Skip to main content
Log in

Reactive oxygen species in TNFα-induced signaling and cell death

  • Minireview
  • Published:
Molecules and Cells

Abstract

TNFα is a pleotropic cytokine that initiates many downstream signaling pathways, including NF-κB activation, MAP kinase activation and the induction of both apoptosis and necrosis. TNFα has shown to lead to reactive oxygen species generation through activation of NADPH oxidase, through mitochondrial pathways, or other enzymes. As discussed, ROS play a role in potentiation or inhibition of many of these signaling pathways. We particularly discuss the role of sustained JNK activation potentiated by ROS, which generally is supportive of apoptosis and “necrotic cell death” through various mechanisms, while ROS could have inhibitory or stimulatory roles in NF-κB signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, V., Yin, Z., Fuchs, S.Y., Benezra, M., Rosario, L., Tew, K.D., Pincus, M.R., Sardana, M., Henderson, C.J., Wolf, C.R., et al. (1999). Regulation of JNK signaling by GSTp. EMBO J. 18, 1321–1334.

    Article  CAS  PubMed  Google Scholar 

  • Akimaru, K., Utsumi, T., Sato, E.F., Klostergaard, J., Inoue, M., and Utsumi, K. (1992). Role of tyrosyl phosphorylation in neutrophil priming by tumor necrosis factor-alpha and granulocyte colony stimulating factor. Arch. Biochem. Biophys. 298, 703–709.

    Article  CAS  PubMed  Google Scholar 

  • Andrieu-Abadie, N., Gouaze, V., Salvayre, R., and Levade, T. (2001). Ceramide in apoptosis signaling: relationship with oxidative stress. Free Radic. Biol. Med. 31, 717–728.

    Article  CAS  PubMed  Google Scholar 

  • Anilkumar, N., Weber, R., Zhang, M., Brewer, A., and Shah, A.M. (2008). Nox4 and nox2 NADPH oxidases mediate distinct cellular redox signaling responses to agonist stimulation. Arterioscler. Thromb. Vasc. Biol. 28, 1347–1354.

    Article  CAS  PubMed  Google Scholar 

  • Artal-Sanz, M., Samara, C., Syntichaki, P., and Tavernarakis, N. (2006). Lysosomal biogenesis and function is critical for necrotic cell death in Caenorhabditis elegans. J. Cell Biol. 173, 231–239.

    Article  CAS  PubMed  Google Scholar 

  • Banfi, B., Clark, R.A., Steger, K., and Krause, K.H. (2003). Two novel proteins activate superoxide generation by the NADPH oxidase NOX1. J. Biol. Chem. 278, 3510–3513.

    Article  CAS  PubMed  Google Scholar 

  • Baud, V., Liu, Z.G., Bennett, B., Suzuki, N., Xia, Y., and Karin, M. (1999). Signaling by proinflammatory cytokines: oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an amino-terminal effector domain. Genes Dev. 13, 1297–1308.

    Article  CAS  PubMed  Google Scholar 

  • Beinke, S., and Ley, S.C. (2004). Functions of NF-kappaB1 and NF-kappaB2 in immune cell biology. Biochem. J. 382, 393–409.

    Article  CAS  PubMed  Google Scholar 

  • Bertrand, M.J., Milutinovic, S., Dickson, K.M., Ho, W.C., Boudreault, A., Durkin, J., Gillard, J.W., Jaquith, J.B., Morris, S.J., and Barker, P.A. (2008). cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol. Cell 30, 689–700.

    Article  CAS  PubMed  Google Scholar 

  • Blonska, M., Shambharkar, P.B., Kobayashi, M., Zhang, D., Sakurai, H., Su, B., and Lin, X. (2005). TAK1 is recruited to the tumor necrosis factor-alpha (TNF-alpha). receptor 1 complex in a receptor-interacting protein (RIP).-dependent manner and cooperates with MEKK3 leading to NF-kappaB activation. J. Biol. Chem. 280, 43056–43063.

    Article  CAS  PubMed  Google Scholar 

  • Bogoyevitch, M.A., and Kobe, B. (2006). Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases. Microbiol. Mol. Biol. Rev. 70, 1061–1095.

    Article  CAS  PubMed  Google Scholar 

  • Bonizzi, G., and Karin, M. (2004). The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 25, 280–288.

    Article  CAS  PubMed  Google Scholar 

  • Boveris, A., and Chance, B. (1973). The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem. J. 134, 707–716.

    CAS  PubMed  Google Scholar 

  • Boveris, A., and Cadenas, E. (1975). Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration. FEBS Lett. 54, 311–314.

    Article  CAS  PubMed  Google Scholar 

  • Boya, P., and Kroemer, G. (2008). Lysosomal membrane permeabilization in cell death. Oncogene 27, 6434–6451.

    Article  CAS  PubMed  Google Scholar 

  • Brancho, D., Ventura, J.J., Jaeschke, A., Doran, B., Flavell, R.A., and Davis, R.J. (2005). Role of MLK3 in the regulation of mitogen-activated protein kinase signaling cascades. Mol. Cell. Biol. 25, 3670–3681.

    Article  CAS  PubMed  Google Scholar 

  • Brown, D.I., and Griendling, K.K. (2009). Nox proteins in signal transduction. Free Radic. Biol. Med. 47, 1239–1253.

    Article  CAS  PubMed  Google Scholar 

  • Byun, H.S., Won, M., Park, K.A., Kim, Y.R., Choi, B.L., Lee, H., Hong, J.H., Piao, L., Park, J., Kim, J.M., et al. (2008). Prevention of TNF-induced necrotic cell death by rottlerin through a Nox1 NADPH oxidase. Exp. Mol. Med. 40, 186–195.

    Article  CAS  PubMed  Google Scholar 

  • Cardone, M.H., Salvesen, G.S., Widmann, C., Johnson, G., and Frisch, S.M. (1997). The regulation of anoikis: MEKK-1 activation requires cleavage by caspases. Cell 90, 315–323.

    Article  CAS  PubMed  Google Scholar 

  • Chang, L., Kamata, H., Solinas, G., Luo, J.L., Maeda, S., Venuprasad, K., Liu, Y.C., and Karin, M. (2006). The E3 ubiquitin ligase itch couples JNK activation to TNFalpha-induced cell death by inducing c-FLIP(L) turnover. Cell 124, 601–613.

    Article  CAS  PubMed  Google Scholar 

  • Chenevier-Gobeaux, C., Simonneau, C., Therond, P., Bonnefont-Rousselot, D., Poiraudeau, S., Ekindjian, O.G., and Borderie, D. (2007). Implication of cytosolic phospholipase A2 (cPLA2) in the regulation of human synoviocyte NADPH oxidase (Nox2) activity. Life Sci. 81, 1050–1058.

    Article  CAS  PubMed  Google Scholar 

  • Cho, Y.S., Challa, S., Moquin, D., Genga, R., Ray, T.D., Guildford, M., and Chan, F.K. (2009). Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123.

    Article  CAS  PubMed  Google Scholar 

  • Condino-Neto, A., and Newburger, P.E. (1998). NADPH oxidase activity and cytochrome b558 content of human Epstein-Barrvirus-transformed B lymphocytes correlate with expression of genes encoding components of the oxidase system. Arch. Biochem. Biophys. 360, 158–164.

