/10.1159/000430184

    Article  CAS  PubMed  Google Scholar 

  146. Kim HJ, Magesh V, Lee JJ, Kim S, Knaus UG, Lee KJ (2015) Ubiquitin C-terminal hydrolase-L1 increases cancer cell invasion by modulating hydrogen peroxide generated via NADPH oxidase 4. Oncotarget 6(18):16287–16303. https://doi.org/10.18632/oncotarget.3843

    Article  PubMed  PubMed Central  Google Scholar 

  147. Song IK, Kim HJ, Magesh V, Lee KJ (2018) Ubiquitin C-terminal hydrolase-L1 plays a key role in angiogenesis by regulating hydrogen peroxide generated by NADPH oxidase 4. Biochem Biophys Res Commun 495(1):1567–1572. https://doi.org/10.1016/j.bbrc.2017.11.051

    Article  CAS  PubMed  Google Scholar 

  148. Yu B, Liu Z, Fu Y, Wang Y, Zhang L, Cai Z, Yu F, Wang X, Zhou J, Kong W (2017) CYLD deubiquitinates nicotinamide adenine dinucleotide phosphate oxidase 4 contributing to adventitial remodeling. Arterioscler Thromb Vasc Biol 37(9):1698–1709. https://doi.org/10.1161/ATVBAHA.117.309859

    Article  CAS  PubMed  Google Scholar 

  149. Liu G, Liu Q, Yan B, Zhu Z, Xu Y (2020) USP7 inhibition alleviates H2O2-Induced injury in chondrocytes via inhibiting NOX4/NLRP3 pathway. Front Pharmacol 11:617270. https://doi.org/10.3389/fphar.2020.617270

    Article  CAS  PubMed  Google Scholar 

  150. Matsushima S, Kuroda J, Zhai P, Liu T, Ikeda S, Nagarajan N, Oka S, Yokota T, Kinugawa S, Hsu CP, Li H, Tsutsui H, Sadoshima J (2016) Tyrosine kinase FYN negatively regulates NOX4 in cardiac remodeling. J Clin Invest 126(9):3403–3416. https://doi.org/10.1172/JCI85624

    Article  PubMed  PubMed Central  Google Scholar 

  151. Xi G, Shen XC, Wai C, Clemmons DR (2013) Recruitment of Nox4 to a plasma membrane scaffold is required for localized reactive oxygen species generation and sustained Src activation in response to insulin-like growth factor-I. J Biol Chem 288(22):15641–15653. https://doi.org/10.1074/jbc.M113.456046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Yamaura M, Mitsushita J, Furuta S, Kiniwa Y, Ashida A, Goto Y, Shang WH, Kubodera M, Kato M, Takata M, Saida T, Kamata T (2009) NADPH oxidase 4 contributes to transformation phenotype of melanoma cells by regulating G2-M cell cycle progression. Cancer Res 69(6):2647–2654. https://doi.org/10.1158/0008-5472.CAN-08-3745

    Article  CAS  PubMed  Google Scholar 

  153. Shono T, Yokoyama N, Uesaka T, Kuroda J, Takeya R, Yamasaki T, Amano T, Mizoguchi M, Suzuki SO, Niiro H, Miyamoto K, Akashi K, Iwaki T, Sumimoto H, Sasaki T (2008) Enhanced expression of NADPH oxidase Nox4 in human gliomas and its roles in cell proliferation and survival. Int J Cancer 123(4):787–792. https://doi.org/10.1002/ijc.23569

    Article  CAS  PubMed  Google Scholar 

  154. Zhang C, Lan T, Hou J, Li J, Fang R, Yang Z, Zhang M, Liu J, Liu B (2014) NOX4 promotes non-small cell lung cancer cell proliferation and metastasis through positive feedback regulation of PI3K/Akt signaling. Oncotarget 5(12):4392–4405. https://doi.org/10.18632/oncotarget.2025

    Article  PubMed  PubMed Central  Google Scholar 

  155. Craige SM, Chen K, Pei Y, Li C, Huang X, Chen C, Shibata R, Sato K, Walsh K, Keaney JF Jr (2011) NADPH oxidase 4 promotes endothelial angiogenesis through endothelial nitric oxide synthase activation. Circulation 124(6):731–740. https://doi.org/10.1161/CIRCULATIONAHA.111.030775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Schroder K, Zhang M, Benkhoff S, Mieth A, Pliquett R, Kosowski J, Kruse C, Luedike P, Michaelis UR, Weissmann N, Dimmeler S, Shah AM, Brandes RP (2012) Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase. Circ Res 110(9):1217–1225. https://doi.org/10.1161/CIRCRESAHA.112.267054

    Article  CAS  PubMed  Google Scholar 

  157. Zhang M, Brewer AC, Schroder K, Santos CX, Grieve DJ, Wang M, Anilkumar N, Yu B, Dong X, Walker SJ, Brandes RP, Shah AM (2010) NADPH oxidase-4 mediates protection against chronic load-induced stress in mouse hearts by enhancing angiogenesis. Proc Natl Acad Sci U S A 107(42):18121–18126. https://doi.org/10.1073/pnas.1009700107

    Article  PubMed  PubMed Central  Google Scholar 

  158. Peshavariya H, Dusting GJ, Jiang F, Halmos LR, Sobey CG, Drummond GR, Selemidis S (2009) NADPH oxidase isoform selective regulation of endothelial cell proliferation and survival. Naunyn Schmiedebergs Arch Pharmacol 380(2):193–204. https://doi.org/10.1007/s00210-009-0413-0

    Article  CAS  PubMed  Google Scholar 

  159. Petry A, Djordjevic T, Weitnauer M, Kietzmann T, Hess J, Gorlach A (2006) NOX2 and NOX4 mediate proliferative response in endothelial cells. Antioxid Redox Signal 8(9-10):1473–1484

    Article  CAS  PubMed  Google Scholar 

  160. Green DE, Murphy TC, Kang BY, Kleinhenz JM, Szyndralewiez C, Page P, Sutliff RL, Hart CM (2012) The Nox4 inhibitor GKT137831 attenuates hypoxia-induced pulmonary vascular cell proliferation. Am J Respir Cell Mol Biol 47(5):718–726. https://doi.org/10.1165/rcmb.2011-0418OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Hakami NY, Wong H, Shah MH, Dusting GJ, Jiang F, Peshavariya HM (2015) Smad-independent pathway involved in transforming growth factor beta1-induced Nox4 expression and proliferation of endothelial cells. Naunyn Schmiedebergs Arch Pharmacol 388(3):319–326. https://doi.org/10.1007/s00210-014-1070-5

    Article  CAS  PubMed  Google Scholar 

  162. Patel DN, Bailey SR, Gresham JK, Schuchman DB, Shelhamer JH, Goldstein BJ, Foxwell BM, Stemerman MB, Maranchie JK, Valente AJ, Mummidi S, Chandrasekar B (2006) TLR4-NOX4-AP-1 signaling mediates lipopolysaccharide-induced CXCR6 expression in human aortic smooth muscle cells. Biochem Biophys Res Commun 347(4):1113–1120. https://doi.org/10.1016/j.bbrc.2006.07.015

    Article  CAS  PubMed  Google Scholar 

  163. Xu H, Goettsch C, Xia N, Horke S, Morawietz H, Forstermann U, Li H (2008) Differential roles of PKCalpha and PKCepsilon in controlling the gene expression of Nox4 in human endothelial cells. Free Radic Biol Med 44(8):1656–1667. https://doi.org/10.1016/j.freeradbiomed.2008.01.023

    Article  CAS  PubMed  Google Scholar 

  164. Ushio-Fukai M (2006) Redox signaling in angiogenesis: role of NADPH oxidase. Cardiovasc Res 71(2):226–235. https://doi.org/10.1016/j.cardiores.2006.04.015

    Article  CAS  PubMed  Google Scholar 

  165. Ismail S, Sturrock A, Wu P, Cahill B, Norman K, Huecksteadt T, Sanders K, Kennedy T, Hoidal J (2009) NOX4 mediates hypoxia-induced proliferation of human pulmonary artery smooth muscle cells: the role of autocrine production of transforming growth factor-{beta}1 and insulin-like growth factor binding protein-3. Am J Physiol Lung Cell Mol Physiol 296(3):L489–L499. https://doi.org/10.1152/ajplung.90488.2008

    Article  CAS  PubMed  Google Scholar 

  166. Di Marco E, Gray SP, Kennedy K, Szyndralewiez C, Lyle AN, Lassegue B, Griendling KK, Cooper ME, Schmidt H, Jandeleit-Dahm KAM (2016) NOX4-derived reactive oxygen species limit fibrosis and inhibit proliferation of vascular smooth muscle cells in diabetic atherosclerosis. Free Radic Biol Med 97:556–567. https://doi.org/10.1016/j.freeradbiomed.2016.07.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Xiao Q, Luo Z, Pepe AE, Margariti A, Zeng L, Xu Q (2009) Embryonic stem cell differentiation into smooth muscle cells is mediated by Nox4-produced H2O2. Am J Physiol Cell Physiol 296(4):C711–C723. https://doi.org/10.1152/ajpcell.00442.2008

    Article  CAS  PubMed  Google Scholar 

  168. Kim J, Kim J, Lim HJ, Lee S, Bae YS, Kim J (2021) Nox4-IGF2 axis promotes differentiation of embryoid body cells into derivatives of the three embryonic germ layers. Stem Cell Rev Rep. https://doi.org/10.1007/s12015-021-10303-x

  169. Murray TV, Smyrnias I, Shah AM, Brewer AC (2013) NADPH oxidase 4 regulates cardiomyocyte differentiation via redox activation of c-Jun protein and the cis-regulation of GATA-4 gene transcription. J Biol Chem 288(22):15745–15759. https://doi.org/10.1074/jbc.M112.439844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Martin-Garrido A, Brown DI, Lyle AN, Dikalova A, Seidel-Rogol B, Lassegue B, San Martin A, Griendling KK (2011) NADPH oxidase 4 mediates TGF-beta-induced smooth muscle alpha-actin via p38MAPK and serum response factor. Free Radic Biol Med 50(2):354–362. https://doi.org/10.1016/j.freeradbiomed.2010.11.007

    Article  CAS  PubMed  Google Scholar 

  171. Schroder K, Wandzioch K, Helmcke I, Brandes RP (2009) Nox4 acts as a switch between differentiation and proliferation in preadipocytes. Arterioscler Thromb Vasc Biol 29(2):239–245. https://doi.org/10.1161/ATVBAHA.108.174219

    Article  CAS  PubMed  Google Scholar 

  172. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217. https://doi.org/10.1016/j.cell.2013.05.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Goy C, Czypiorski P, Altschmied J, Jakob S, Rabanter LL, Brewer AC, Ale-Agha N, Dyballa-Rukes N, Shah AM, Haendeler J (2014) The imbalanced redox status in senescent endothelial cells is due to dysregulated Thioredoxin-1 and NADPH oxidase 4. Exp Gerontol 56:45–52. https://doi.org/10.1016/j.exger.2014.03.005

    Article  CAS  PubMed  Google Scholar 

  174. Lee HY, Kim HK, Hoang TH, Yang S, Kim HR, Chae HJ (2020) The correlation of IRE1alpha oxidation with Nox4 activation in aging-associated vascular dysfunction. Redox Biol 37:101727. https://doi.org/10.1016/j.redox.2020.101727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Lener B, Koziel R, Pircher H, Hutter E, Greussing R, Herndler-Brandstetter D, Hermann M, Unterluggauer H, Jansen-Durr P (2009) The NADPH oxidase Nox4 restricts the replicative lifespan of human endothelial cells. Biochem J 423(3):363–374. https://doi.org/10.1042/BJ20090666

    Article  CAS  PubMed  Google Scholar 

  176. Li TB, Zhang JJ, Liu B, Liu WQ, Wu Y, Xiong XM, Luo XJ, Ma QL, Peng J (2016) Involvement of NADPH oxidases and non-muscle myosin light chain in senescence of endothelial progenitor cells in hyperlipidemia. Naunyn Schmiedebergs Arch Pharmacol 389(3):289–302. https://doi.org/10.1007/s00210-015-1198-y

    Article  CAS  PubMed  Google Scholar 

  177. Cao JY, Ling LL, Ni WJ, Guo HL, Yang M (2021) Autophagosome protects proximal tubular cells from aldosterone-induced senescence through improving oxidative stress. Ren Fail 43(1):556–565. https://doi.org/10.1080/0886022X.2021.1902821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Weyemi U, Lagente-Chevallier O, Boufraqech M, Prenois F, Courtin F, Caillou B, Talbot M, Dardalhon M, Al Ghuzlan A, Bidart JM, Schlumberger M, Dupuy C (2012) ROS-generating NADPH oxidase NOX4 is a critical mediator in oncogenic H-Ras-induced DNA damage and subsequent senescence. Oncogene 31(9):1117–1129. https://doi.org/10.1038/onc.2011.327

    Article  CAS  PubMed  Google Scholar 

  179. Kim YY, Jee HJ, Um JH, Kim YM, Bae SS, Yun J (2017) Cooperation between p21 and Akt is required for p53-dependent cellular senescence. Aging Cell 16(5):1094–1103. https://doi.org/10.1111/acel.12639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Kodama R, Kato M, Furuta S, Ueno S, Zhang Y, Matsuno K, Yabe-Nishimura C, Tanaka E, Kamata T (2013) ROS-generating oxidases Nox1 and Nox4 contribute to oncogenic Ras-induced premature senescence. Genes Cells 18(1):32–41. https://doi.org/10.1111/gtc.12015

    Article  CAS  PubMed  Google Scholar 

  181. Koziel R, Pircher H, Kratochwil M, Lener B, Hermann M, Dencher NA, Jansen-Durr P (2013) Mitochondrial respiratory chain complex I is inactivated by NADPH oxidase Nox4. Biochem J 452(2):231–239. https://doi.org/10.1042/BJ20121778