    Article  CAS  PubMed  Google Scholar 

  • Costantini, P., Chernyak, B.V., Petronilli, V., and Bernardi, P. (1995). Selective inhibition of the mitochondrial permeability transition pore at the oxidation-reduction sensitive dithiol by monobromobimane. FEBS Lett. 362, 239–242.

    Article  CAS  PubMed  Google Scholar 

  • Dang, P.M., Stensballe, A., Boussetta, T., Raad, H., Dewas, C., Kroviarski, Y., Hayem, G., Jensen, O.N., Gougerot-Pocidalo, M.A., and El-Benna, J. (2006). A specific p47phox -serine phosphorylated by convergent MAPKs mediates neutrophil NADPH oxidase priming at inflammatory sites. J. Clin. Invest. 16, 2033–2043.

    Article  CAS  Google Scholar 

  • De Keulenaer, G.W., Alexander, R.W., Ushio-Fukai, M., Ishizaka, N., and Griendling, K.K. (1998). Tumour necrosis factor alpha activates a p22phox-based NADH oxidase in vascular smooth muscle. Biochem. J. 329, 653–657.

    PubMed  Google Scholar 

  • Degterev, A., Huang, Z., Boyce, M., Li, Y., Jagtap, P., Mizushima, N., Cuny, G.D., Mitchison, T.J., Moskowitz, M.A., and Yuan, J. (2005). Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. 1, 112–119.

    Article  CAS  PubMed  Google Scholar 

  • Degterev, A., Hitomi, J., Germscheid, M., Ch’en, I.L., Korkina, O., Teng, X., Abbott, D., Cuny, G.D., Yuan, C., Wagner, G., et al. (2008). Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat. Chem. Biol. 4, 313–321.

    Article  CAS  PubMed  Google Scholar 

  • den Hertog, J., Groen, A., and van der Wijk, T. (2005). Redox regulation of protein-tyrosine phosphatases. Arch. Biochem. Biophys. 434, 11–15.

    Article  CAS  Google Scholar 

  • Deshpande, S.S., Angkeow, P., Huang, J., Ozaki, M., and Irani, K. (2000). Rac1 inhibits TNF-alpha-induced endothelial cell apoptosis: dual regulation by reactive oxygen species. FASEB J. 14, 1705–1714.

    Article  CAS  PubMed  Google Scholar 

  • Devin, A., Cook, A., Lin, Y., Rodriguez, Y., Kelliher, M., and Liu, Z. (2000). The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation. Immunity 12, 419–429.

    Article  CAS  PubMed  Google Scholar 

  • Devin, A., Lin, Y., Yamaoka, S., Li, Z., Karin, M., and Liu, Z. (2001). The alpha and beta subunits of IkappaB kinase (IKK) mediate TRAF2-dependent IKK recruitment to tumor necrosis factor (TNF) receptor 1 in response to TNF. Mol. Cell. Biol. 21, 3986–3994.

    Article  CAS  PubMed  Google Scholar 

  • Devin, A., Lin, Y., and Liu, Z.G. (2003). The role of the death-domain kinase RIP in tumour-necrosis-factor-induced activation of mitogen-activated protein kinases. EMBO Rep. 4, 623–627.

    Article  CAS  PubMed  Google Scholar 

  • Dewas, C., Dang, P.M., Gougerot-Pocidalo, M.A., and El-Benna, J. (2003). TNF-alpha induces phosphorylation of p47(phox) in human neutrophils: partial phosphorylation of p47phox is a common event of priming of human neutrophils by TNF-alpha and granulocyte-macrophage colony-stimulating factor. J. Immunol. 171, 4392–4398.

    CAS  PubMed  Google Scholar 

  • Diener, K., Wang, X.S., Chen, C., Meyer, C.F., Keesler, G., Zukowski, M., Tan, T.H., and Yao, Z. (1997). Activation of the c-Jun N-terminal kinase pathway by a novel protein kinase related to human germinal center kinase. Proc. Natl. Acad. Sci. USA 94, 9687–9692.

    Article  CAS  PubMed  Google Scholar 

  • Ea, C.K., Deng, L., Xia, Z.P., Pineda, G., and Chen, Z.J. (2006). Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell 22, 245–257.

    Article  CAS  PubMed  Google Scholar 

  • Eliopoulos, A.G., Das, S., and Tsichlis, P.N. (2006). The tyrosine kinase Syk regulates TPL2 activation signals. J. Biol. Chem. 281, 1371–1380.

    Article  CAS  PubMed  Google Scholar 

  • Festjens, N., Kalai, M., Smet, J., Meeus, A., Van Coster, R., Saelens, X., and Vandenabeele, P. (2006a). Butylated hydroxyanisole is more than a reactive oxygen species scavenger. Cell Death Differ. 13, 166–169.

    Article  CAS  PubMed  Google Scholar 

  • Festjens, N., Vanden Berghe, T., and Vandenabeele, P. (2006b). Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim. Biophys. Acta 1757, 1371–1387.

    Article  CAS  PubMed  Google Scholar 

  • Festjens, N., Vanden Berghe, T., Cornelis, S., and Vandenabeele, P. (2007). RIP1, a kinase on the crossroads of a cell’s decision to live or die. Cell Death Differ. 14, 400–410.

    Article  CAS  PubMed  Google Scholar 

  • Fiers, W., Beyaert, R., Declercq, W., and Vandenabeele, P. (1999). More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 18, 7719–7730.

    Article  CAS  PubMed  Google Scholar 

  • Frey, R.S., Rahman, A., Kefer, J.C., Minshall, R.D., and Malik, A.B. (2002). PKCzeta regulates TNF-alpha-induced activation of NADPH oxidase in endothelial cells. Circ. Res. 90, 1012–1019.

    Article  CAS  PubMed  Google Scholar 

  • Fu, C.A., Shen, M., Huang, B.C., Lasaga, J., Payan, D.G., and Luo, Y. (1999). TNIK, a novel member of the germinal center kinase family that activates the c-Jun N-terminal kinase pathway and regulates the cytoskeleton. J. Biol. Chem. 274, 30729–30737.

    Article  CAS  PubMed  Google Scholar 

  • Gauss, K.A., Nelson-Overton, L.K., Siemsen, D.W., Gao, Y., DeLeo, F.R., and Quinn, M.T. (2007). Role of NF-kappaB in transcriptional regulation of the phagocyte NADPH oxidase by tumor necrosis factor-alpha. J. Leukoc. Biol. 82, 729–741.

    Article  CAS  PubMed  Google Scholar 

  • Geiszt, M., Lekstrom, K., Witta, J., and Leto, T.L. (2003). Proteins homologous to p47phox and p67phox support superoxide production by NAD(P)H oxidase 1 in colon epithelial cells. J. Biol. Chem. 278, 20006–20012.

    Article  CAS  PubMed  Google Scholar 

  • Ghavami, S., Eshraghi, M., Kadkhoda, K., Mutawe, M.M., Maddika, S., Bay, G.H., Wesselborg, S., Halayko, A.J., Klonisch, T., and Los, M. (2009). Role of BNIP3 in TNF-induced cell death-TNF upregulates BNIP3 expression. Biochim. Biophys. Acta 1793, 546–560.

    Article  CAS  PubMed  Google Scholar 

  • Goossens, V., Grooten, J., De Vos, K., and Fiers, W. (1995). Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity. Proc. Natl. Acad. Sci. USA 92, 8115–8119.