    Article  CAS  PubMed  Google Scholar 

  182. Canugovi C, Stevenson MD, Vendrov AE, Hayami T, Robidoux J, Xiao H, Zhang YY, Eitzman DT, Runge MS, Madamanchi NR (2019) Increased mitochondrial NADPH oxidase 4 (NOX4) expression in aging is a causative factor in aortic stiffening. Redox Biol 26:101288. https://doi.org/10.1016/j.redox.2019.101288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Przybylska D, Janiszewska D, Gozdzik A, Bielak-Zmijewska A, Sunderland P, Sikora E, Mosieniak G (2016) NOX4 downregulation leads to senescence of human vascular smooth muscle cells. Oncotarget 7(41):66429–66443. https://doi.org/10.18632/oncotarget.12079

    Article  PubMed  PubMed Central  Google Scholar 

  184. Rezende F, Schurmann C, Schutz S, Harenkamp S, Herrmann E, Seimetz M, Weissmann N, Schroder K (2017) Knock out of the NADPH oxidase Nox4 has no impact on life span in mice. Redox Biol 11:312–314. https://doi.org/10.1016/j.redox.2016.12.012

    Article  CAS  PubMed  Google Scholar 

  185. Liu C, Liu L, Yang M, Li B, Yi J, Ai X, Zhang Y, Huang B, Li C, Feng C, Zhou Y (2020) A positive feedback loop between EZH2 and NOX4 regulates nucleus pulposus cell senescence in age-related intervertebral disc degeneration. Cell Div 15:2. https://doi.org/10.1186/s13008-020-0060-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Feng C, Zhang Y, Yang M, Lan M, Liu H, Huang B, Zhou Y (2017) Oxygen-sensing Nox4 generates genotoxic ROS to induce premature senescence of nucleus pulposus cells through MAPK and NF-kappaB pathways. Oxid Med Cell Longev 2017:7426458. https://doi.org/10.1155/2017/7426458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Jarman ER, Khambata VS, Cope C, Jones P, Roger J, Ye LY, Duggan N, Head D, Pearce A, Press NJ, Bellenie B, Sohal B, Jarai G (2014) An inhibitor of NADPH oxidase-4 attenuates established pulmonary fibrosis in a Rodent disease model. Am J Respir Cell Mol Biol 50(1):158–169. https://doi.org/10.1165/rcmb.2013-0174OC

    Article  CAS  PubMed  Google Scholar 

  188. Eid AA, Ford BM, Block K, Kasinath BS, Gorin Y, Ghosh-Choudhury G, Barnes JL, Abboud HE (2010) AMP-activated protein kinase (AMPK) negatively regulates Nox4-dependent activation of p53 and epithelial cell apoptosis in diabetes. J Biol Chem 285(48):37503–37512. https://doi.org/10.1074/jbc.M110.136796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Feng L, Hollstein M, Xu Y (2006) Ser46 phosphorylation regulates p53-dependent apoptosis and replicative senescence. Cell Cycle 5(23):2812–2819. https://doi.org/10.4161/cc.5.23.3526

    Article  CAS  PubMed  Google Scholar 

  190. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313. https://doi.org/10.1152/physrev.00044.2005

    Article  CAS  PubMed  Google Scholar 

  191. Vaquero EC, Edderkaoui M, Pandol SJ, Gukovsky I, Gukovskaya AS (2004) Reactive oxygen species produced by NAD(P)H oxidase inhibit apoptosis in pancreatic cancer cells. J Biol Chem 279(33):34643–34654

    Article  CAS  PubMed  Google Scholar 

  192. McKallip RJ, Jia W, Schlomer J, Warren JW, Nagarkatti PS, Nagarkatti M (2006) Cannabidiol-induced apoptosis in human leukemia cells: a novel role of cannabidiol in the regulation of p22phox and Nox4 expression. Mol Pharmacol 70(3):897–908. https://doi.org/10.1124/mol.106.023937

    Article  CAS  PubMed  Google Scholar 

  193. Choi K, Han YH, Choi C (2007) N-acetyl cysteine and caffeic acid phenethyl ester sensitize astrocytoma cells to Fas-mediated cell death in a redox-dependent manner. Cancer Lett 257(1):79–86. https://doi.org/10.1016/j.canlet.2007.07.006

    Article  CAS  PubMed  Google Scholar 

  194. Carmona-Cuenca I, Roncero C, Sancho P, Caja L, Fausto N, Fernandez M, Fabregat I (2008) Upregulation of the NADPH oxidase NOX4 by TGF-beta in hepatocytes is required for its pro-apoptotic activity. J Hepatol 49(6):965–976. https://doi.org/10.1016/j.jhep.2008.07.021

    Article  CAS  PubMed  Google Scholar 

  195. Reinehr R, Becker S, Eberle A, Grether-Beck S, Haussinger D (2005) Involvement of NADPH oxidase isoforms and Src family kinases in CD95-dependent hepatocyte apoptosis. J Biol Chem 280(29):27179–27194. https://doi.org/10.1074/jbc.M414361200

    Article  CAS  PubMed  Google Scholar 

  196. Basuroy S, Bhattacharya S, Leffler CW, Parfenova H (2009) Nox4 NADPH oxidase mediates oxidative stress and apoptosis caused by TNF-alpha in cerebral vascular endothelial cells. Am J Physiol Cell Physiol 296(3):C422–C432. https://doi.org/10.1152/ajpcell.00381.2008

    Article  CAS  PubMed  Google Scholar 

  197. Caja L, Sancho P, Bertran E, Iglesias-Serret D, Gil J, Fabregat I (2009) Overactivation of the MEK/ERK pathway in liver tumor cells confers resistance to TGF-{beta}-induced cell death through impairing up-regulation of the NADPH oxidase NOX4. Cancer Res 69(19):7595–7602. https://doi.org/10.1158/0008-5472.CAN-09-1482

    Article  CAS  PubMed  Google Scholar 

  198. Simon F, Fernandez R (2009) Early lipopolysaccharide-induced reactive oxygen species production evokes necrotic cell death in human umbilical vein endothelial cells. J Hypertens 27(6):1202–1216. https://doi.org/10.1097/HJH.0b013e328329e31c

    Article  CAS  PubMed  Google Scholar 

  199. Vanden Berghe T, Declercq W, Vandenabeele P (2007) NADPH oxidases: new players in TNF-induced necrotic cell death. Mol Cell 26(6):769–771. https://doi.org/10.1016/j.molcel.2007.06.002

    Article  CAS  Google Scholar 

  200. Morgan MJ, Liu ZG (2010) Reactive oxygen species in TNFalpha-induced signaling and cell death. Mol Cells 30(1):1–12. https://doi.org/10.1007/s10059-010-0105-0

    Article  CAS  PubMed  Google Scholar 

  201. Morgan MJ, Kim YS, Liu ZG (2008) TNFalpha and reactive oxygen species in necrotic cell death. Cell Res 18(3):343–349. https://doi.org/10.1038/cr.2008.31

    Article  CAS  PubMed  Google Scholar 

  202. Xu Y, Ruan S, Wu X, Chen H, Zheng K, Fu B (2013) Autophagy and apoptosis in tubular cells following unilateral ureteral obstruction are associated with mitochondrial oxidative stress. Int J Mol Med 31(3):628–636. https://doi.org/10.3892/ijmm.2013.1232

    Article  CAS  PubMed  Google Scholar 

  203. Wang J, Yi J (2008) Cancer cell killing via ROS: to increase or decrease, that is the question. Cancer Biol Ther 7(12):1875–1884. https://doi.org/10.4161/cbt.7.12.7067

    Article  CAS  PubMed  Google Scholar 

  204. Larson-Casey JL, Gu L, Kang J, Dhyani A, Carter AB (2021) NOX4 regulates macrophage apoptosis resistance to induce fibrotic progression. J Biol Chem 297(1):100810. https://doi.org/10.1016/j.jbc.2021.100810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Kato K, Logsdon NJ, Shin YJ, Palumbo S, Knox A, Irish JD, Rounseville SP, Rummel SR, Mohamed M, Ahmad K, Trinh JM, Kurundkar D, Knox KS, Thannickal VJ, Hecker L (2020) Impaired myofibroblast dedifferentiation contributes to non-resolving fibrosis in aging. Am J Respir Cell Mol Biol. https://doi.org/10.1165/rcmb.2019-0092OC

  206. Vukelic S, Xu Q, Seidel-Rogol B, Faidley EA, Dikalova AE, Hilenski LL, Jorde U, Poole LB, Lassegue B, Zhang G, Griendling KK (2018) NOX4 (NADPH Oxidase 4) and Poldip2 (polymerase delta-interacting protein 2) induce filamentous actin oxidation and promote its interaction with vinculin during integrin-mediated cell adhesion. Arterioscler Thromb Vasc Biol 38(10):2423–2434. https://doi.org/10.1161/ATVBAHA.118.311668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Pescatore LA, Bonatto D, Forti FL, Sadok A, Kovacic H, Laurindo FR (2012) Protein disulfide isomerase is required for platelet-derived growth factor-induced vascular smooth muscle cell migration, Nox1 NADPH oxidase expression, and RhoGTPase activation. J Biol Chem 287(35):29290–29300. https://doi.org/10.1074/jbc.M112.394551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Coucha M, Abdelsaid M, Li W, Johnson MH, Orfi L, El-Remessy AB, Fagan SC, Ergul A (2016) Nox4 contributes to the hypoxia-mediated regulation of actin cytoskeleton in cerebrovascular smooth muscle. Life Sci 163:46–54. https://doi.org/10.1016/j.lfs.2016.08.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Jafari N, Kim H, Park R, Li L, Jang M, Morris AJ, Park J, Huang C (2017) CRISPR-Cas9 mediated NOX4 knockout inhibits cell proliferation and invasion in HeLa cells. PLoS One 12(1):e0170327. https://doi.org/10.1371/journal.pone.0170327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Auer S, Rinnerthaler M, Bischof J, Streubel MK, Breitenbach-Koller H, Geisberger R, Aigner E, Cadamuro J, Richter K, Sopjani M, Haschke-Becher E, Felder TK, Breitenbach M (2017) The human NADPH oxidase, Nox4, regulates cytoskeletal organization in two cancer cell lines, HepG2 and SH-SY5Y. Front Oncol 7:111. https://doi.org/10.3389/fonc.2017.00111

    Article  PubMed  PubMed Central  Google Scholar 

  211. Rao VR, Stubbs EB Jr (2021) TGF-beta2 Promotes Oxidative Stress in Human Trabecular Meshwork Cells by Selectively Enhancing NADPH Oxidase 4 Expression. Invest Ophthalmol Vis Sci 62(4):4. https://doi.org/10.1167/iovs.62.4.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Lee YM, Kim BJ, Chun YS, So I, Choi H, Kim MS, Park JW (2006) NOX4 as an oxygen sensor to regulate TASK-1 activity. Cell Signal 18(4):499–507

    Article  CAS  PubMed  Google Scholar 

  213. Park SJ, Chun YS, Park KS, Kim SJ, Choi SO, Kim HL, Park JW (2009) Identification of subdomains in NADPH oxidase-4 critical for the oxygen-dependent regulation of TASK-1 K+ channels. Am J Physiol Cell Physiol 297(4):C855–C864. https://doi.org/10.1152/ajpcell.00463.2008

    Article  CAS  PubMed  Google Scholar 

  214. Sun QA, Hess DT, Nogueira L, Yong S, Bowles DE, Eu J, Laurita KR, Meissner G, Stamler JS (2011) Oxygen-coupled redox regulation of the skeletal muscle ryanodine receptor-Ca2+ release channel by NADPH oxidase 4. Proc Natl Acad Sci U S A 108(38):16098–16103. https://doi.org/10.1073/pnas.1109546108

    Article  PubMed  PubMed Central  Google Scholar 

  215. He C, Zhu H, Zhang W, Okon I, Wang Q, Li H, Le YZ, Xie Z (2013) 7-Ketocholesterol induces autophagy in vascular smooth muscle cells through Nox4 and Atg4B. Am J Pathol 183(2):626–637. https://doi.org/10.1016/j.ajpath.2013.04.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Wu RF, Liao C, Hatoum H, Fu G, Ochoa CD, Terada LS (2017) RasGRF couples Nox4-dependent endoplasmic reticulum signaling to Ras. Arterioscler Thromb Vasc Biol 37(1):98–107. https://doi.org/10.1161/ATVBAHA.116.307922

    Article  CAS  PubMed  Google Scholar 

  217. Sciarretta S, Zhai P, Shao D, Zablocki D, Nagarajan N, Terada LS, Volpe M, Sadoshima J (2013) Activation of NADPH oxidase 4 in the endoplasmic reticulum promotes cardiomyocyte autophagy and survival during energy stress through the protein kinase RNA-activated-like endoplasmic reticulum kinase/eukaryotic initiation factor 2alpha/activating transcription factor 4 pathway. Circ Res 113(11):1253–1264. https://doi.org/10.1161/CIRCRESAHA.113.301787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Camargo LL, Harvey AP, Rios FJ, Tsiropoulou S, Da Silva RNO, Cao Z, Graham D, McMaster C, Burchmore RJ, Hartley RC, Bulleid N, Montezano AC, Touyz RM (2018) Vascular Nox (NADPH Oxidase) compartmentalization, protein hyperoxidation, and endoplasmic reticulum stress response in hypertension. Hypertension 72(1):235–246. https://doi.org/10.1161/HYPERTENSIONAHA.118.10824

    Article  CAS  PubMed  Google Scholar 

  219. Nabeebaccus AA, Zoccarato A, Hafstad AD, Santos CX, Aasum E, Brewer AC, Zhang M, Beretta M, Yin X, West JA, Schroder K, Griffin JL, Eykyn TR, Abel ED, Mayr M, Shah AM (2017) Nox4 reprograms cardiac substrate metabolism via protein O-GlcNAcylation to enhance stress adaptation. JCI Insight 2(24). https://doi.org/10.1172/jci.insight.96184

  220. Case AJ, Li S, Basu U, Tian J, Zimmerman MC (2013) Mitochondrial-localized NADPH oxidase 4 is a source of superoxide in angiotensin II-stimulated neurons. Am J Physiol Heart Circ Physiol 305(1):H19–H28. https://doi.org/10.1152/ajpheart.00974.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Das R, Xu S, Quan X, Nguyen TT, Kong ID, Chung CH, Lee EY, Cha SK, Park KS (2014) Upregulation of mitochondrial Nox4 mediates TGF-beta-induced apoptosis in cultured mouse podocytes. Am J Physiol Renal Physiol 306(2):F155–F167. https://doi.org/10.1152/ajprenal.00438.2013

    Article  CAS  PubMed  Google Scholar 

  222. Mori K, Uchida T, Yoshie T, Mizote Y, Ishikawa F, Katsuyama M, Shibanuma M (2019) A mitochondrial ROS pathway controls matrix metalloproteinase 9 levels and invasive properties in RAS-activated cancer cells. FEBS J 286(3):459–478. https://doi.org/10.1111/febs.14671

    Article  CAS  PubMed  Google Scholar 

  223. Li J, Stouffs M, Serrander L, Banfi B, Bettiol E, Charnay Y, Steger K, Krause KH, Jaconi ME (2006) The NADPH oxidase NOX4 drives cardiac differentiation: Role in regulating cardiac transcription factors and MAP kinase activation. Mol Biol Cell 17(9):3978–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Nadworny AS, Guruju MR, Poor D, Doran RM, Sharma RV, Kotlikoff MI, Davisson RL (2013) Nox2 and Nox4 influence neonatal c-kit(+) cardiac precursor cell status and differentiation. Am J Physiol Heart Circ Physiol 305(6):H829–H842. https://doi.org/10.1152/ajpheart.00761.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Murray TV, Smyrnias I, Schnelle M, Mistry RK, Zhang M, Beretta M, Martin D, Anilkumar N, de Silva SM, Shah AM, Brewer AC (2015) Redox regulation of cardiomyocyte cell cycling via an ERK1/2 and c-Myc-dependent activation of cyclin D2 transcription. J Mol Cell Cardiol 79:54–68. https://doi.org/10.1016/j.yjmcc.2014.10.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Byrne JA, Grieve DJ, Bendall JK, Li JM, Gove C, Lambeth JD, Cave AC, Shah AM (2003) Contrasting roles of NADPH oxidase isoforms in pressure-overload versus angiotensin II-induced cardiac hypertrophy. Circ Res 93(9):802–805

    Article  CAS  PubMed  Google Scholar 

  227. Matsushima S, Kuroda J, Ago T, Zhai P, Park JY, Xie LH, Tian B, Sadoshima J (2013) Increased oxidative stress in the nucleus caused by Nox4 mediates oxidation of HDAC4 and cardiac hypertrophy. Circ Res 112(4):651–663. https://doi.org/10.1161/CIRCRESAHA.112.279760

    Article  CAS  PubMed  Google Scholar 

  228. Zhang M, Mongue-Din H, Martin D, Catibog N, Smyrnias I, Zhang X, Yu B, Wang M, Brandes RP, Schroder K, Shah AM (2018) Both cardiomyocyte and endothelial cell Nox4 mediate protection against hemodynamic overload-induced remodelling. Cardiovasc Res 114(3):401–408. https://doi.org/10.1093/cvr/cvx204

    Article  CAS  PubMed  Google Scholar 

  229. Brewer AC, Murray TV, Arno M, Zhang M, Anilkumar NP, Mann GE, Shah AM (2011) Nox4 regulates Nrf2 and glutathione redox in cardiomyocytes in vivo. Free Radic Biol Med 51(1):205–215. https://doi.org/10.1016/j.freeradbiomed.2011.04.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Smyrnias I, Zhang X, Zhang M, Murray TV, Brandes RP, Schroder K, Brewer AC, Shah AM (2015) Nicotinamide adenine dinucleotide phosphate oxidase-4-dependent upregulation of nuclear factor erythroid-derived 2-like 2 protects the heart during chronic pressure overload. Hypertension 65(3):547–553. https://doi.org/10.1161/HYPERTENSIONAHA.114.04208

    Article  CAS  PubMed  Google Scholar 

  231. Nabeebaccus A, Hafstad A, Eykyn T, Yin X, Brewer A, Zhang M, Mayr M, Shah A (2015) Cardiac-targeted NADPH oxidase 4 in the adaptive cardiac remodelling of the murine heart. Lancet 385(Suppl 1):S73. https://doi.org/10.1016/S0140-6736(15)60388-9

    Article  PubMed  Google Scholar 

  232. Schnelle M, Sawyer I, Anilkumar N, Mohamed BA, Richards DA, Toischer K, Zhang M, Catibog N, Sawyer G, Mongue-Din H, Schroder K, Hasenfuss G, Shah AM (2021) NADPH oxidase-4 promotes eccentric cardiac hypertrophy in response to volume overload. Cardiovasc Res 117(1):178–187. https://doi.org/10.1093/cvr/cvz331

    Article  CAS  PubMed  Google Scholar 

  233. Wang M, Murdoch CE, Brewer AC, Ivetic A, Evans P, Shah AM, Zhang M (2021) Endothelial NADPH oxidase 4 protects against angiotensin II-induced cardiac fibrosis and inflammation. ESC Heart Fail 8(2):1427–1437. https://doi.org/10.1002/ehf2.13228

    Article  PubMed  PubMed Central  Google Scholar 

  234. Yu Q, Lee CF, Wang W, Karamanlidis G, Kuroda J, Matsushima S, Sadoshima J, Tian R (2014) Elimination of NADPH oxidase activity promotes reductive stress and sensitizes the heart to ischemic injury. J Am Heart Assoc 3(1):e000555. https://doi.org/10.1161/JAHA.113.000555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Mongue-Din H, Patel AS, Looi YH, Grieve DJ, Anilkumar N, Sirker A, Dong X, Brewer AC, Zhang M, Smith A, Shah AM (2017) NADPH oxidase-4 driven cardiac macrophage polarization protects against myocardial infarction-induced remodeling. JACC Basic Transl Sci 2(6):688–698. https://doi.org/10.1016/j.jacbts.2017.06.006

    Article  PubMed  PubMed Central  Google Scholar 

  236. Stevenson MD, Canugovi C, Vendrov AE, Hayami T, Bowles DE, Krause KH, Madamanchi NR, Runge MS (2019) NADPH oxidase 4 regulates inflammation in ischemic heart failure: role of soluble epoxide hydrolase. Antioxid Redox Signal 31(1):39–58. https://doi.org/10.1089/ars.2018.7548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Sorescu D, Weiss D, Lassègue B, Clempus RE, Szöcs K, Sorescu GP, Valppu L, Quinn MT, Lambeth JD, Vega JD, Taylor WR, Griendling KK (2002) Superoxide production and expression of nox family proteins in human atherosclerosis. Circulation 105(12):1429–1435

    Article  CAS  PubMed  Google Scholar 

  238. Chamseddine AH, Miller FJ Jr (2003) gp91phox contributes to NADPH oxidase activity in aortic fibroblasts but not smooth muscle cells. Am J Physiol Heart Circ Physiol 285(6):H2284–H2289

    Article  CAS  PubMed  Google Scholar 

  239. Perrotta I, Sciangula A, Perrotta E, Donato G, Cassese M (2011) Ultrastructural analysis and electron microscopic localization of Nox4 in healthy and atherosclerotic human aorta. Ultrastruct Pathol 35(1):1–6. https://doi.org/10.3109/01913123.2010.510261

    Article  PubMed  Google Scholar 

  240. Szöcs K, Lassègue B, Sorescu D, Hilenski LL, Valppu L, Couse TL, Wilcox JN, Quinn MT, Lambeth JD, Griendling KK (2002) Upregulation of Nox-based NAD(P)H oxidases in restenosis after carotid injury. Arterioscler Thromb Vasc Biol 22(1):21–27

    Article  PubMed  Google Scholar 

  241. Xu S, Chamseddine AH, Carrell S, Miller FJ Jr (2014) Nox4 NADPH oxidase contributes to smooth muscle cell phenotypes associated with unstable atherosclerotic plaques. Redox Biol 2:642–650. https://doi.org/10.1016/j.redox.2014.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Schurmann C, Rezende F, Kruse C, Yasar Y, Lowe O, Fork C, van de Sluis B, Bremer R, Weissmann N, Shah AM, Jo H, Brandes RP, Schroder K (2015) The NADPH oxidase Nox4 has anti-atherosclerotic functions. Eur Heart J 36(48):3447–3456. https://doi.org/10.1093/eurheartj/ehv460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Langbein H, Brunssen C, Hofmann A, Cimalla P, Brux M, Bornstein SR, Deussen A, Koch E, Morawietz H (2016) NADPH oxidase 4 protects against development of endothelial dysfunction and atherosclerosis in LDL receptor deficient mice. Eur Heart J 37(22):1753–1761. https://doi.org/10.1093/eurheartj/ehv564

    Article  CAS  PubMed  Google Scholar 

  244. Craige SM, Kant S, Reif M, Chen K, Pei Y, Angoff R, Sugamura K, Fitzgibbons T, Keaney JF Jr (2015) Endothelial NADPH oxidase 4 protects ApoE-/- mice from atherosclerotic lesions. Free Radic Biol Med 89:1–7. https://doi.org/10.1016/j.freeradbiomed.2015.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Tong X, Khandelwal AR, Wu X, Xu Z, Yu W, Chen C, Zhao W, Yang J, Qin Z, Weisbrod RM, Seta F, Ago T, Lee KS, Hammock BD, Sadoshima J, Cohen RA, Zeng C (2016) Pro-atherogenic role of smooth muscle Nox4-based NADPH oxidase. J Mol Cell Cardiol 92:30–40. https://doi.org/10.1016/j.yjmcc.2016.01.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Yu W, Xiao L, Que Y, Li S, Chen L, Hu P, Xiong R, Seta F, Chen H (1866) Tong X (2020) Smooth muscle NADPH oxidase 4 promotes angiotensin II-induced aortic aneurysm and atherosclerosis by regulating osteopontin. Biochim Biophys Acta Mol Basis Dis 12:165912. https://doi.org/10.1016/j.bbadis.2020.165912

    Article  CAS  Google Scholar 

  247. Kim J, Seo M, Kim SK, Bae YS (2016) Flagellin-induced NADPH oxidase 4 activation is involved in atherosclerosis. Sci Rep 6:25437. https://doi.org/10.1038/srep25437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Vendrov AE, Vendrov KC, Smith A, Yuan J, Sumida A, Robidoux J, Runge MS, Madamanchi NR (2015) NOX4 NADPH oxidase-dependent mitochondrial oxidative stress in aging-associated cardiovascular disease. Antioxid Redox Signal 23(18):1389–1409. https://doi.org/10.1089/ars.2014.6221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Gray SP, Di Marco E, Kennedy K, Chew P, Okabe J, El-Osta A, Calkin AC, Biessen EA, Touyz RM, Cooper ME, Schmidt HH, Jandeleit-Dahm KA (2016) Reactive oxygen species can provide atheroprotection via NOX4-dependent inhibition of inflammation and vascular remodeling. Arterioscler Thromb Vasc Biol 36(2):295–307. https://doi.org/10.1161/ATVBAHA.115.307012

    Article  CAS  PubMed  Google Scholar 

  250. Di Marco E, Gray SP, Chew P, Kennedy K, Cooper ME, Schmidt HH, Jandeleit-Dahm KA (2016) Differential effects of NOX4 and NOX1 on immune cell-mediated inflammation in the aortic sinus of diabetic ApoE-/- mice. Clin Sci 130(15):1363–1374. https://doi.org/10.1042/CS20160249

    Article  CAS  Google Scholar 

  251. Gray SP, Jha JC, Kennedy K, van Bommel E, Chew P, Szyndralewiez C, Touyz RM, Schmidt H, Cooper ME, Jandeleit-Dahm KAM (2017) Combined NOX1/4 inhibition with GKT137831 in mice provides dose-dependent reno- and atheroprotection even in established micro- and macrovascular disease. Diabetologia 60(5):927–937. https://doi.org/10.1007/s00125-017-4215-5

    Article  CAS  PubMed  Google Scholar 

  252. Tong X, Hou X, Jourd'heuil D, Weisbrod RM, Cohen RA (2010) Upregulation of Nox4 by TGF{beta}1 oxidizes SERCA and inhibits NO in arterial smooth muscle of the prediabetic Zucker rat. Circ Res 107(8):975–983. https://doi.org/10.1161/CIRCRESAHA.110.221242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Hu P, Wu X, Khandelwal AR, Yu W, Xu Z, Chen L, Yang J, Weisbrod RM, Lee KSS, Seta F, Hammock BD, Cohen RA, Zeng C, Tong X (2017) Endothelial Nox4-based NADPH oxidase regulates atherosclerosis via soluble epoxide hydrolase. Biochim Biophys Acta Mol Basis Dis 1863(6):1382–1391. https://doi.org/10.1016/j.bbadis.2017.02.004

    Article  CAS  PubMed  Google Scholar 

  254. Yu W, Li S, Wu H, Hu P, Chen L, Zeng C, Tong X (2021) Endothelial Nox4 dysfunction aggravates atherosclerosis by inducing endoplasmic reticulum stress and soluble epoxide hydrolase. Free Radic Biol Med 164:44–57. https://doi.org/10.1016/j.freeradbiomed.2020.12.450

    Article  CAS  PubMed  Google Scholar 

  255. Jimenez-Altayo F, Meirelles T, Crosas-Molist E, Sorolla MA, Del Blanco DG, Lopez-Luque J, Mas-Stachurska A, Siegert AM, Bonorino F, Barbera L, Garcia C, Condom E, Sitges M, Rodriguez-Pascual F, Laurindo F, Schroder K, Ros J, Fabregat I, Egea G (2018) Redox stress in Marfan syndrome: Dissecting the role of the NADPH oxidase NOX4 in aortic aneurysm. Free Radic Biol Med 118:44–58. https://doi.org/10.1016/j.freeradbiomed.2018.02.023

    Article  CAS  PubMed  Google Scholar 

  256. Siu KL, Li Q, Zhang Y, Guo J, Youn JY, Du J, Cai H (2017) NOX isoforms in the development of abdominal aortic aneurysm. Redox Biol 11:118–125. https://doi.org/10.1016/j.redox.2016.11.002