    Article  CAS  PubMed  Google Scholar 

  • Goossens, V., De Vos, K., Vercammen, D., Steemans, M., Vancompernolle, K., Fiers, W., Vandenabeele, P., and Grooten, J. (1999). Redox regulation of TNF signaling. BioFactors 10, 145–156.

    Article  CAS  PubMed  Google Scholar 

  • Groen, A., Lemeer, S., van der Wijk, T., Overvoorde, J., Heck, A.J., Ostman, A., Barford, D., Slijper, M., and den Hertog, J. (2005). Differential oxidation of protein-tyrosine phosphatases. J. Biol. Chem. 280, 10298–10304.

    Article  CAS  PubMed  Google Scholar 

  • Guicciardi, M.E., and Gores, G.J. (2009). Life and death by death receptors. FASEB J. 23, 1625–1637.

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa, M., Miyashita, H., Sakamoto, I., Kitagawa, M., Tanaka, H., Yasuda, H., Karin, M., and Kikugawa, K. (2003). Evidence that reactive oxygen species do not mediate NF-kappaB activation. EMBO J. 22, 3356–3366.

    Article  CAS  PubMed  Google Scholar 

  • Hayden, M.S., and Ghosh, S. (2008). Shared principles in NFkappaB signaling. Cell 132, 344–362.

    Article  CAS  PubMed  Google Scholar 

  • He, S., Wang, L., Miao, L., Wang, T., Du, F., Zhao, L., and Wang, X. (2009). Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137, 1100–1111.

    Article  CAS  PubMed  Google Scholar 

  • Hitomi, J., Christofferson, D.E., Ng, A., Yao, J., Degterev, A., Xavier, R.J., and Yuan, J. (2008). Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135, 1311–1323.

    Article  CAS  PubMed  Google Scholar 

  • Hoeflich, K.P., Yeh, W.C., Yao, Z., Mak, T.W., and Woodgett, J.R. (1999). Mediation of TNF receptor-associated factor effector functions by apoptosis signal-regulating kinase-1 (ASK1). Oncogene 18, 5814–5820.

    Article  CAS  PubMed  Google Scholar 

  • Holmgren, A. (2000). Antioxidant function of thioredoxin and glutaredoxin systems. Antioxid. Redox. Signal. 2, 811–820.

    Article  CAS  PubMed  Google Scholar 

  • Jamaluddin, M., Wang, S., Boldogh, I., Tian, B., and Brasier, A.R. (2007). TNF-alpha-induced NF-kappaB/RelA Ser(276) phosphorylation and enhanceosome formation is mediated by an ROS-dependent PKAc pathway. Cell. Signal. 19, 1419–1433.

    Article  CAS  PubMed  Google Scholar 

  • Jarvis, R.M., Gottert, J., Murphy, M.P., and Ledgerwood, E.C. (2007). Mitochondria-targeted antioxidants do not prevent tumour necrosis factor-induced necrosis of L929 cells. Free Radic. Res. 41, 1041–1046.

    Article  CAS  PubMed  Google Scholar 

  • Jones, P.L., Ping, D., and Boss, J.M. (1997). Tumor necrosis factor alpha and interleukin-1beta regulate the murine manganese superoxide dismutase gene through a complex intronic enhancer involving C/EBP-beta and NF-kappaB. Mol. Cell. Biol. 17, 6970–6981.

    CAS  PubMed  Google Scholar 

  • Kamata, H., Honda, S., Maeda, S., Chang, L., Hirata, H., and Karin, M. (2005). Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120, 649–661.

    Article  CAS  PubMed  Google Scholar 

  • Kamizato, M., Nishida, K., Masuda, K., Takeo, K., Yamamoto, Y., Kawai, T., Teshima-Kondo, S., Tanahashi, T., and Rokutan, K. (2009). Interleukin 10 inhibits interferon gamma- and tumor necrosis factor alpha-stimulated activation of NADPH oxidase 1 in human colonic epithelial cells and the mouse colon. J. Gastroenterol. 44, 1172–1184.

    Article  CAS  PubMed  Google Scholar 

  • Karin, M., and Lin, A. (2002). NF-kappaB at the crossroads of life and death. Nat. Immunol. 3, 221–227.

    Article  CAS  PubMed  Google Scholar 

  • Kelliher, M.A., Grimm, S., Ishida, Y., Kuo, F., Stanger, B.Z., and Leder, P. (1998). The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity 8, 297–303.

    Article  CAS  PubMed  Google Scholar 

  • Kil, I.S., Kim, S.Y., and Park, J.W. (2008). Glutathionylation regulates IkappaB. Biochem. Biophys. Res. Commun. 373, 169–173.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J.Y., Cho, J.J., Ha, J., and Park, J.H. (2002). The carboxy terminal C-tail of BNip3 is crucial in induction of mitochondrial permeability transition in isolated mitochondria. Arch. Biochem. Biophys. 398, 147–152.

    Article  CAS  PubMed  Google Scholar 

  • Kim, B.J., Ryu, S.W., and Song, B.J. (2006). JNK- and p38 kinase-mediated phosphorylation of Bax leads to its activation and mitochondrial translocation and to apoptosis of human hepatoma HepG2 cells. J. Biol. Chem. 281, 21256–21265.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y.S., Morgan, M.J., Choksi, S., and Liu, Z.G. (2007). TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Mol. Cell 26, 675–687.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H., Hwang, J.S., Woo, C.H., Kim, E.Y., Kim, T.H., Cho, K.J., Kim, J.H., Seo, J.M., and Lee, S.S. (2008). TNF-alpha-induced up-regulation of intercellular adhesion molecule-1 is regulated by a Rac-ROS-dependent cascade in human airway epithelial cells. Exp. Mol. Med. 40, 167–175.

    Article  CAS  PubMed  Google Scholar 

  • Klatt, P., and Lamas, S. (2000). Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress. Eur. J. Biochem. 267, 4928–4944.

    Article  CAS  PubMed  Google Scholar 

  • Kowaltowski, A.J., and Fiskum, G. (2005). Redox mechanisms of cytoprotection by Bcl-2. Antioxid. Redox. Signal. 7, 508–514.

    Article  CAS  PubMed  Google Scholar 

  • Kroemer, G., El-Deiry, W.S., Golstein, P., Peter, M.E., Vaux, D., Vandenabeele, P., Zhivotovsky, B., Blagosklonny, M.V., Malorni, W., Knight, R.A., et al. (2005). Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ. 12, 1463–1467.

    Article  CAS  PubMed  Google Scholar 

  • Kurada, B.R., Li, L.C., Mulherkar, N., Subramanian, M., Prasad, K.V., and Prabhakar, B.S. (2009). MADD, a splice variant of IG20, is indispensable for MAPK activation and protection against apoptosis upon tumor necrosis factor-alpha treatment. J. Biol. Chem. 284, 13533–13541.

    Article  CAS  PubMed  Google Scholar 

  • Lamb, J.A., Ventura, J.J., Hess, P., Flavell, R.A., and Davis, R.J. (2003). JunD mediates survival signaling by the JNK signal transduction pathway. Mol. Cell 11, 1479–1489.