    Article  CAS  PubMed  Google Scholar 

  257. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74:1141–1148

    Article  CAS  PubMed  Google Scholar 

  258. Akasaki T, Ohya Y, Kuroda J, Eto K, Abe I, Sumimoto H, Iida M (2006) Increased expression of gp91phox homologues of NAD(P)H oxidase in the aortic media during chronic hypertension: involvement of the renin-angiotensin system. Hypertens Res 29(10):813–820. https://doi.org/10.1291/hypres.29.813

    Article  CAS  PubMed  Google Scholar 

  259. Peterson JR, Burmeister MA, Tian X, Zhou Y, Guruju MR, Stupinski JA, Sharma RV, Davisson RL (2009) Genetic silencing of Nox2 and Nox4 reveals differential roles of these NADPH oxidase homologues in the vasopressor and dipsogenic effects of brain angiotensin II. Hypertension 54(5):1106–1114. https://doi.org/10.1161/HYPERTENSIONAHA.109.140087

    Article  CAS  PubMed  Google Scholar 

  260. Xue B, Beltz TG, Johnson RF, Guo F, Hay M, Johnson AK (2012) PVN adenovirus-siRNA injections silencing either NOX2 or NOX4 attenuate aldosterone/NaCl-induced hypertension in mice. Am J Physiol Heart Circ Physiol 302(3):H733–H741. https://doi.org/10.1152/ajpheart.00873.2011

    Article  CAS  PubMed  Google Scholar 

  261. Bouabout G, Ayme-Dietrich E, Jacob H, Champy MF, Birling MC, Pavlovic G, Madeira L, Fertak LE, Petit-Demouliere B, Sorg T, Herault Y, Mudgett J, Monassier L (2018) Nox4 genetic inhibition in experimental hypertension and metabolic syndrome. Arch Cardiovasc Dis 111(1):41–52. https://doi.org/10.1016/j.acvd.2017.03.011

    Article  PubMed  Google Scholar 

  262. Ray R, Murdoch CE, Wang M, Santos CX, Zhang M, Alom-Ruiz S, Anilkumar N, Ouattara A, Cave AC, Walker SJ, Grieve DJ, Charles RL, Eaton P, Brewer AC, Shah AM (2011) Endothelial Nox4 NADPH oxidase enhances vasodilatation and reduces blood pressure in vivo. Arterioscler Thromb Vasc Biol 31(6):1368–1376. https://doi.org/10.1161/ATVBAHA.110.219238

    Article  CAS  PubMed  Google Scholar 

  263. Liu Y, Bubolz AH, Mendoza S, Zhang DX, Gutterman DD (2011) H2O2 is the transferrable factor mediating flow-induced dilation in human coronary arterioles. Circ Res 108(5):566–573. https://doi.org/10.1161/CIRCRESAHA.110.237636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Babelova A, Avaniadi D, Jung O, Fork C, Beckmann J, Kosowski J, Weissmann N, Anilkumar N, Shah AM, Schaefer L, Schroder K, Brandes RP (2012) Role of Nox4 in murine models of kidney disease. Free Radic Biol Med 53(4):842–853. https://doi.org/10.1016/j.freeradbiomed.2012.06.027

    Article  CAS  PubMed  Google Scholar 

  265. Cowley AW Jr, Yang C, Zheleznova NN, Staruschenko A, Kurth T, Rein L, Kumar V, Sadovnikov K, Dayton A, Hoffman M, Ryan RP, Skelton MM, Salehpour F, Ranji M, Geurts A (2016) Evidence of the importance of Nox4 in production of hypertension in Dahl Salt-sensitive rats. Hypertension 67(2):440–450. https://doi.org/10.1161/HYPERTENSIONAHA.115.06280

    Article  CAS  PubMed  Google Scholar 

  266. Kumar V, Kurth T, Zheleznova NN, Yang C, Cowley AW Jr (2020) NOX4/H2O2/mTORC1 pathway in salt-induced hypertension and kidney injury. Hypertension 76(1):133–143. https://doi.org/10.1161/HYPERTENSIONAHA.120.15058

    Article  CAS  PubMed  Google Scholar 

  267. Pavlov TS, Palygin O, Isaeva E, Levchenko V, Khedr S, Blass G, Ilatovskaya DV, Cowley AW Jr, Staruschenko A (2020) NOX4-dependent regulation of ENaC in hypertension and diabetic kidney disease. FASEB J 34(10):13396–13408. https://doi.org/10.1096/fj.202000966RR

    Article  CAS  PubMed  Google Scholar 

  268. Rezende F, Malacarne PF, Muller N, Rathkolb B, Hrabe de Angelis M, Schroder K (2021) Nox4 maintains blood pressure during low sodium diet. Antioxidants (Basel) 10(7). https://doi.org/10.3390/antiox10071103

  269. Kraja AT, Cook JP, Warren HR, Surendran P, Liu C, Evangelou E, Manning AK, Grarup N, Drenos F, Sim X, Smith AV, Amin N, Blakemore AIF, Bork-Jensen J, Brandslund I, Farmaki AE, Fava C, Ferreira T, Herzig KH, Giri A, Giulianini F, Grove ML, Guo X, Harris SE, Have CT, Havulinna AS, Zhang H, Jorgensen ME, Karajamaki A, Kooperberg C, Linneberg A, Little L, Liu Y, Bonnycastle LL, Lu Y, Magi R, Mahajan A, Malerba G, Marioni RE, Mei H, Menni C, Morrison AC, Padmanabhan S, Palmas W, Poveda A, Rauramaa R, Rayner NW, Riaz M, Rice K, Richard MA, Smith JA, Southam L, Stancakova A, Stirrups KE, Tragante V, Tuomi T, Tzoulaki I, Varga TV, Weiss S, Yiorkas AM, Young R, Zhang W, Barnes MR, Cabrera CP, Gao H, Boehnke M, Boerwinkle E, Chambers JC, Connell JM, Christensen CK, de Boer RA, Deary IJ, Dedoussis G, Deloukas P, Dominiczak AF, Dorr M, Joehanes R, Edwards TL, Esko T, Fornage M, Franceschini N, Franks PW, Gambaro G, Groop L, Hallmans G, Hansen T, Hayward C, Heikki O, Ingelsson E, Tuomilehto J, Jarvelin MR, Kardia SLR, Karpe F, Kooner JS, Lakka TA, Langenberg C, Lind L, Loos RJF, Laakso M, McCarthy MI, Melander O, Mohlke KL, Morris AP, Palmer CNA, Pedersen O, Polasek O, Poulter NR, Province MA, Psaty BM, Ridker PM, Rotter JI, Rudan I, Salomaa V, Samani NJ, Sever PJ, Skaaby T, Stafford JM, Starr JM, van der Harst P, van der Meer P, Understanding Society Scientific G, van Duijn CM, Vergnaud AC, Gudnason V, Wareham NJ, Wilson JG, Willer CJ, Witte DR, Zeggini E, Saleheen D, Butterworth AS, Danesh J, Asselbergs FW, Wain LV, Ehret GB, Chasman DI, Caulfield MJ, Elliott P, Lindgren CM, Levy D, Newton-Cheh C, Munroe PB, Howson JMM, CHARGE EXOME BP, CHD Exome, Exome BP, GoT2D:T2DGenes Consortia, The UK Biobank Cardio-Metabolic Traits Consortium Blood Pressure Working Group (2017) New blood pressure-associated loci identified in meta-analyses of 475000 individuals. Circ Cardiovasc Genet 10(5). https://doi.org/10.1161/CIRCGENETICS.117.001778

  270. Li J, Fan LM, George VT, Brooks G (2007) Nox2 regulates endothelial cell cycle arrest and apoptosis via p21cip1 and p53. Free Radic Biol Med 43(6):976–986. PMID: 17697942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Ago T, Kitazono T, Ooboshi H, Iyama T, Han YH, Takada J, Wakisaka M, Ibayashi S, Utsumi H, Iida M (2004) Nox4 as the major catalytic component of an endothelial NAD(P)H oxidase. Circulation 109(2):227–233. https://doi.org/10.1161/01.CIR.0000105680.92873.70

    Article  CAS  PubMed  Google Scholar 

  272. Bernard K, Hecker L, Luckhardt TR, Cheng G, Thannickal VJ (2014) NADPH oxidases in lung health and disease. Antioxid Redox Signal 20(17):2838–2853. https://doi.org/10.1089/ars.2013.5608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Jiang J, Huang K, Xu S, Garcia JGN, Wang C, Cai H (2020) Targeting NOX4 alleviates sepsis-induced acute lung injury via attenuation of redox-sensitive activation of CaMKII/ERK1/2/MLCK and endothelial cell barrier dysfunction. Redox Biol 36:101638. https://doi.org/10.1016/j.redox.2020.101638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Al Ghouleh I, Magder S (2008) Nicotinamide adenine dinucleotide phosphate (reduced form) oxidase is important for LPS-induced endothelial cell activation. Shock 29(5):553–559. https://doi.org/10.1097/SHK.0b013e318157ebc8

    Article  CAS  PubMed  Google Scholar 

  275. Qi D, Wang D, Zhang C, Tang X, He J, Zhao Y, Deng W, Deng X (2017) Vaspin protects against LPSinduced ARDS by inhibiting inflammation, apoptosis and reactive oxygen species generation in pulmonary endothelial cells via the Akt/GSK3beta pathway. Int J Mol Med 40(6):1803–1817. https://doi.org/10.3892/ijmm.2017.3176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Jedrychowski WA, Maugeri U, Adamczyk B (1986) Effect of smoking on serum immunoglobulins and cellular blood constituents in healthy individuals. G Ital Med Lav 8(2):53–56

    CAS  PubMed  Google Scholar 

  277. Fu P, Mohan V, Mansoor S, Tiruppathi C, Sadikot RT, Natarajan V (2013) Role of nicotinamide adenine dinucleotide phosphate-reduced oxidase proteins in Pseudomonas aeruginosa-induced lung inflammation and permeability. Am J Respir Cell Mol Biol 48(4):477–488. https://doi.org/10.1165/rcmb.2012-0242OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Peters DM, Vadasz I, Wujak L, Wygrecka M, Olschewski A, Becker C, Herold S, Papp R, Mayer K, Rummel S, Brandes RP, Gunther A, Waldegger S, Eickelberg O, Seeger W, Morty RE (2014) TGF-beta directs trafficking of the epithelial sodium channel ENaC which has implications for ion and fluid transport in acute lung injury. Proc Natl Acad Sci U S A 111(3):E374–E383. https://doi.org/10.1073/pnas.1306798111

    Article  CAS  PubMed  Google Scholar 

  279. Xiang L, Lu S, Mittwede PN, Clemmer JS, Hester RL (2014) Inhibition of NADPH oxidase prevents acute lung injury in obese rats following severe trauma. Am J Physiol Heart Circ Physiol 306(5):H684–H689. https://doi.org/10.1152/ajpheart.00868.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Yu WY, Li L, Wu F, Zhang HH, Fang J, Zhong YS, Yu CH (2020) Moslea Herba flavonoids alleviated influenza A virus-induced pulmonary endothelial barrier disruption via suppressing NOX4/NF-kappaB/MLCK pathway. J Ethnopharmacol 253:112641. https://doi.org/10.1016/j.jep.2020.112641

    Article  CAS  PubMed  Google Scholar 

  281. Jin HZ, Yang XJ, Zhao KL, Mei FC, Zhou Y, You YD, Wang WX (2019) Apocynin alleviates lung injury by suppressing NLRP3 inflammasome activation and NF-kappaB signaling in acute pancreatitis. Int Immunopharmacol 75:105821. https://doi.org/10.1016/j.intimp.2019.105821

    Article  CAS  PubMed  Google Scholar 

  282. Cui Y, Wang Y, Li G, Ma W, Zhou XS, Wang J, Liu B (2018) The Nox1/Nox4 inhibitor attenuates acute lung injury induced by ischemia-reperfusion in mice. PLoS One 13(12):e0209444. https://doi.org/10.1371/journal.pone.0209444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Lee I, Dodia C, Chatterjee S, Feinstein SI, Fisher AB (2014) Protection against LPS-induced acute lung injury by a mechanism-based inhibitor of NADPH oxidase (type 2). Am J Physiol Lung Cell Mol Physiol 306(7):L635–L644. https://doi.org/10.1152/ajplung.00374.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Yeligar SM, Harris FL, Hart CM, Brown LA (2012) Ethanol induces oxidative stress in alveolar macrophages via upregulation of NADPH oxidases. J Immunol 188(8):3648–3657. https://doi.org/10.4049/jimmunol.1101278

    Article  CAS  PubMed  Google Scholar 

  285. Hong Y, Woo S, Kim Y, Lee JJ, Hong JY (2020) Plasma concentrations of NOX4 are predictive of successful liberation from mechanical ventilation and 28-day mortality in intubated patients. Ann Transl Med 8(21):1376. https://doi.org/10.21037/atm-20-4252

    Article  PubMed  PubMed Central  Google Scholar 

  286. Collum SD, Amione-Guerra J, Cruz-Solbes AS, DiFrancesco A, Hernandez AM, Hanmandlu A, Youker K, Guha A, Karmouty-Quintana H (2017) Pulmonary hypertension associated with idiopathic pulmonary fibrosis: current and future perspectives. Can Respir J 2017:1430350. https://doi.org/10.1155/2017/1430350

    Article  PubMed  PubMed Central  Google Scholar 

  287. Hood KY, Montezano AC, Harvey AP, Nilsen M, MacLean MR, Touyz RM (2016) Nicotinamide adenine dinucleotide phosphate oxidase-mediated redox signaling and vascular remodeling by 16alpha-hydroxyestrone in human pulmonary artery cells: implications in pulmonary arterial hypertension. Hypertension 68(3):796–808. https://doi.org/10.1161/HYPERTENSIONAHA.116.07668

    Article  CAS  PubMed  Google Scholar 

  288. Pache JC, Carnesecchi S, Deffert C, Donati Y, Herrmann FR, Barazzone-Argiroffo C, Krause KH (2011) NOX-4 is expressed in thickened pulmonary arteries in idiopathic pulmonary fibrosis. Nat Med 17(1):31–32.; author reply 32-33. https://doi.org/10.1038/nm0111-31

    Article  CAS  PubMed  Google Scholar 

  289. Lu X, Bijli KM, Ramirez A, Murphy TC, Kleinhenz J, Hart CM (2013) Hypoxia downregulates PPARgamma via an ERK1/2-NF-kappaB-Nox4-dependent mechanism in human pulmonary artery smooth muscle cells. Free Radic Biol Med 63:151–160. https://doi.org/10.1016/j.freeradbiomed.2013.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Li S, Tabar SS, Malec V, Eul BG, Klepetko W, Weissmann N, Grimminger F, Seeger W, Rose F, Hanze J (2008) NOX4 regulates ROS levels under normoxic and hypoxic conditions, triggers proliferation, and inhibits apoptosis in pulmonary artery adventitial fibroblasts. Antioxid Redox Signal 10(10):1687–1698. https://doi.org/10.1089/ars.2008.2035

    Article  CAS  PubMed  Google Scholar 

  291. Chen F, Barman S, Yu Y, Haigh S, Wang Y, Black SM, Rafikov R, Dou H, Bagi Z, Han W, Su Y, Fulton DJ (2014) Caveolin-1 is a negative regulator of NADPH oxidase-derived reactive oxygen species. Free Radic Biol Med 73:201–213. https://doi.org/10.1016/j.freeradbiomed.2014.04.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Mittal M, Gu XQ, Pak O, Pamenter ME, Haag D, Fuchs DB, Schermuly RT, Ghofrani HA, Brandes RP, Seeger W, Grimminger F, Haddad GG, Weissmann N (2012) Hypoxia induces Kv channel current inhibition by increased NADPH oxidase-derived reactive oxygen species. Free Radic Biol Med 52(6):1033–1042. https://doi.org/10.1016/j.freeradbiomed.2011.12.004

    Article  CAS  PubMed  Google Scholar 

  293. Barman SA, Chen F, Su Y, Dimitropoulou C, Wang Y, Catravas JD, Han W, Orfi L, Szantai-Kis C, Keri G, Szabadkai I, Barabutis N, Rafikova O, Rafikov R, Black SM, Jonigk D, Giannis A, Asmis R, Stepp DW, Ramesh G, Fulton DJ (2014) NADPH oxidase 4 is expressed in pulmonary artery adventitia and contributes to hypertensive vascular remodeling. Arterioscler Thromb Vasc Biol 34(8):1704–1715. https://doi.org/10.1161/ATVBAHA.114.303848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Goncharov DA, Kudryashova TV, Ziai H, Ihida-Stansbury K, DeLisser H, Krymskaya VP, Tuder RM, Kawut SM, Goncharova EA (2014) Mammalian target of rapamycin complex 2 (mTORC2) coordinates pulmonary artery smooth muscle cell metabolism, proliferation, and survival in pulmonary arterial hypertension. Circulation 129(8):864–874. https://doi.org/10.1161/CIRCULATIONAHA.113.004581

    Article  CAS  PubMed  Google Scholar 

  295. Nisbet RE, Graves AS, Kleinhenz DJ, Rupnow HL, Reed AL, Fan TH, Mitchell PO, Sutliff RL, Hart CM (2009) The role of NADPH oxidase in chronic intermittent hypoxia-induced pulmonary hypertension in mice. Am J Respir Cell Mol Biol 40(5):601–609. https://doi.org/10.1165/2008-0145OC

    Article  CAS  PubMed  Google Scholar 

  296. Nisbet RE, Bland JM, Kleinhenz DJ, Mitchell PO, Walp ER, Sutliff RL, Hart CM (2010) Rosiglitazone attenuates chronic hypoxia-induced pulmonary hypertension in a mouse model. Am J Respir Cell Mol Biol 42(4):482–490. https://doi.org/10.1165/rcmb.2008-0132OC

    Article  CAS  PubMed  Google Scholar 

  297. Veith C, Kraut S, Wilhelm J, Sommer N, Quanz K, Seeger W, Brandes RP, Weissmann N, Schroder K (2016) NADPH oxidase 4 is not involved in hypoxia-induced pulmonary hypertension. Pulm Circ 6(3):397–400. https://doi.org/10.1086/687756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Kirkham PA, Barnes PJ (2013) Oxidative stress in COPD. Chest 144(1):266–273. https://doi.org/10.1378/chest.12-2664

    Article  CAS  PubMed  Google Scholar 

  299. Ichinose M, Sugiura H, Yamagata S, Koarai A, Shirato K (2000) Increase in reactive nitrogen species production in chronic obstructive pulmonary disease airways. Am J Respir Crit Care Med 162(2 Pt 1):701–706. https://doi.org/10.1164/ajrccm.162.2.9908132

    Article  CAS  PubMed  Google Scholar 

  300. Montuschi P, Collins JV, Ciabattoni G, Lazzeri N, Corradi M, Kharitonov SA, Barnes PJ (2000) Exhaled 8-isoprostane as an in vivo biomarker of lung oxidative stress in patients with COPD and healthy smokers. Am J Respir Crit Care Med 162(3 Pt 1):1175–1177. https://doi.org/10.1164/ajrccm.162.3.2001063

    Article  CAS  PubMed  Google Scholar 

  301. Rahman I, van Schadewijk AA, Crowther AJ, Hiemstra PS, Stolk J, MacNee W, De Boer WI (2002) 4-Hydroxy-2-nonenal, a specific lipid peroxidation product, is elevated in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 166(4):490–495. https://doi.org/10.1164/rccm.2110101

    Article  PubMed  Google Scholar 

  302. Kluchova Z, Petrasova D, Joppa P, Dorkova Z, Tkacova R (2007) The association between oxidative stress and obstructive lung impairment in patients with COPD. Physiol Res 56(1):51–56. https://doi.org/10.33549/physiolres.930884

    Article  CAS  PubMed  Google Scholar 

  303. Hollins F, Sutcliffe A, Gomez E, Berair R, Russell R, Szyndralewiez C, Saunders R, Brightling C (2016) Airway smooth muscle NOX4 is upregulated and modulates ROS generation in COPD. Respir Res 17(1):84. https://doi.org/10.1186/s12931-016-0403-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Liu X, Hao B, Ma A, He J, Liu X, Chen J (2016) The expression of NOX4 in smooth muscles of small airway correlates with the disease severity of COPD. Biomed Res Int 2016:2891810. https://doi.org/10.1155/2016/2891810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Hao B, Sun R, Guo X, Zhang L, Cui J, Zhou Y, Hong W, Zhang Y, He J, Liu X, Li B, Ran P, Chen J (2021) NOX4-derived ROS promotes collagen I deposition in bronchial smooth muscle cells by activating noncanonical p38MAPK/Akt-mediated TGF-beta signaling. Oxid Med Cell Longev 2021:6668971. https://doi.org/10.1155/2021/6668971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Guo X, Fan Y, Cui J, Hao B, Zhu L, Sun X, He J, Yang J, Dong J, Wang Y, Liu X, Chen J (2018) NOX4 expression and distal arteriolar remodeling correlate with pulmonary hypertension in COPD. BMC Pulm Med 18(1):111. https://doi.org/10.1186/s12890-018-0680-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Milara J, Peiro T, Serrano A, Guijarro R, Zaragoza C, Tenor H, Cortijo J (2014) Roflumilast N-oxide inhibits bronchial epithelial to mesenchymal transition induced by cigarette smoke in smokers with COPD. Pulm Pharmacol Ther 28(2):138–148. https://doi.org/10.1016/j.pupt.2014.02.001

    Article  CAS  PubMed  Google Scholar 

  308. Hernandez-Saavedra D, Sanders L, Perez MJ, Kosmider B, Smith LP, Mitchell JD, Yoshida T, Tuder RM (2017) RTP801 amplifies nicotinamide adenine dinucleotide phosphate oxidase-4-dependent oxidative stress induced by cigarette smoke. Am J Respir Cell Mol Biol 56(1):62–73. https://doi.org/10.1165/rcmb.2016-0144OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Mehal WZ, Iredale J, Friedman SL (2011) Scraping fibrosis: expressway to the core of fibrosis. Nat Med 17(5):552–553. https://doi.org/10.1038/nm0511-552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Liepelt A, Tacke F (2015) Healing the scars of life-targeting redox imbalance in fibrotic disorders of the elderly. Ann Transl Med 3(Suppl 1):S13. https://doi.org/10.3978/j.issn.2305-5839.2015.03.34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Liu RM, Desai LP (2015) Reciprocal regulation of TGF-beta and reactive oxygen species: a perverse cycle for fibrosis. Redox Biol 6:565–577. https://doi.org/10.1016/j.redox.2015.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Amara N, Goven D, Prost F, Muloway R, Crestani B, Boczkowski J (2010) NOX4/NADPH oxidase expression is increased in pulmonary fibroblasts from patients with idiopathic pulmonary fibrosis and mediates TGFbeta1-induced fibroblast differentiation into myofibroblasts. Thorax 65(8):733–738. https://doi.org/10.1136/thx.2009.113456

    Article  PubMed  Google Scholar 

  313. Wermuth PJ, Mendoza FA, Jimenez SA (2019) Abrogation of transforming growth factor-beta-induced tissue fibrosis in mice with a global genetic deletion of Nox4. Lab Invest 99(4):470–482. https://doi.org/10.1038/s41374-018-0161-1

    Article  CAS  PubMed  Google Scholar 

  314. Sato N, Takasaka N, Yoshida M, Tsubouchi K, Minagawa S, Araya J, Saito N, Fujita Y, Kurita Y, Kobayashi K, Ito S, Hara H, Kadota T, Yanagisawa H, Hashimoto M, Utsumi H, Wakui H, Kojima J, Numata T, Kaneko Y, Odaka M, Morikawa T, Nakayama K, Kohrogi H, Kuwano K (2016) Metformin attenuates lung fibrosis development via NOX4 suppression. Respir Res 17(1):107. https://doi.org/10.1186/s12931-016-0420-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Rangarajan S, Bone NB, Zmijewska AA, Jiang S, Park DW, Bernard K, Locy ML, Ravi S, Deshane J, Mannon RB, Abraham E, Darley-Usmar V, Thannickal VJ, Zmijewski JW (2018) Metformin reverses established lung fibrosis in a bleomycin model. Nat Med 24(8):1121–1127. https://doi.org/10.1038/s41591-018-0087-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Jiang JX, Chen X, Serizawa N, Szyndralewiez C, Page P, Schroder K, Brandes RP, Devaraj S, Torok NJ (2012) Liver fibrosis and hepatocyte apoptosis are attenuated by GKT137831, a novel NOX4/NOX1 inhibitor in vivo. Free Radic Biol Med 53(2):289–296. https://doi.org/10.1016/j.freeradbiomed.2012.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Proell V, Carmona-Cuenca I, Murillo MM, Huber H, Fabregat I, Mikulits W (2007) TGF-beta dependent regulation of oxygen radicals during transdifferentiation of activated hepatic stellate cells to myofibroblastoid cells. Comp Hepatol 6:1. https://doi.org/10.1186/1476-5926-6-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Aoyama T, Paik YH, Watanabe S, Laleu B, Gaggini F, Fioraso-Cartier L, Molango S, Heitz F, Merlot C, Szyndralewiez C, Page P, Brenner DA (2012) Nicotinamide adenine dinucleotide phosphate oxidase in experimental liver fibrosis: GKT137831 as a novel potential therapeutic agent. Hepatology 56(6):2316–2327. https://doi.org/10.1002/hep.25938

    Article  CAS  PubMed  Google Scholar 

  319. Lan T, Kisseleva T, Brenner DA (2015) Deficiency of NOX1 or NOX4 prevents liver inflammation and fibrosis in mice through inhibition of hepatic stellate cell activation. PLoS One 10(7):e0129743. https://doi.org/10.1371/journal.pone.0129743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Bettaieb A, Jiang JX, Sasaki Y, Chao TI, Kiss Z, Chen X, Tian J, Katsuyama M, Yabe-Nishimura C, Xi Y, Szyndralewiez C, Schroder K, Shah A, Brandes RP, Haj FG, Torok NJ (2015) Hepatocyte nicotinamide adenine dinucleotide phosphate reduced oxidase 4 regulates stress signaling, fibrosis, and insulin sensitivity during development of steatohepatitis in mice. Gastroenterology 149(2):468–480.e410. https://doi.org/10.1053/j.gastro.2015.04.009

    Article  CAS  PubMed  Google Scholar 

  321. Audzeyenka I, Rogacka D, Piwkowska A, Rychlowski M, Bierla JB, Czarnowska E, Angielski S, Jankowski M (2016) Reactive oxygen species are involved in insulin-dependent regulation of autophagy in primary rat podocytes. Int J Biochem Cell Biol 75:23–33. https://doi.org/10.1016/j.biocel.2016.03.015

    Article  CAS  PubMed  Google Scholar 

  322. Nlandu-Khodo S, Dissard R, Hasler U, Schafer M, Pircher H, Jansen-Durr P, Krause KH, Martin PY, de Seigneux S (2016) NADPH oxidase 4 deficiency increases tubular cell death during acute ischemic reperfusion injury. Sci Rep 6:38598. https://doi.org/10.1038/srep38598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Santos CX, Hafstad AD, Beretta M, Zhang M, Molenaar C, Kopec J, Fotinou D, Murray TV, Cobb AM, Martin D, Zeh Silva M, Anilkumar N, Schroder K, Shanahan CM, Brewer AC, Brandes RP, Blanc E, Parsons M, Belousov V, Cammack R, Hider RC, Steiner RA, Shah AM (2016) Targeted redox inhibition of protein phosphatase 1 by Nox4 regulates eIF2alpha-mediated stress signaling. EMBO J 35(3):319–334. https://doi.org/10.15252/embj.201592394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Nlandu Khodo S, Dizin E, Sossauer G, Szanto I, Martin PY, Feraille E, Krause KH, de Seigneux S (2012) NADPH-oxidase 4 protects against kidney fibrosis during chronic renal injury. J Am Soc Nephrol 23(12):1967–1976. https://doi.org/10.1681/ASN.2012040373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Eid AA, Ford BM, Bhandary B, de Cassia CR, Block K, Barnes JL, Gorin Y, Choudhury GG, Abboud HE (2013) Mammalian target of rapamycin regulates Nox4-mediated podocyte depletion in diabetic renal injury. Diabetes 62(8):2935–2947. https://doi.org/10.2337/db12-1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Gorin Y, Block K, Hernandez J, Bhandari B, Wagner B, Barnes JL, Abboud HE (2005) Nox4 NAD(P)H oxidase mediates hypertrophy and fibronectin expression in the diabetic kidney. J Biol Chem 280(47):39616–39626