    Article  CAS  PubMed  Google Scholar 

  • Lambeth, J.D. (2004). NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4, 181–189.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J.C., Laydon, J.T., McDonnell, P.C., Gallagher, T.F., Kumar, S., Green, D., McNulty, D., Blumenthal, M.J., Heys, J.R., Landvatter, S.W., et al. (1994). A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372, 739–746.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S.Y., Reichlin, A., Santana, A., Sokol, K.A., Nussenzweig, M.C., and Choi, Y. (1997). TRAF2 is essential for JNK but not NF-kappaB activation and regulates lymphocyte proliferation and survival. Immunity 7, 703–713.

    Article  CAS  PubMed  Google Scholar 

  • Lee, T.H., Huang, Q., Oikemus, S., Shank, J., Ventura, J.J., Cusson, N., Vaillancourt, R.R., Su, B., Davis, R.J., and Kelliher, M.A. (2003). The death domain kinase RIP1 is essential for tumor necrosis factor alpha signaling to p38 mitogen-activated protein kinase. Mol. Cell. Biol. 23, 8377–8385.

    Article  CAS  PubMed  Google Scholar 

  • Lee, T.H., Shank, J., Cusson, N., and Kelliher, M.A. (2004). The kinase activity of Rip1 is not required for tumor necrosis factoralpha-induced IkappaB kinase or p38 MAP kinase activation or for the ubiquitination of Rip1 by Traf2. J. Biol. Chem. 279, 33185–33191.

    Article  CAS  PubMed  Google Scholar 

  • Lee, D.C., Cheung, C.Y., Law, A.H., Mok, C.K., Peiris, M., and Lau, A.S. (2005). p38 mitogen-activated protein kinase-dependent hyperinduction of tumor necrosis factor alpha expression in response to avian influenza virus H5N1. J. Virol. 79, 10147–10154.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S.B., Bae, I.H., Bae, Y.S., and Um, H.D. (2006). Link between mitochondria and NADPH oxidase 1 isozyme for the sustained production of reactive oxygen species and cell death. J. Biol. Chem. 281, 36228–36235.

    Article  CAS  PubMed  Google Scholar 

  • Legler, D.F., Micheau, O., Doucey, M.A., Tschopp, J., and Bron, C. (2003). Recruitment of TNF receptor 1 to lipid rafts is essential for TNFalpha-mediated NF-kappaB activation. Immunity 18, 655–664.

    Article  CAS  PubMed  Google Scholar 

  • Lei, K., Nimnual, A., Zong, W.X., Kennedy, N.J., Flavell, R.A., Thompson, C.B., Bar-Sagi, D., and Davis, R.J. (2002). The Bax subfamily of Bcl2-related proteins is essential for apoptotic signal transduction by c-Jun NH(2)-terminal kinase. Mol. Cell. Biol. 22, 4929–4942.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Johnson, N., Capano, M., Edwards, M., and Crompton, M. (2004). Cyclophilin-D promotes the mitochondrial permeability transition but has opposite effects on apoptosis and necrosis. Biochem. J. 383, 101–109.

    Article  CAS  PubMed  Google Scholar 

  • Li, Q., Spencer, N.Y., Oakley, F.D., Buettner, G.R., and Engelhardt, J.F. (2009a). Endosomal Nox2 facilitates redox-dependent induction of NF-kappaB by TNF-alpha. Antioxid. Redox. Signal. 11, 1249–1263.

    Article  CAS  PubMed  Google Scholar 

  • Li, Q., Ye, Z., Wen, J., Ma, L., He, Y., Lian, G., Wang, Z., Wei, L., Wu, D., and Jiang, B. (2009b). Gelsolin, but not its cleavage, is required for TNF-induced ROS generation and apoptosis in MCF-7 cells. Biochem. Biophys. Res. Commun. 385, 284–289.

    Article  CAS  PubMed  Google Scholar 

  • Li, L., He, Q., Huang, X., Man, Y., Zhou, Y., Wang, S., Wang, J., and Li, J. (2010). NOX3-derived reactive oxygen species promote TNF-alpha-induced reductions in hepatocyte glycogen levels via a JNK pathway. FEBS Lett. 584, 995–1000.

    Article  CAS  PubMed  Google Scholar 

  • Liedtke, C., Plumpe, J., Kubicka, S., Bradham, C.A., Manns, M.P., Brenner, D.A., and Trautwein, C. (2002). Jun kinase modulates tumor necrosis factor-dependent apoptosis in liver cells. Hepatology 36, 315–325.

    Article  CAS  PubMed  Google Scholar 

  • Lin, Y., Devin, A., Rodriguez, Y., and Liu, Z.G. (1999). Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev. 13, 2514–2526.

    Article  CAS  PubMed  Google Scholar 

  • Lin, Y., Choksi, S., Shen, H.M., Yang, Q.F., Hur, G.M., Kim, Y.S., Tran, J.H., Nedospasov, S.A., and Liu, Z.G. (2004). Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation. J. Biol. Chem. 279, 10822–10828.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., and Min, W. (2002). Thioredoxin promotes ASK1 ubiquitination and degradation to inhibit ASK1-mediated apoptosis in a redox activity-independent manner. Circ. Res. 90, 1259–1266.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., and Lin, A. (2005). Role of JNK activation in apoptosis: a double-edged sword. Cell. Res. 15, 36–42.

    Article  PubMed  Google Scholar 

  • Liu, H., Nishitoh, H., Ichijo, H., and Kyriakis, J.M. (2000). Activation of apoptosis signal-regulating kinase 1 (ASK1) by tumor necrosis factor receptor-associated factor 2 requires prior dissociation of the ASK1 inhibitor thioredoxin. Mol. Cell. Biol. 20, 2198–2208.

    Article  CAS  PubMed  Google Scholar 

  • Liu, H.H., Xie, M., Schneider, M.D., and Chen, Z.J. (2006). Essential role of TAK1 in thymocyte development and activation. Proc. Natl. Acad. Sci. USA 103, 11677–11682.

    Article  CAS  PubMed  Google Scholar 

  • Liu, B., Chen, Y., and St Clair, D.K. (2008a). ROS and p53: a versatile partnership. Free Radic. Biol. Med. 44, 1529–1535.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Yoshida, Y., and Yamashita, U. (2008b). DNA-binding activity of NF-kappaB and phosphorylation of p65 are induced by Nacetylcysteine through phosphatidylinositol (PI) 3-kinase. Mol. Immunol. 45, 3984–3989.

    Article  CAS  PubMed  Google Scholar 

  • Los, M., Mozoluk, M., Ferrari, D., Stepczynska, A., Stroh, C., Renz, A., Herceg, Z., Wang, Z.Q., and Schulze-Osthoff, K. (2002). Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in death receptor signaling. Mol. Biol. Cell 13, 978–988.

    Article  CAS  PubMed  Google Scholar 

  • Luke, C.J., Pak, S.C., Askew, Y.S., Naviglia, T.L., Askew, D.J., Nobar, S.M., Vetica, A.C., Long, O.S., Watkins, S.C., Stolz, D.B., et al. (2007). An intracellular serpin regulates necrosis by inhibiting the induction and sequelae of lysosomal injury. Cell 130, 1108–1119.

    Article  CAS  PubMed  Google Scholar 

  • Lupertz, R., Chovolou, Y., Kampkotter, A., Watjen, W., and Kahl, R. (2008). Catalase overexpression impairs TNF-alpha induced NF-kappaB activation and sensitizes MCF-7 cells against TNFalpha. J. Cell Biochem. 103, 1497–1511.