    Article  CAS  PubMed  Google Scholar 

  327. Eid AA, Lee DY, Roman LJ, Khazim K, Gorin Y (2013) Sestrin 2 and AMPK connect hyperglycemia to Nox4-dependent endothelial nitric oxide synthase uncoupling and matrix protein expression. Mol Cell Biol 33(17):3439–3460. https://doi.org/10.1128/MCB.00217-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Thallas-Bonke V, Jha JC, Gray SP, Barit D, Haller H, Schmidt HH, Coughlan MT, Cooper ME, Forbes JM, Jandeleit-Dahm KA (2014) Nox-4 deletion reduces oxidative stress and injury by PKC-alpha-associated mechanisms in diabetic nephropathy. Physiol Rep 2(11). https://doi.org/10.14814/phy2.12192

  329. Jha JC, Thallas-Bonke V, Banal C, Gray SP, Chow BS, Ramm G, Quaggin SE, Cooper ME, Schmidt HH, Jandeleit-Dahm KA (2016) Podocyte-specific Nox4 deletion affords renoprotection in a mouse model of diabetic nephropathy. Diabetologia 59(2):379–389. https://doi.org/10.1007/s00125-015-3796-0

    Article  CAS  PubMed  Google Scholar 

  330. Jha JC, Gray SP, Barit D, Okabe J, El-Osta A, Namikoshi T, Thallas-Bonke V, Wingler K, Szyndralewiez C, Heitz F, Touyz RM, Cooper ME, Schmidt HH, Jandeleit-Dahm KA (2014) Genetic targeting or pharmacologic inhibition of NADPH oxidase nox4 provides renoprotection in long-term diabetic nephropathy. J Am Soc Nephrol 25(6):1237–1254. https://doi.org/10.1681/ASN.2013070810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Ben Mkaddem S, Pedruzzi E, Werts C, Coant N, Bens M, Cluzeaud F, Goujon JM, Ogier-Denis E, Vandewalle A (2010) Heat shock protein gp96 and NAD(P)H oxidase 4 play key roles in Toll-like receptor 4-activated apoptosis during renal ischemia/reperfusion injury. Cell Death Differ 17(9):1474–1485. https://doi.org/10.1038/cdd.2010.26

    Article  CAS  PubMed  Google Scholar 

  332. Meng XM, Ren GL, Gao L, Yang Q, Li HD, Wu WF, Huang C, Zhang L, Lv XW, Li J (2018) NADPH oxidase 4 promotes cisplatin-induced acute kidney injury via ROS-mediated programmed cell death and inflammation. Lab Invest 98(1):63–78. https://doi.org/10.1038/labinvest.2017.120

    Article  CAS  PubMed  Google Scholar 

  333. Gao L, Wu WF, Dong L, Ren GL, Li HD, Yang Q, Li XF, Xu T, Li Z, Wu BM, Ma TT, Huang C, Huang Y, Zhang L, Lv X, Li J, Meng XM (2016) Protocatechuic aldehyde attenuates cisplatin-induced acute kidney injury by suppressing Nox-mediated oxidative stress and renal inflammation. Front Pharmacol 7:479. https://doi.org/10.3389/fphar.2016.00479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Jung KJ, Min KJ, Park JW, Park KM, Kwon TK (2016) Carnosic acid attenuates unilateral ureteral obstruction-induced kidney fibrosis via inhibition of Akt-mediated Nox4 expression. Free Radic Biol Med 97:50–57. https://doi.org/10.1016/j.freeradbiomed.2016.05.020

    Article  CAS  PubMed  Google Scholar 

  335. Lee DY, Wauquier F, Eid AA, Roman LJ, Ghosh-Choudhury G, Khazim K, Block K, Gorin Y (2013) Nox4 NADPH oxidase mediates peroxynitrite-dependent uncoupling of endothelial nitric-oxide synthase and fibronectin expression in response to angiotensin II: role of mitochondrial reactive oxygen species. J Biol Chem 288(40):28668–28686. https://doi.org/10.1074/jbc.M113.470971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Gregg JL, Turner RM 2nd, Chang G, Joshi D, Zhan Y, Chen L, Maranchie JK (2014) NADPH oxidase NOX4 supports renal tumorigenesis by promoting the expression and nuclear accumulation of HIF2alpha. Cancer Res 74(13):3501–3511. https://doi.org/10.1158/0008-5472.CAN-13-2979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Fitzgerald JP, Nayak B, Shanmugasundaram K, Friedrichs W, Sudarshan S, Eid AA, DeNapoli T, Parekh DJ, Gorin Y, Block K (2012) Nox4 mediates renal cell carcinoma cell invasion through hypoxia-induced interleukin 6- and 8-production. PLoS One 7(1):e30712. https://doi.org/10.1371/journal.pone.0030712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Chang G, Chen L, Lin HM, Lin Y, Maranchie JK (2012) Nox4 inhibition enhances the cytotoxicity of cisplatin in human renal cancer cells. J Exp Ther Oncol 10(1):9–18

    CAS  PubMed  Google Scholar 

  339. Etoh T, Inoguchi T, Kakimoto M, Sonoda N, Kobayashi K, Kuroda J, Sumimoto H, Nawata H (2003) Increased expression of NAD(P)H oxidase subunits, NOX4 and p22phox, in the kidney of streptozotocin-induced diabetic rats and its reversibity by interventive insulin treatment. Diabetologia 46(10):1428–1437

    Article  CAS  PubMed  Google Scholar 

  340. Benter IF, Yousif MH, Dhaunsi GS, Kaur J, Chappell MC, Diz DI (2008) Angiotensin-(1-7) prevents activation of NADPH oxidase and renal vascular dysfunction in diabetic hypertensive rats. Am J Nephrol 28(1):25–33. https://doi.org/10.1159/000108758

    Article  CAS  PubMed  Google Scholar 

  341. Ilatovskaya DV, Blass G, Palygin O, Levchenko V, Pavlov TS, Grzybowski MN, Winsor K, Shuyskiy LS, Geurts AM, Cowley AW Jr, Birnbaumer L, Staruschenko A (2018) A NOX4/TRPC6 pathway in podocyte calcium regulation and renal damage in diabetic kidney disease. J Am Soc Nephrol 29(7):1917–1927. https://doi.org/10.1681/ASN.2018030280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Gorin Y, Cavaglieri RC, Khazim K, Lee DY, Bruno F, Thakur S, Fanti P, Szyndralewiez C, Barnes JL, Block K, Abboud HE (2015) Targeting NADPH oxidase with a novel dual Nox1/Nox4 inhibitor attenuates renal pathology in type 1 diabetes. Am J Physiol Renal Physiol 308(11):F1276–F1287. https://doi.org/10.1152/ajprenal.00396.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. You YH, Quach T, Saito R, Pham J, Sharma K (2016) Metabolomics reveals a key role for fumarate in mediating the effects of NADPH oxidase 4 in diabetic kidney disease. J Am Soc Nephrol 27(2):466–481. https://doi.org/10.1681/ASN.2015030302

    Article  CAS  PubMed  Google Scholar 

  344. Cha JJ, Min HS, Kim KT, Kim JE, Ghee JY, Kim HW, Lee JE, Han JY, Lee G, Ha HJ, Bae YS, Lee SR, Moon SH, Lee SC, Kim G, Kang YS, Cha DR (2017) APX-115, a first-in-class pan-NADPH oxidase (Nox) inhibitor, protects db/db mice from renal injury. Lab Invest 97(4):419–431. https://doi.org/10.1038/labinvest.2017.2

    Article  CAS  PubMed  Google Scholar 

  345. Kwon G, Uddin MJ, Lee G, Jiang S, Cho A, Lee JH, Lee SR, Bae YS, Moon SH, Lee SJ, Cha DR, Ha H (2017) A novel pan-Nox inhibitor, APX-115, protects kidney injury in streptozotocin-induced diabetic mice: possible role of peroxisomal and mitochondrial biogenesis. Oncotarget 8(43):74217–74232. https://doi.org/10.18632/oncotarget.18540

    Article  PubMed  PubMed Central  Google Scholar 

  346. Rajaram RD, Dissard R, Jaquet V, de Seigneux S (2019) Potential benefits and harms of NADPH oxidase type 4 in the kidneys and cardiovascular system. Nephrol Dial Transplant 34(4):567–576. https://doi.org/10.1093/ndt/gfy161

    Article  CAS  PubMed  Google Scholar 

  347. Gorin Y, Block K (2013) Nox4 and diabetic nephropathy: with a friend like this, who needs enemies? Free Radic Biol Med 61:130–142. https://doi.org/10.1016/j.freeradbiomed.2013.03.014

    Article  CAS  PubMed  Google Scholar 

  348. Maalouf RM, Eid AA, Gorin YC, Block K, Escobar GP, Bailey S, Abboud HE (2012) Nox4-derived reactive oxygen species mediate cardiomyocyte injury in early type 1 diabetes. Am J Physiol Cell Physiol 302(3):C597–C604. https://doi.org/10.1152/ajpcell.00331.2011

    Article  CAS  PubMed  Google Scholar 

  349. Den Hartigh LJ, Omer M, Goodspeed L, Wang S, Wietecha T, O’Brien KD, Han CY (2017) Adipocyte-specific deficiency of NADPH oxidase 4 delays the onset of insulin resistance and attenuates adipose tissue inflammation in obesity. Arterioscler Thromb Vasc Biol 37(3):466–475. https://doi.org/10.1161/ATVBAHA.116.308749

    Article  CAS  Google Scholar 

  350. San Martin A, Du P, Dikalova A, Lassegue B, Aleman M, Gongora MC, Brown K, Joseph G, Harrison DG, Taylor WR, Jo H, Griendling KK (2007) Reactive oxygen species-selective regulation of aortic inflammatory gene expression in Type 2 diabetes. Am J Physiol Heart Circ Physiol 292(5):H2073–H2082. https://doi.org/10.1152/ajpheart.00943.2006

    Article  CAS  PubMed  Google Scholar 

  351. Wu X, Williams KJ (2012) NOX4 pathway as a source of selective insulin resistance and responsiveness. Arterioscler Thromb Vasc Biol 32(5):1236–1245. https://doi.org/10.1161/ATVBAHA.111.244525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  352. Sedeek M, Gutsol A, Montezano AC, Burger D, Nguyen Dinh Cat A, Kennedy CR, Burns KD, Cooper ME, Jandeleit-Dahm K, Page P, Szyndralewiez C, Heitz F, Hebert RL, Touyz RM (2013) Renoprotective effects of a novel Nox1/4 inhibitor in a mouse model of Type 2 diabetes. Clin Sci 124(3):191–202. https://doi.org/10.1042/CS20120330

    Article  CAS  Google Scholar 

  353. Li J, Wang JJ, Yu Q, Chen K, Mahadev K, Zhang SX (2010) Inhibition of reactive oxygen species by Lovastatin downregulates vascular endothelial growth factor expression and ameliorates blood-retinal barrier breakdown in db/db mice: role of NADPH oxidase 4. Diabetes 59(6):1528–1538. https://doi.org/10.2337/db09-1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Meng W, Shah KP, Pollack S, Toppila I, Hebert HL, MI MC, Groop L, Ahlqvist E, Lyssenko V, Agardh E, Daniell M, Kaidonis G, Craig JE, Mitchell P, Liew G, Kifley A, Wang JJ, Christiansen MW, Jensen RA, Penman A, Hancock HA, Chen CJ, Correa A, Kuo JZ, Li X, Chen YI, Rotter JI, Klein R, Klein B, Wong TY, Morris AD, ASF D, Colhoun HM, Price AL, Burdon KP, Groop PH, Sandholm N, Grassi MA, Sobrin L, CNA P, Wellcome Trust Case Control Consortium 2 (WTCCC2), Surrogate markers for Micro- and Macro-vascular hard endpoints for Innovative diabetes Tools (SUMMIT) Study Group (2018) A genome-wide association study suggests new evidence for an association of the NADPH Oxidase 4 (NOX4) gene with severe diabetic retinopathy in type 2 diabetes. Acta Ophthalmol 96(7):e811–e819. https://doi.org/10.1111/aos.13769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Handayaningsih AE, Iguchi G, Fukuoka H, Nishizawa H, Takahashi M, Yamamoto M, Herningtyas EH, Okimura Y, Kaji H, Chihara K, Seino S, Takahashi Y (2011) Reactive oxygen species play an essential role in IGF-I signaling and IGF-I-induced myocyte hypertrophy in C2C12 myocytes. Endocrinology 152(3):912–921. https://doi.org/10.1210/en.2010-0981

    Article  CAS  PubMed  Google Scholar 

  356. Steinhorn B, Sartoretto JL, Sorrentino A, Romero N, Kalwa H, Abel ED, Michel T (2017) Insulin-dependent metabolic and inotropic responses in the heart are modulated by hydrogen peroxide from NADPH-oxidase isoforms NOX2 and NOX4. Free Radic Biol Med 113:16–25. https://doi.org/10.1016/j.freeradbiomed.2017.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Jiao W, Ji J, Li F, Guo J, Zheng Y, Li S, Xu W (2019) Activation of the NotchNox4reactive oxygen species signaling pathway induces cell death in high glucosetreated human retinal endothelial cells. Mol Med Rep 19(1):667–677. https://doi.org/10.3892/mmr.2018.9637

    Article  CAS  PubMed  Google Scholar 

  358. Meng D, Mei A, Liu J, Kang X, Shi X, Qian R, Chen S (2012) NADPH oxidase 4 mediates insulin-stimulated HIF-1alpha and VEGF expression, and angiogenesis in vitro. PLoS One 7(10):e48393. https://doi.org/10.1371/journal.pone.0048393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  359. Williams CR, Lu X, Sutliff RL, Hart CM (2012) Rosiglitazone attenuates NF-kappaB-mediated Nox4 upregulation in hyperglycemia-activated endothelial cells. Am J Physiol Cell Physiol 303(2):C213–C223. https://doi.org/10.1152/ajpcell.00227.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Plecita-Hlavata L, Jaburek M, Holendova B, Tauber J, Pavluch V, Berkova Z, Cahova M, Schroder K, Brandes RP, Siemen D, Jezek P (2020) Glucose-stimulated insulin secretion fundamentally requires H2O2 signaling by NADPH oxidase 4. Diabetes 69(7):1341–1354. https://doi.org/10.2337/db19-1130

    Article  CAS  PubMed  Google Scholar 

  361. Mandal CC, Ganapathy S, Gorin Y, Mahadev K, Block K, Abboud HE, Harris SE, Ghosh-Choudhury G, Ghosh-Choudhury N (2011) Reactive oxygen species derived from Nox4 mediate BMP2 gene transcription and osteoblast differentiation. Biochem J 433(2):393–402. https://doi.org/10.1042/BJ20100357

    Article  CAS  PubMed  Google Scholar 

  362. Goettsch C, Babelova A, Trummer O, Erben RG, Rauner M, Rammelt S, Weissmann N, Weinberger V, Benkhoff S, Kampschulte M, Obermayer-Pietsch B, Hofbauer LC, Brandes RP, Schroder K (2013) NADPH oxidase 4 limits bone mass by promoting osteoclastogenesis. J Clin Invest 123(11):4731–4738. https://doi.org/10.1172/JCI67603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Sun J, Chen W, Li S, Yang S, Zhang Y, Hu X, Qiu H, Wu J, Xu S, Chu T (2021) Nox4 promotes RANKL-induced autophagy and osteoclastogenesis via activating ROS/PERK/eIF-2alpha/ATF4 pathway. Front Pharmacol 12:751845. https://doi.org/10.3389/fphar.2021.751845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  364. Chen L, Xiao J, Kuroda J, Ago T, Sadoshima J, Cohen RA, Tong X (2014) Both hydrogen peroxide and transforming growth factor beta 1 contribute to endothelial Nox4 mediated angiogenesis in endothelial Nox4 transgenic mouse lines. Biochim Biophys Acta 1842(12 Pt A):2489–2499. https://doi.org/10.1016/j.bbadis.2014.10.007

    Article  CAS  PubMed  Google Scholar 

  365. Peshavariya HM, Chan EC, Liu GS, Jiang F, Dusting GJ (2014) Transforming growth factor-beta1 requires NADPH oxidase 4 for angiogenesis in vitro and in vivo. J Cell Mol Med 18(6):1172–1183. https://doi.org/10.1111/jcmm.12263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  366. Hakami NY, Dusting GJ, Peshavariya HM (2016) Trichostatin A, a histone deacetylase inhibitor suppresses NADPH Oxidase 4-derived redox signalling and angiogenesis. J Cell Mol Med 20(10):1932–1944. https://doi.org/10.1111/jcmm.12885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  367. Peshavariya HM, Liu GS, Chang CW, Jiang F, Chan EC, Dusting GJ (2014) Prostacyclin signaling boosts NADPH oxidase 4 in the endothelium promoting cytoprotection and angiogenesis. Antioxid Redox Signal 20(17):2710–2725. https://doi.org/10.1089/ars.2013.5374

    Article  CAS  PubMed  Google Scholar 

  368. Vogel J, Kruse C, Zhang M, Schroder K (2015) Nox4 supports proper capillary growth in exercise and retina neo-vascularization. J Physiol 593(9):2145–2154. https://doi.org/10.1113/jphysiol.2014.284901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  369. Yu MO, Park KJ, Park DH, Chung YG, Chi SG, Kang SH (2015) Reactive oxygen species production has a critical role in hypoxia-induced Stat3 activation and angiogenesis in human glioblastoma. J Neurooncol 125(1):55–63. https://doi.org/10.1007/s11060-015-1889-8

    Article  CAS  PubMed  Google Scholar 

  370. Wang J, Hong Z, Zeng C, Yu Q, Wang H (2014) NADPH oxidase 4 promotes cardiac microvascular angiogenesis after hypoxia/reoxygenation in vitro. Free Radic Biol Med 69:278–288. https://doi.org/10.1016/j.freeradbiomed.2014.01.027

    Article  CAS  PubMed  Google Scholar 

  371. Zhuang J, Jiang T, Lu D, Luo Y, Zheng C, Feng J, Yang D, Chen C, Yan X (2010) NADPH oxidase 4 mediates reactive oxygen species induction of CD146 dimerization in VEGF signal transduction. Free Radic Biol Med 49(2):227–236. https://doi.org/10.1016/j.freeradbiomed.2010.04.007

    Article  CAS  PubMed  Google Scholar 

  372. Datla SR, Peshavariya H, Dusting GJ, Mahadev K, Goldstein BJ, Jiang F (2007) Important role of Nox4 type NADPH oxidase in angiogenic responses in human microvascular endothelial cells in vitro. Arterioscler Thromb Vasc Biol 27(11):2319–2324. https://doi.org/10.1161/ATVBAHA.107.149450

    Article  CAS  PubMed  Google Scholar 

  373. Helfinger V, Henke N, Harenkamp S, Walter M, Epah J, Penski C, Mittelbronn M, Schroder K (2016) The NADPH Oxidase Nox4 mediates tumour angiogenesis. Acta Physiol (Oxf) 216(4):435–446. https://doi.org/10.1111/apha.12625

    Article  CAS  PubMed  Google Scholar 

  374. Li Y, Han N, Yin T, Huang L, Liu S, Liu D, Xie C, Zhang M (2014) Lentivirus-mediated Nox4 shRNA invasion and angiogenesis and enhances radiosensitivity in human glioblastoma. Oxid Med Cell Longev 2014:581732. https://doi.org/10.1155/2014/581732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  375. Meitzler JL, Konate MM, Doroshow JH (2019) Hydrogen peroxide-producing NADPH oxidases and the promotion of migratory phenotypes in cancer. Arch Biochem Biophys 675:108076. https://doi.org/10.1016/j.abb.2019.108076

    Article  CAS  PubMed  Google Scholar 

  376. Meitzler JL, Makhlouf HR, Antony S, Wu Y, Butcher D, Jiang G, Juhasz A, Lu J, Dahan I, Jansen-Durr P, Pircher H, Shah AM, Roy K, Doroshow JH (2017) Decoding NADPH oxidase 4 expression in human tumors. Redox Biol 13:182–195. https://doi.org/10.1016/j.redox.2017.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  377. Lee JK, Edderkaoui M, Truong P, Ohno I, Jang KT, Berti A, Pandol SJ, Gukovskaya AS (2007) NADPH oxidase promotes pancreatic cancer cell survival via inhibiting JAK2 dephosphorylation by tyrosine phosphatases. Gastroenterology 133(5):1637–1648. https://doi.org/10.1053/j.gastro.2007.08.022

    Article  CAS  PubMed  Google Scholar 

  378. Luengo E, Trigo-Alonso P, Fernandez-Mendivil C, Nunez A, Campo MD, Porrero C, Garcia-Magro N, Negredo P, Senar S, Sanchez-Ramos C, Bernal JA, Rabano A, Hoozemans J, Casas AI, Schmidt H, Lopez MG (2021) Implication of type 4 NADPH oxidase (NOX4) in tauopathy. Redox Biol 49:102210. https://doi.org/10.1016/j.redox.2021.102210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  379. Park MW, Cha HW, Kim J, Kim JH, Yang H, Yoon S, Boonpraman N, Yi SS, Yoo ID, Moon JS (2021) NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer’s diseases. Redox Biol 41:101947. https://doi.org/10.1016/j.redox.2021.101947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  380. Jiang S, Zhao Y, Zhang T, Lan J, Yang J, Yuan L, Zhang Q, Pan K, Zhang K (2018) Galantamine inhibits beta-amyloid-induced cytostatic autophagy in PC12 cells through decreasing ROS production. Cell Prolif 51(3):e12427. https://doi.org/10.1111/cpr.12427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  381. Nishimura A, Ago T, Kuroda J, Arimura K, Tachibana M, Nakamura K, Wakisaka Y, Sadoshima J, Iihara K, Kitazono T (2016) Detrimental role of pericyte Nox4 in the acute phase of brain ischemia. J Cereb Blood Flow Metab 36(6):1143–1154. https://doi.org/10.1177/0271678X15606456

    Article  CAS  PubMed  Google Scholar 

  382. Chen YH, Lu HI, Lo CM, Hsiao CC, Li SH (2020) NOX4 overexpression is a poor prognostic factor in patients undergoing curative esophagectomy for esophageal squamous cell carcinoma. Surgery 167(3):620–627. https://doi.org/10.1016/j.surg.2019.11.017

    Article  PubMed  Google Scholar 

  383. Cross AR, Segal AW (2004) The NADPH oxidase of professional phagocytes—prototype of the NOX electron transport chain systems. Biochim Biophys Acta 1657(1):1–22. https://doi.org/10.1016/j.bbabio.2004.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  384. Joo JH, Huh JE, Lee JH, Park DR, Lee Y, Lee SG, Choi S, Lee HJ, Song SW, Jeong Y, Goo JI, Choi Y, Baek HK, Yi SS, Park SJ, Lee JE, Ku SK, Lee WJ, Lee KI, Lee SY, Bae YS (2016) A novel pyrazole derivative protects from ovariectomy-induced osteoporosis through the inhibition of NADPH oxidase. Sci Rep 6:22389. https://doi.org/10.1038/srep22389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  385. Chen Z, Tao S, Li X, Zeng X, Zhang M, Yao Q (2019) Anagliptin protects neuronal cells against endogenous amyloid beta (Aβ)-induced cytotoxicity and apoptosis. Artif Cells Nanomed Biotechnol 47(1):2213–2220. https://doi.org/10.1080/21691401.2019.1609979

    Article  CAS  PubMed  Google Scholar 

  386. Anvari E, Wikstrom P, Walum E, Welsh N (2015) The novel NADPH oxidase 4 inhibitor GLX351322 counteracts glucose intolerance in high-fat diet-treated C57BL/6 mice. Free Radic Res 49(11):1308–1318. https://doi.org/10.3109/10715762.2015.1067697

    Article  CAS  PubMed  Google Scholar 

  387. Degasper C, Brunner A, Sampson N, Tsibulak I, Wieser V, Welponer H, Marth C, Fiegl H, Zeimet AG (2019) NADPH oxidase 4 expression in the normal endometrium and in endometrial cancer. Tumour Biol 41(2):1010428319830002. https://doi.org/10.1177/1010428319830002

    Article  CAS  PubMed  Google Scholar 

  388. Boudreau HE, Casterline BW, Rada B, Korzeniowska A, Leto TL (2012) Nox4 involvement in TGF-beta and SMAD3-driven induction of the epithelial-to-mesenchymal transition and migration of breast epithelial cells. Free Radic Biol Med 53(7):1489–1499. https://doi.org/10.1016/j.freeradbiomed.2012.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  389. Hiraga R, Kato M, Miyagawa S, Kamata T (2013) Nox4-derived ROS signaling contributes to TGF-beta-induced epithelial-mesenchymal transition in pancreatic cancer cells. Anticancer Res 33(10):4431–4438

    CAS  PubMed  Google Scholar 

  390. Seo JM, Park S, Kim JH (2012) Leukotriene B4 receptor-2 promotes invasiveness and metastasis of ovarian cancer cells through signal transducer and activator of transcription 3 (STAT3)-dependent up-regulation of matrix metalloproteinase 2. J Biol Chem 287(17):13840–13849. https://doi.org/10.1074/jbc.M111.317131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  391. Diaz B, Shani G, Pass I, Anderson D, Quintavalle M, Courtneidge SA (2009) Tks5-dependent, nox-mediated generation of reactive oxygen species is necessary for invadopodia formation. Sci Signal 2(88):ra53. https://doi.org/10.1126/scisignal.2000368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  392. Wang X, Liu Z, Sun J, Song X, Bian M, Wang F, Yan F, Yu Z (2021) Inhibition of NADPH oxidase 4 attenuates lymphangiogenesis and tumor metastasis in breast cancer. FASEB J 35(4):e21531. https://doi.org/10.1096/fj.202002533R

    Article  CAS  PubMed  Google Scholar 

  393. Ma WF, Boudreau HE, Leto TL (2021) Pan-cancer analysis shows TP53 mutations modulate the association of NOX4 with genetic programs of cancer progression and clinical outcome. Antioxidants (Basel) 10(2). https://doi.org/10.3390/antiox10020235

  394. Lin XL, Yang L, Fu SW, Lin WF, Gao YJ, Chen HY, Ge ZZ (2017) Overexpression of NOX4 predicts poor prognosis and promotes tumor progression in human colorectal cancer. Oncotarget 8(20):33586–33600. https://doi.org/10.18632/oncotarget.16829

    Article  PubMed  PubMed Central  Google Scholar 

  395. Eun HS, Cho SY, Joo JS, Kang SH, Moon HS, Lee ES, Kim SH, Lee BS (2017) Gene expression of NOX family members and their clinical significance in hepatocellular carcinoma. Sci Rep 7(1):11060. https://doi.org/10.1038/s41598-017-11280-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  396. Eun HS, Chun K, Song IS, Oh CH, Seong IO, Yeo MK, Kim KH (2019) High nuclear NADPH oxidase 4 expression levels are correlated with cancer development and poor prognosis in hepatocellular carcinoma. Pathology 51(6):579–585. https://doi.org/10.1016/j.pathol.2019.05.004