    Article  PubMed  CAS  Google Scholar 

  • Mahoney, D.J., Cheung, H.H., Mrad, R.L., Plenchette, S., Simard, C., Enwere, E., Arora, V., Mak, T.W., Lacasse, E.C., Waring, J., et al. (2008). Both cIAP1 and cIAP2 regulate TNFalpha-mediated NF-kappaB activation. Proc. Natl. Acad. Sci. USA 105, 11778–11783.

    Article  CAS  PubMed  Google Scholar 

  • Marchetti, P., Decaudin, D., Macho, A., Zamzami, N., Hirsch, T., Susin, S.A., and Kroemer, G. (1997). Redox regulation of apoptosis: impact of thiol oxidation status on mitochondrial function. Eur. J. Immunol. 27, 289–296.

    Article  CAS  PubMed  Google Scholar 

  • Mariappan, N., Elks, C.M., Fink, B., and Francis, J. (2009). TNF-induced mitochondrial damage: a link between mitochondrial complex I activity and left ventricular dysfunction. Free Radic. Biol. Med. 46, 462–470.

    Article  CAS  PubMed  Google Scholar 

  • Meier, B., Radeke, H.H., Selle, S., Younes, M., Sies, H., Resch, K., and Habermehl, G.G. (1989). Human fibroblasts release reactive oxygen species in response to interleukin-1 or tumour necrosis factor-alpha. Biochem. J. 263, 539–545.

    CAS  PubMed  Google Scholar 

  • Miller, F.J., Jr., Chu, X., Stanic, B., Tian, X., Sharma, R.V., Davisson, R.L., and Lamb, F.S. (2010). A differential role for endocytosis in receptor-mediated activation of Nox1. Antioxid. Redox. Signal. 12, 583–593.

    Article  CAS  PubMed  Google Scholar 

  • Moe, K.T., Aulia, S., Jiang, F., Chua, Y.L., Koh, T.H., Wong, M.C., and Dusting, G.J. (2006). Differential upregulation of Nox homologues of NADPH oxidase by tumor necrosis factor-alpha in human aortic smooth muscle and embryonic kidney cells. J. Cell. Mol. Med. 10, 231–239.

    Article  CAS  PubMed  Google Scholar 

  • Morgan, M.J., Kim, Y.S., and Liu, Z. (2007). Lipid rafts and oxidative stress-induced cell death. Antioxid. Redox Signal. 9, 1471–1483.

    Article  CAS  PubMed  Google Scholar 

  • Moriguchi, T., Toyoshima, F., Masuyama, N., Hanafusa, H., Gotoh, Y., and Nishida, E. (1997). A novel SAPK/JNK kinase, MKK7, stimulated by TNFalpha and cellular stresses. EMBO J. 16, 7045–7053.

    Article  CAS  PubMed  Google Scholar 

  • Muppidi, J.R., Tschopp, J., and Siegel, R.M. (2004). Life and death decisions: secondary complexes and lipid rafts in TNF receptor family signal transduction. Immunity 21, 461–465.

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa, T., Shimizu, S., Watanabe, T., Yamaguchi, O., Otsu, K., Yamagata, H., Inohara, H., Kubo, T., and Tsujimoto, Y. (2005). Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434, 652–658.

    Article  CAS  PubMed  Google Scholar 

  • Nakajima, A., Kojima, Y., Nakayama, M., Yagita, H., Okumura, K., and Nakano, H. (2008). Downregulation of c-FLIP promotes caspase-dependent JNK activation and reactive oxygen species accumulation in tumor cells. Oncogene 27, 76–84.

    Article  CAS  PubMed  Google Scholar 

  • Nakano, K., Yamauchi, J., Nakagawa, K., Itoh, H., and Kitamura, N. (2000). NESK, a member of the germinal center kinase family that activates the c-Jun N-terminal kinase pathway and is expressed during the late stages of embryogenesis. J. Biol. Chem. 275, 20533–20539.

    Article  CAS  PubMed  Google Scholar 

  • Nakano, H., Nakajima, A., Sakon-Komazawa, S., Piao, J. H., Xue, X., and Okumura, K. (2006). Reactive oxygen species mediate crosstalk between NF-kappaB and JNK. Cell Death Differ. 13, 730–737.

    Article  CAS  PubMed  Google Scholar 

  • Nakashima, I., Kato, M., Akhand, A.A., Suzuki, H., Takeda, K., Hossain, K., and Kawamoto, Y. (2002). Redox-linked signal transduction pathways for protein tyrosine kinase activation. Antioxid. Redox Signal. 4, 517–531.

    Article  CAS  PubMed  Google Scholar 

  • Nakashima, I., Takeda, K., Kawamoto, Y., Okuno, Y., Kato, M., and Suzuki, H. (2005). Redox control of catalytic activities of membrane-associated protein tyrosine kinases. Arch. Biochem. Biophys. 434, 3–10.

    Article  CAS  PubMed  Google Scholar 

  • Newburger, P.E., Dai, Q., and Whitney, C. (1991). In vitro regulation of human phagocyte cytochrome b heavy and light chain gene expression by bacterial lipopolysaccharide and recombinant human cytokines. J. Biol. Chem. 266, 16171–16177.

    CAS  PubMed  Google Scholar 

  • Nishitoh, H., Saitoh, M., Mochida, Y., Takeda, K., Nakano, H., Rothe, M., Miyazono, K., and Ichijo, H. (1998). ASK1 is essential for JNK/SAPK activation by TRAF2. Mol. Cell 2, 389–395.

    Article  CAS  PubMed  Google Scholar 

  • Noguchi, T., Takeda, K., Matsuzawa, A., Saegusa, K., Nakano, H., Gohda, J., Inoue, J., and Ichijo, H. (2005). Recruitment of tumor necrosis factor receptor-associated factor family proteins to apoptosis signal-regulating kinase 1 signalosome is essential for oxidative stress-induced cell death. J. Biol. Chem. 280, 37033–37040.

    Article  CAS  PubMed  Google Scholar 

  • Oliveira-Marques, V., Marinho, H.S., Cyrne, L., and Antunes, F. (2009). Role of hydrogen peroxide in NF-kappaB activation: from inducer to modulator. Antioxid. Redox Signal. 11, 2223–2243.

    Article  CAS  PubMed  Google Scholar 

  • Omori, E., Morioka, S., Matsumoto, K., and Ninomiya-Tsuji, J. (2008). TAK1 regulates reactive oxygen species and cell death in keratinocytes, which is essential for skin integrity. J. Biol. Chem. 283, 26161–26168.

    Article  CAS  PubMed  Google Scholar 

  • Onnheim, K., Bylund, J., Boulay, F., Dahlgren, C., and Forsman, H. (2008). Tumour necrosis factor (TNF)-alpha primes murine neutrophils when triggered via formyl peptide receptor-related sequence 2, the murine orthologue of human formyl peptide receptor-like 1, through a process involving the type I TNF receptor and subcellular granule mobilization. Immunology 125, 591–600.

    Article  PubMed  CAS  Google Scholar 

  • Ott, M., Gogvadze, V., Orrenius, S., and Zhivotovsky, B. (2007). Mitochondria, oxidative stress and cell death. Apoptosis 12, 913–922.