    Article  CAS  PubMed  Google Scholar 

  397. Kaushik D, Ashcraft KA, Wang H, Shanmugasundaram K, Shah PK, Gonzalez G, Nazarullah A, Tye CB, Liss MA, Pruthi DK, Mansour AM, Chowdhury W, Bacich D, Zhang H, Watson AL, Block K, O'Keefe D, Rodriguez R (2020) Nuclear NADPH oxidase-4 associated with disease progression in renal cell carcinoma. Transl Res 223:1–14. https://doi.org/10.1016/j.trsl.2020.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  398. Tang CT, Lin XL, Wu S, Liang Q, Yang L, Gao YJ, Ge ZZ (2018) NOX4-driven ROS formation regulates proliferation and apoptosis of gastric cancer cells through the GLI1 pathway. Cell Signal 46:52–63. https://doi.org/10.1016/j.cellsig.2018.02.007

    Article  CAS  PubMed  Google Scholar 

  399. Chen YH, Chien CY, Fang FM, Huang TL, Su YY, Luo SD, Huang CC, Lin WC, Li SH (2018) Nox4 overexpression as a poor prognostic factor in patients with oral tongue squamous cell carcinoma receiving surgical resection. J Clin Med 7(12). https://doi.org/10.3390/jcm7120497

  400. Hensley K, Hall N, Subramaniam R, Cole P, Harris M, Aksenov M, Aksenova M, Gabbita SP, Wu JF, Carney JM et al (1995) Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J Neurochem 65(5):2146–2156. https://doi.org/10.1046/j.1471-4159.1995.65052146.x

    Article  CAS  PubMed  Google Scholar 

  401. Majumder P, Chanda K, Das D, Singh BK, Chakrabarti P, Jana NR, Mukhopadhyay D (2021) A nexus of miR-1271, PAX4 and ALK/RYK influences the cytoskeletal architectures in Alzheimer’s disease and type 2 diabetes. Biochem J 478(17):3297–3317. https://doi.org/10.1042/BCJ20210175

    Article  CAS  PubMed  Google Scholar 

  402. Austin SA, Santhanam AV, d’Uscio LV, Katusic ZS (2015) Regional heterogeneity of cerebral microvessels and brain susceptibility to oxidative stress. PLoS One 10(12):e0144062. https://doi.org/10.1371/journal.pone.0144062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  403. Thummayot S, Tocharus C, Jumnongprakhon P, Suksamrarn A, Tocharus J (2018) Cyanidin attenuates Abeta25-35-induced neuroinflammation by suppressing NF-kappaB activity downstream of TLR4/NOX4 in human neuroblastoma cells. Acta Pharmacol Sin 39(9):1439–1452. https://doi.org/10.1038/aps.2017.203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  404. Oguchi T, Ono R, Tsuji M, Shozawa H, Somei M, Inagaki M, Mori Y, Yasumoto T, Ono K, Kiuchi Y (2017) Cilostazol suppresses aβ-induced neurotoxicity in SH-SY5Y cells through inhibition of oxidative stress and MAPK signaling pathway. Front Aging Neurosci 9:337. https://doi.org/10.3389/fnagi.2017.00337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  405. Majumder P, Roy K, Singh BK, Jana NR, Mukhopadhyay D (2017) Cellular levels of Grb2 and cytoskeleton stability are correlated in a neurodegenerative scenario. Dis Model Mech 10(5):655–669. https://doi.org/10.1242/dmm.027748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  406. Sagy-Bross C, Hadad N, Levy R (2013) Cytosolic phospholipase A2alpha upregulation mediates apoptotic neuronal death induced by aggregated amyloid-beta peptide1-42. Neurochem Int 63(6):541–550. https://doi.org/10.1016/j.neuint.2013.09.007

    Article  CAS  PubMed  Google Scholar 

  407. Ha JS, Sung HY, Lim HM, Kwon KS, Park SS (2012) PI3K-ERK1/2 activation contributes to extracellular H2O2 generation in amyloid beta toxicity. Neurosci Lett 526(2):112–117. https://doi.org/10.1016/j.neulet.2012.08.023

    Article  CAS  PubMed  Google Scholar 

  408. Bruce-Keller AJ, Gupta S, Knight AG, Beckett TL, McMullen JM, Davis PR, Murphy MP, Van Eldik LJ, St Clair D, Keller JN (2011) Cognitive impairment in humanized APPxPS1 mice is linked to Abeta(1-42) and NOX activation. Neurobiol Dis 44(3):317–326. https://doi.org/10.1016/j.nbd.2011.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  409. Li H, Wang Y, Feng D, Liu Y, Xu M, Gao A, Tian F, Zhang L, Cui Y, Wang Z, Chen G (2014) Alterations in the time course of expression of the Nox family in the brain in a rat experimental cerebral ischemia and reperfusion model: effects of melatonin. J Pineal Res 57(1):110–119. https://doi.org/10.1111/jpi.12148

    Article  CAS  PubMed  Google Scholar 

  410. Kuroda J, Ago T, Nishimura A, Nakamura K, Matsuo R, Wakisaka Y, Kamouchi M, Kitazono T (2014) Nox4 is a major source of superoxide production in human brain pericytes. Journal of vascular research 51(6):429–438. https://doi.org/10.1159/000369930

    Article  CAS  PubMed  Google Scholar 

  411. Casas AI, Geuss E, Kleikers PWM, Mencl S, Herrmann AM, Buendia I, Egea J, Meuth SG, Lopez MG, Kleinschnitz C, Schmidt H (2017) NOX4-dependent neuronal autotoxicity and BBB breakdown explain the superior sensitivity of the brain to ischemic damage. Proc Natl Acad Sci U S A 114(46):12315–12320. https://doi.org/10.1073/pnas.1705034114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  412. He W, Wang Q, Gu L, Zhong L, Liu D (2018) NOX4 rs11018628 polymorphism associates with a decreased risk and better short-term recovery of ischemic stroke. Exp Ther Med 16(6):5258–5264. https://doi.org/10.3892/etm.2018.6874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  413. Pan J, Lao L, Shen J, Huang S, Zhang T, Fan W, Yan M, Gu J, Liu W (2021) Utility of serum NOX4 as a potential prognostic biomarker for aneurysmal subarachnoid hemorrhage. Clin Chim Acta 517:9–14. https://doi.org/10.1016/j.cca.2021.02.007

    Article  CAS  PubMed  Google Scholar 

  414. Lee SR, An EJ, Kim J, Bae YS (2020) Function of NADPH oxidases in diabetic nephropathy and development of Nox inhibitors. Biomol Ther (Seoul) 28(1):25–33. https://doi.org/10.4062/biomolther.2019.188

    Article  CAS  PubMed  Google Scholar 

  415. Wang X, Elksnis A, Wikstrom P, Walum E, Welsh N, Carlsson PO (2018) The novel NADPH oxidase 4 selective inhibitor GLX7013114 counteracts human islet cell death in vitro. PLoS One 13(9):e0204271. https://doi.org/10.1371/journal.pone.0204271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  416. Das S, Wikstrom P, Walum E, Lovicu FJ (2019) A novel NADPH oxidase inhibitor targeting Nox4 in TGFbeta-induced lens epithelial to mesenchymal transition. Exp Eye Res 185:107692. https://doi.org/10.1016/j.exer.2019.107692

    Article  CAS  PubMed  Google Scholar 

  417. Dionysopoulou S, Wikstrom P, Walum E, Thermos K (2020) Effect of NADPH oxidase inhibitors in an experimental retinal model of excitotoxicity. Exp Eye Res 200:108232. https://doi.org/10.1016/j.exer.2020.108232

    Article  CAS  PubMed  Google Scholar 

  418. Szekeres FLM, Walum E, Wikstrom P, Arner A (2021) A small molecule inhibitor of Nox2 and Nox4 improves contractile function after ischemia-reperfusion in the mouse heart. Sci Rep 11(1):11970. https://doi.org/10.1038/s41598-021-91575-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  419. Laleu B, Gaggini F, Orchard M, Fioraso-Cartier L, Cagnon L, Houngninou-Molango S, Gradia A, Duboux G, Merlot C, Heitz F, Szyndralewiez C, Page P (2010) First in class, potent, and orally bioavailable NADPH oxidase isoform 4 (Nox4) inhibitors for the treatment of idiopathic pulmonary fibrosis. J Med Chem 53(21):7715–7730. https://doi.org/10.1021/jm100773e

    Article  CAS  PubMed  Google Scholar 

  420. Sun Q, Zhang W, Zhong W, Sun X, Zhou Z (2017) Pharmacological inhibition of NOX4 ameliorates alcohol-induced liver injury in mice through improving oxidative stress and mitochondrial function. Biochim Biophys Acta Gen Subj 1861(1 Pt A):2912–2921. https://doi.org/10.1016/j.bbagen.2016.09.009

    Article  CAS  PubMed  Google Scholar 

  421. Nishio T, Hu R, Koyama Y, Liang S, Rosenthal SB, Yamamoto G, Karin D, Baglieri J, Ma HY, Xu J, Liu X, Dhar D, Iwaisako K, Taura K, Brenner DA, Kisseleva T (2019) Activated hepatic stellate cells and portal fibroblasts contribute to cholestatic liver fibrosis in MDR2 knockout mice. J Hepatol 71(3):573–585. https://doi.org/10.1016/j.jhep.2019.04.012

    Article  PubMed  Google Scholar 

  422. Zhao QD, Viswanadhapalli S, Williams P, Shi Q, Tan C, Yi X, Bhandari B, Abboud HE (2015) NADPH oxidase 4 induces cardiac fibrosis and hypertrophy through activating Akt/mTOR and NFkappaB signaling pathways. Circulation 131(7):643–655. https://doi.org/10.1161/CIRCULATIONAHA.114.011079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  423. Zeng SY, Yang L, Yan QJ, Gao L, Lu HQ, Yan PK (2019) Nox1/4 dual inhibitor GKT137831 attenuates hypertensive cardiac remodelling associating with the inhibition of ADAM17-dependent proinflammatory cytokines-induced signalling pathways in the rats with abdominal artery constriction. Biomed Pharmacother 109:1907–1914. https://doi.org/10.1016/j.biopha.2018.11.077

    Article  CAS  PubMed  Google Scholar 

  424. Appukuttan B, Ma Y, Stempel A, Ashander LM, Deliyanti D, Wilkinson-Berka JL, Smith JR (2018) Effect of NADPH oxidase 1 and 4 blockade in activated human retinal endothelial cells. Clin Exp Ophthalmol 46(6):652–660. https://doi.org/10.1111/ceo.13155

    Article  PubMed  Google Scholar 

  425. Wilkinson-Berka JL, Deliyanti D, Rana I, Miller AG, Agrotis A, Armani R, Szyndralewiez C, Wingler K, Touyz RM, Cooper ME, Jandeleit-Dahm KA, Schmidt HH (2014) NADPH oxidase, NOX1, mediates vascular injury in ischemic retinopathy. Antioxid Redox Signal 20(17):2726–2740. https://doi.org/10.1089/ars.2013.5357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  426. Gray SP, Di Marco E, Okabe J, Szyndralewiez C, Heitz F, Montezano AC, de Haan JB, Koulis C, El-Osta A, Andrews KL, Chin-Dusting JP, Touyz RM, Wingler K, Cooper ME, Schmidt HH, Jandeleit-Dahm KA (2013) NADPH oxidase 1 plays a key role in diabetes mellitus-accelerated atherosclerosis. Circulation 127(18):1888–1902. https://doi.org/10.1161/CIRCULATIONAHA.112.132159

    Article  CAS  PubMed  Google Scholar 

  427. Ford K, Hanley CJ, Mellone M, Szyndralewiez C, Heitz F, Wiesel P, Wood O, Machado M, Lopez MA, Ganesan AP, Wang C, Chakravarthy A, Fenton TR, King EV, Vijayanand P, Ottensmeier CH, Al-Shamkhani A, Savelyeva N, Thomas GJ (2020) NOX4 inhibition potentiates immunotherapy by overcoming cancer-associated fibroblast-mediated CD8 T-cell exclusion from tumors. Cancer Res 80(9):1846–1860. https://doi.org/10.1158/0008-5472.CAN-19-3158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  428. Reutens AT, Jandeleit-Dahm K, Thomas M, Bach LA, Colman PG, Davis TME, D'Emden M, Ekinci EI, Fulcher G, Hamblin PS, Kotowicz MA, MacIsaac RJ, Morbey C, Simmons D, Soldatos G, Wittert G, Wu T, Cooper ME, Shaw JE (2019) A physician-initiated double-blind, randomised, placebo-controlled, phase 2 study evaluating the efficacy and safety of inhibition of NADPH oxidase with the first-in-class Nox-1/4 inhibitor, GKT137831, in adults with type 1 diabetes and persistently elevated urinary albumin excretion: protocol and statistical considerations. Contemp Clin Trials 90:105892. https://doi.org/10.1016/j.cct.2019.105892

    Article  PubMed  Google Scholar 

  429. De Livera AM, Reutens A, Cooper M, Thomas M, Jandeleit-Dahm K, Shaw JE, Salim A (2020) Evaluating the efficacy and safety of GKT137831 in adults with type 1 diabetes and persistently elevated urinary albumin excretion: a statistical analysis plan. Trials 21(1):459. https://doi.org/10.1186/s13063-020-04404-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  430. Augsburger F, Filippova A, Rasti D, Seredenina T, Lam M, Maghzal G, Mahiout Z, Jansen-Durr P, Knaus UG, Doroshow J, Stocker R, Krause KH, Jaquet V (2019) Pharmacological characterization of the seven human NOX isoforms and their inhibitors. Redox Biol 26:101272. https://doi.org/10.1016/j.redox.2019.101272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

LH received support from the Department of Veterans Affairs (BX006003), the Office of the Assistance Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program under award no. W81XWH-17-1-0443, and National Institutes of Health grants 1R21AG054766-01 and 1R41HL151043-01A1. KKG is supported by NIH grants R21AI163427 and R56HL152167.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathy K. Griendling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hecker, L., Kato, K., Griendling, K.K. (2023). Nox4: From Discovery to Pathophysiology. In: Pick, E. (eds) NADPH Oxidases Revisited: From Function to Structure. Springer, Cham. https://doi.org/10.1007/978-3-031-23752-2_12

Download citation

Publish with us

Policies and ethics