    Article  CAS  PubMed  Google Scholar 

  • Ozsoy, H.Z., Sivasubramanian, N., Wieder, E.D., Pedersen, S., and Mann, D.L. (2008). Oxidative stress promotes ligand-independent and enhanced ligand-dependent tumor necrosis factor receptor signaling. J. Biol. Chem. 283, 23419–23428.

    Article  CAS  PubMed  Google Scholar 

  • Pantano, C., Anathy, V., Ranjan, P., Heintz, N.H., and Janssen-Heininger, Y.M. (2007). Nonphagocytic oxidase 1 causes death in lung epithelial cells via a TNF-RI-JNK signaling axis. Am. J. Respir. Cell. Mol. Biol. 36, 473–479.

    Article  CAS  PubMed  Google Scholar 

  • Papa, S., Zazzeroni, F., Bubici, C., Jayawardena, S., Alvarez, K., Matsuda, S., Nguyen, D.U., Pham, C.G., Nelsbach, A.H., Melis, T., et al. (2004). Gadd45 beta mediates the NF-kappa B suppression of JNK signalling by targeting MKK7/JNKK2. Nat. Cell. Biol. 6, 146–153.

    Article  CAS  PubMed  Google Scholar 

  • Paulsen, C.E., and Carroll, K.S. (2010). Orchestrating redox signaling networks through regulatory cysteine switches. ACS Chem. Biol. 5, 47–62.

    Article  CAS  PubMed  Google Scholar 

  • Pham, C.G., Bubici, C., Zazzeroni, F., Papa, S., Jones, J., Alvarez, K., Jayawardena, S., De Smaele, E., Cong, R., Beaumont, C., et al. (2004). Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species. Cell 119, 529–542.

    Article  CAS  PubMed  Google Scholar 

  • Poyet, J.L., Srinivasula, S.M., Lin, J.H., Fernandes-Alnemri, T., Yamaoka, S., Tsichlis, P.N., and Alnemri, E.S. (2000). Activation of the Ikappa B kinases by RIP via IKKgamma/NEMO-mediated oligomerization. J. Biol. Chem. 275, 37966–37977.

    Article  CAS  PubMed  Google Scholar 

  • Quinn, M.T., Ammons, M.C., and Deleo, F.R. (2006). The expanding role of NADPH oxidases in health and disease: no longer just agents of death and destruction. Clin. Sci. 111, 1–20.

    Article  CAS  PubMed  Google Scholar 

  • Reuther-Madrid, J.Y., Kashatus, D., Chen, S., Li, X., Westwick, J., Davis, R.J., Earp, H.S., Wang, C.Y., and Baldwin Jr, A.S., Jr. (2002). The p65/RelA subunit of NF-kappaB suppresses the sustained, antiapoptotic activity of Jun kinase induced by tumor necrosis factor. Mol. Cell. Biol. 22, 8175–8183.

    Article  CAS  PubMed  Google Scholar 

  • Reynaert, N.L., van der Vliet, A., Guala, A.S., McGovern, T., Hristova, M., Pantano, C., Heintz, N.H., Heim, J., Ho, Y.S., Matthews, D.E., et al. (2006). Dynamic redox control of NF-kappaB through glutaredoxin-regulated S-glutathionylation of inhibitory kappaB kinase beta. Proc. Natl. Acad. Sci. USA 103, 13086–13091.

    Article  CAS  PubMed  Google Scholar 

  • Rhee, S.G., Yang, K.S., Kang, S.W., Woo, H.A., and Chang, T.S. (2005). Controlled elimination of intracellular H(2).O(2).: regulation of peroxiredoxin, catalase, and glutathione peroxidase via post-translational modification. Antioxid. Redox Signal. 7, 619–626.

    Article  CAS  PubMed  Google Scholar 

  • Saito, Y., Nishio, K., Ogawa, Y., Kimata, J., Kinumi, T., Yoshida, Y., Noguchi, N., and Niki, E. (2006). Turning point in apoptosis/necrosis induced by hydrogen peroxide. Free Radic. Res. 40, 619–630.

    Article  CAS  PubMed  Google Scholar 

  • Saitoh, M., Nishitoh, H., Fujii, M., Takeda, K., Tobiume, K., Sawada, Y., Kawabata, M., Miyazono, K., and Ichijo, H. (1998). Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 17, 2596–2606.

    Article  CAS  PubMed  Google Scholar 

  • Sakon, S., Xue, X., Takekawa, M., Sasazuki, T., Okazaki, T., Kojima, Y., Piao, J.H., Yagita, H., Okumura, K., Doi, T., et al. (2003). NF-kappaB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J. 22, 3898–3909.

    Article  CAS  PubMed  Google Scholar 

  • Sathyanarayana, P., Barthwal, M.K., Kundu, C.N., Lane, M.E., Bergmann, A., Tzivion, G., and Rana, A. (2002). Activation of the Drosophila MLK by ceramide reveals TNF-alpha and ceramide as agonists of mammalian MLK3. Mol. Cell 10, 1527–1533.

    Article  CAS  PubMed  Google Scholar 

  • Sato, S., Sanjo, H., Takeda, K., Ninomiya-Tsuji, J., Yamamoto, M., Kawai, T., Matsumoto, K., Takeuchi, O., and Akira, S. (2005). Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat. Immunol. 6, 1087–1095.

    Article  CAS  PubMed  Google Scholar 

  • Sato, T., Machida, T., Takahashi, S., Murase, K., Kawano, Y., Hayashi, T., Iyama, S., Takada, K., Kuribayashi, K., Sato, Y., et al. (2008). Apoptosis supercedes necrosis in mitochondrial DNA-depleted Jurkat cells by cleavage of receptor-interacting protein and inhibition of lysosomal cathepsin. J. Immunol. 181, 197–207.

    CAS  PubMed  Google Scholar 

  • Schmidt, K.N., Amstad, P., Cerutti, P., and Baeuerle, P.A. (1995). The roles of hydrogen peroxide and superoxide as messengers in the activation of transcription factor NF-kappa B. Chem. Biol. 2, 13–22.

    Article  CAS  PubMed  Google Scholar 

  • Schreck, R., Meier, B., Mannel, D.N., Droge, W., and Baeuerle, P.A. (1992). Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intact cells. J. Exp. Med. 175, 1181–1194.

    Article  CAS  PubMed  Google Scholar 

  • Schulze-Osthoff, K., Bakker, A.C., Vanhaesebroeck, B., Beyaert, R., Jacob, W.A., and Fiers, W. (1992). Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation. J. Biol. Chem. 267, 5317–5323.

    CAS  PubMed  Google Scholar 

  • Schulze-Osthoff, K., Beyaert, R., Vandevoorde, V., Haegeman, G., and Fiers, W. (1993). Depletion of the mitochondrial electron transport abrogates the cytotoxic and gene-inductive effects of TNF. EMBO J. 12, 3095–3104.

    CAS  PubMed  Google Scholar 

  • Shen, H.M., and Liu, Z.G. (2006). JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radic. Biol. Med. 40, 928–939.

    Article  CAS  PubMed  Google Scholar 

  • Shen, H.M., and Pervaiz, S. (2006). TNF receptor superfamily-induced cell death: redox-dependent execution. FASEB J. 20, 1589–1598.

    Article  CAS  PubMed  Google Scholar 

  • Shen, H.M., Lin, Y., Choksi, S., Tran, J., Jin, T., Chang, L., Karin, M., Zhang, J., and Liu, Z.G. (2004). Essential roles of receptor-interacting protein and TRAF2 in oxidative stress-induced cell death. Mol. Cell. Biol. 24, 5914–5922.

    Article  CAS  PubMed  Google Scholar 

  • Shi, C.S., and Kehrl, J.H. (1997). Activation of stress-activated protein kinase/c-Jun N-terminal kinase, but not NF-kappaB, by the tumor necrosis factor (TNF) receptor 1 through a TNF receptor-associated factor 2- and germinal center kinase relateddependent pathway. J. Biol. Chem. 272, 32102–32107.

    Article  CAS  PubMed  Google Scholar 

  • Shi, C.S., Leonardi, A., Kyriakis, J., Siebenlist, U., and Kehrl, J.H. (1999). TNF-mediated activation of the stress-activated protein kinase pathway: TNF receptor-associated factor 2 recruits and activates germinal center kinase related. J. Immunol. 163, 3279–3285.

    CAS  PubMed  Google Scholar 

  • Shim, J.H., Xiao, C., Paschal, A.E., Bailey, S.T., Rao, P., Hayden, M.S., Lee, K.Y., Bussey, C., Steckel, M., Tanaka, N., et al. (2005). TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev. 19, 2668–2681.

    Article  CAS  PubMed  Google Scholar 

  • Sidoti-de Fraisse, C., Rincheval, V., Risler, Y., Mignotte, B., and Vayssiere, J.L. (1998). TNF-alpha activates at least two apoptotic signaling cascades. Oncogene 17, 1639–1651.

    Article  CAS  PubMed  Google Scholar 

  • Sies, H. (1997). Oxidative stress: oxidants and antioxidants. Exp. Physiol. 82, 291–295.

    CAS  PubMed  Google Scholar 

  • St Hilaire, C., Koupenova, M., Carroll, S. H., Smith, B.D., and Ravid, K. (2008). TNF-alpha upregulates the A2B adenosine receptor gene: The role of NAD(P)H oxidase 4. Biochem. Biophys. Res. Commun. 375, 292–296.

    Article  CAS  PubMed  Google Scholar 

  • Staal, F.J., Roederer, M., and Herzenberg, L.A. (1990). Intracellular thiols regulate activation of nuclear factor kappa B and transcription of human immunodeficiency virus. Proc. Natl. Acad. Sci. USA 87, 9943–9947.

    Article  CAS  PubMed  Google Scholar 

  • Tada, K., Okazaki, T., Sakon, S., Kobarai, T., Kurosawa, K., Yamaoka, S., Hashimoto, H., Mak, T.W., Yagita, H., Okumura, K., et al. (2001). Critical roles of TRAF2 and TRAF5 in tumor necrosis factor-induced NF-kappa B activation and protection from cell death. J. Biol. Chem. 276, 36530–36534.

    Article  CAS  PubMed  Google Scholar 

  • Takaesu, G., Surabhi, R.M., Park, K.J., Ninomiya-Tsuji, J., Matsumoto, K., and Gaynor, R.B. (2003). TAK1 is critical for IkappaB kinase-mediated activation of the NF-kappaB pathway. J. Mol. Biol. 326, 105–115.

    Article  CAS  PubMed  Google Scholar 

  • Takeda, M., Shirato, I., Kobayashi, M., and Endou, H. (1999). Hydrogen peroxide induces necrosis, apoptosis, oncosis and apoptotic oncosis of mouse terminal proximal straight tubule cells. Nephron 81, 234–238.

    Article  CAS  PubMed  Google Scholar 

  • Takeya, R., Ueno, N., Kami, K., Taura, M., Kohjima, M., Izaki, T., Nunoi, H., and Sumimoto, H. (2003). Novel human homologues of p47phox and p67phox participate in activation of superoxide-producing NADPH oxidases. J. Biol. Chem. 278, 25234–25246.

    Article  CAS  PubMed  Google Scholar 

  • Tang, G., Minemoto, Y., Dibling, B., Purcell, N.H., Li, Z., Karin, M., and Lin, A. (2001). Inhibition of JNK activation through NFkappaB target genes. Nature 414, 313–317.

    Article  CAS  PubMed  Google Scholar 

  • Tang, F., Tang, G., Xiang, J., Dai, Q., Rosner, M.R., and Lin, A. (2002). The absence of NF-kappaB-mediated inhibition of c-Jun N-terminal kinase activation contributes to tumor necrosis factor alpha-induced apoptosis. Mol. Cell. Biol. 22, 8571–8579.

    Article  CAS  PubMed  Google Scholar 

  • Teramoto, S., Tomita, T., Matsui, H., Ohga, E., Matsuse, T., and Ouchi, Y. (1999). Hydrogen peroxide-induced apoptosis and necrosis in human lung fibroblasts: protective roles of glutathione. Jpn. J. Pharmacol. 79, 33–40.

    Article  CAS  PubMed  Google Scholar 

  • Tobiume, K., Matsuzawa, A., Takahashi, T., Nishitoh, H., Morita, K., Takeda, K., Minowa, O., Miyazono, K., Noda, T., and Ichijo, H. (2001). ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep. 2, 222–228.

    Article  CAS  PubMed  Google Scholar 

  • Tournier, C., Dong, C., Turner, T.K., Jones, S.N., Flavell, R.A., and Davis, R.J. (2001). MKK7 is an essential component of the JNK signal transduction pathway activated by proinflammatory cytokines. Genes Dev. 15, 1419–1426.

    Article  CAS  PubMed  Google Scholar 

  • Ushio-Fukai, M. (2009). Compartmentalization of redox signaling through NADPH oxidase-derived ROS. Antioxid. Redox Signal. 11, 1289–1299.

    Article  CAS  PubMed  Google Scholar 

  • Utsumi, T., Klostergaard, J., Akimaru, K., Edashige, K., Sato, E.F., and Utsumi, K. (1992). Modulation of TNF-alpha-priming and stimulation-dependent superoxide generation in human neutrophils by protein kinase inhibitors. Arch. Biochem. Biophys. 294, 271–278.

    Article  CAS  PubMed  Google Scholar 

  • Vallabhapurapu, S., and Karin, M. (2009). Regulation and function of NF-kappaB transcription factors in the immune system. Annu. Rev. Immunol. 27, 693–733.

    Article  CAS  PubMed  Google Scholar 

  • Vande Velde, C., Cizeau, J., Dubik, D., Alimonti, J., Brown, T., Israels, S., Hakem, R., and Greenberg, A.H. (2000). BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol. Cell. Biol. 20, 5454–5468.

    Article  Google Scholar 

  • Vandenabeele, P., Vanden Berghe, T., and Festjens, N. (2006). Caspase inhibitors promote alternative cell death pathways. Sci. STKE 2006, pe44.

    Article  PubMed  Google Scholar 

  • Varfolomeev, E., Goncharov, T., Fedorova, A.V., Dynek, J.N., Zobel, K., Deshayes, K., Fairbrother, W.J., and Vucic, D. (2008). c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation. J. Biol. Chem. 283, 24295–24299.

    Article  CAS  PubMed  Google Scholar 

  • Ventura, J.J., Cogswell, P., Flavell, R.A., Baldwin, A.S., Jr., and Davis, R.J. (2004). JNK potentiates TNF-stimulated necrosis by increasing the production of cytotoxic reactive oxygen species. Genes Dev. 18, 2905–2915.

    Article  CAS  PubMed  Google Scholar 

  • Ventura, J.J., Hubner, A., Zhang, C., Flavell, R.A., Shokat, K.M., and Davis, R.J. (2006). Chemical genetic analysis of the time course of signal transduction by JNK. Mol. Cell 21, 701–710.

    Article  CAS  PubMed  Google Scholar 

  • Wajant, H. (2003). Death receptors. Essays Biochem. 39, 53–71.

    CAS  PubMed  Google Scholar 

  • Wang, T., Arifoglu, P., Ronai, Z., and Tew, K.D. (2001). Glutathione S-transferase P1-1 (GSTP1-1). inhibits c-Jun N-terminal kinase (JNK1) signaling through interaction with the C terminus. J. Biol. Chem. 276, 20999–21003.

    Article  CAS  PubMed  Google Scholar 

  • Weingartner, M., Siegmund, D., Schlecht, U., Fotin-Mleczek, M., Scheurich, P., and Wajant, H. (2002). Endogenous membrane tumor necrosis factor (TNF) is a potent amplifier of TNF receptor 1-mediated apoptosis. J. Biol. Chem. 277, 34853–34859.

    Article  CAS  PubMed  Google Scholar 

  • Wicovsky, A., Muller, N., Daryab, N., Marienfeld, R., Kneitz, C., Kavuri, S., Leverkus, M., Baumann, B., and Wajant, H. (2007). Sustained JNK activation in response to tumor necrosis factor is mediated by caspases in a cell type-specific manner. J. Biol. Chem. 282, 2174–2183.

    Article  CAS  PubMed  Google Scholar 

  • Wong, W.W., Gentle, I.E., Nachbur, U., Anderton, H., Vaux, D.L., and Silke, J. (2010). RIPK1 is not essential for TNFR1-induced activation of NF-kappaB. Cell Death Differ. 17, 482–487.

    Article  CAS  PubMed  Google Scholar 

  • Woo, C.H., Kim, T.H., Choi, J.A., Ryu, H.C., Lee, J.E., You, H.J., Bae, Y.S., and Kim, J.H. (2006). Inhibition of receptor internalization attenuates the TNFalpha-induced ROS generation in non-phagocytic cells. Biochem. Biophys. Res. Commun. 351, 972–978.

    Article  CAS  PubMed  Google Scholar 

  • Wu, C.J., Conze, D.B., Li, T., Srinivasula, S.M., and Ashwell, J.D. (2006). Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-kappaB activation [corrected]. Nat. Cell. Biol. 8, 398–406.

    Article  CAS  PubMed  Google Scholar 

  • Wysk, M., Yang, D.D., Lu, H.T., Flavell, R.A., and Davis, R.J. (1999). Requirement of mitogen-activated protein kinase kinase 3 (MKK3) for tumor necrosis factor-induced cytokine expression. Proc. Natl. Acad. Sci. USA 96, 3763–3768.

    Article  CAS  PubMed  Google Scholar 

  • Xia, Y., Makris, C., Su, B., Li, E., Yang, J., Nemerow, G.R., and Karin, M. (2000). MEK kinase 1 is critically required for c-Jun N terminal kinase activation by proinflammatory stimuli and growth factor-induced cell migration. Proc. Natl. Acad. Sci. USA 97, 5243–5248.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y., Huang, S., Liu, Z.G., and Han, J. (2006). Poly(ADP-ribose) polymerase-1 signaling to mitochondria in necrotic cell death requires RIP1/TRAF2-mediated JNK1 activation. J. Biol. Chem. 281, 8788–8795.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J., Lin, Y., Guo, Z., Cheng, J., Huang, J., Deng, L., Liao, W., Chen, Z., Liu, Z., and Su, B. (2001). The essential role of MEKK3 in TNF-induced NF-kappaB activation. Nat. Immunol. 2, 620–624.

    Article  CAS  PubMed  Google Scholar 

  • Yao, J., Mackman, N., Edgington, T.S., and Fan, S.T. (1997). Lipopolysaccharide induction of the tumor necrosis factor-alpha promoter in human monocytic cells. Regulation by Egr-1, c-Jun, and NF-kappaB transcription factors. J. Biol. Chem. 272, 17795–17801.

    Article  CAS  PubMed  Google Scholar 

  • Yazdanpanah, B., Wiegmann, K., Tchikov, V., Krut, O., Pongratz, C., Schramm, M., Kleinridders, A., Wunderlich, T., Kashkar, H., Utermohlen, O., et al. (2009). Riboflavin kinase couples TNF receptor 1 to NADPH oxidase. Nature 460, 1159–1163.

    Article  CAS  PubMed  Google Scholar 

  • Yeh, W.C., Shahinian, A., Speiser, D., Kraunus, J., Billia, F., Wakeham, A., de la Pompa, J.L., Ferrick, D., Hum, B., Iscove, N., et al. (1997). Early lethality, functional NF-kappaB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity 7, 715–725.

    Article  CAS  PubMed  Google Scholar 

  • Yin, Y., Terauchi, Y., Solomon, G.G., Aizawa, S., Rangarajan, P.N., Yazaki, Y., Kadowaki, T., and Barrett, J.C. (1998). Involvement of p85 in p53-dependent apoptotic response to oxidative stress. Nature 391, 707–710.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, L.S., and Tsunawaki, S. (2008). Expression of NADPH oxidases and enhanced H(2)O(2)-generating activity in human coronary artery endothelial cells upon induction with tumor necrosis factor-alpha. Int. Immunopharmacol. 8, 1377–1385.

    Article  CAS  PubMed  Google Scholar 

  • Yuasa, T., Ohno, S., Kehrl, J.H., and Kyriakis, J.M. (1998). Tumor necrosis factor signaling to stress-activated protein kinase (SAPK)/Jun NH2-terminal kinase (JNK) and p38. Germinal center kinase couples TRAF2 to mitogen-activated protein kinase/ERK kinase kinase 1 and SAPK while receptor interacting protein associates with a mitogen-activated protein kinase kinase kinase upstream of MKK6 and p38. J. Biol. Chem. 273, 22681–22692.

    Article  CAS  PubMed  Google Scholar 

  • Yujiri, T., Ware, M., Widmann, C., Oyer, R., Russell, D., Chan, E., Zaitsu, Y., Clarke, P., Tyler, K., Oka, Y., et al. (2000). MEK kinase 1 gene disruption alters cell migration and c-Jun NH2-terminal kinase regulation but does not cause a measurable defect in NF-kappa B activation. Proc. Natl. Acad. Sci. USA 97, 7272–7277.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, D.W., Shao, J., Lin, J., Zhang, N., Lu, B.J., Lin, S.C., Dong, M.Q., and Han, J. (2009). RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332–336.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-gang Liu.

About this article

Cite this article

Morgan, M.J., Liu, Zg. Reactive oxygen species in TNFα-induced signaling and cell death. Mol Cells 30, 1–12 (2010). https://doi.org/10.1007/s10059-010-0105-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-010-0105-0

Keywords

Navigation