Skip to main content

In Vivo and In Vitro Experimental Evidence

  • Chapter
  • First Online:
Oral Submucous Fibrosis

Part of the book series: Textbooks in Contemporary Dentistry ((TECD))

  • 172 Accesses

Abstract

This chapter deals with experimental evidence of known risk factors in creating an environment conducive for the development of oral submucous fibrosis (OSF). We present here the role of areca nut alkaloids, arecoline, and/or arecaidine in producing inflammation, increased collagen synthesis, collagen cross-linking, decreased collagen degradation, and autophagy. We also examine the role of other constituents of areca nut such as tannins, catechins, and guvacine, which lead to decreased collagen degradation; role of heavy metals (copper and ferrous ions) in generating oxidative stress via reactive oxygen species (ROS) that contributes to inflammation and derangement in collagen metabolism and the combined effect of arecoline and safrole in decreasing collagen degradation and phagocytosis of collagen by fibroblasts. Taken together, this chapter presents experimental evidence on how areca nut alkaloids, flavonoids, polyphenols, and micronutrients including copper contribute to the development of OSF. In addition, animal models of OSF developed to date are outlined to confirm that areca nut is the etiological agent of OSF.

However, as not all areca nut chewers develop OSF. Experimental evidence demonstrating genetic makeup or polymorphisms that contributes to susceptibility to develop OSF is presented, focusing on genes responsible for collagen metabolism. All Experimental evidence that is still needed to complete the etiological picture of OSF in the authors’ perspective is discussed at the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Betel-quid and areca-nut chewing. IARC Monogr Eval Carcinog Risk Chem Hum. 1985;37:137–202.

    Google Scholar 

  2. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Betel-quid and areca-nut chewing and some areca-nut derived nitrosamines. IARC Monogr Eval Carcinog Risks Hum. 2004;85:1–334.

    PubMed Central  Google Scholar 

  3. IARC Monographs Vol 128 Group. Carcinogenicity of acrolein, crotonaldehyde, and arecoline. Lancet Oncol. 2021;22(1):19–20. https://doi.org/10.1016/S1470-2045(20)30727-0.

    Article  Google Scholar 

  4. Sharan RN, Mehrotra R, Choudhury Y, Asotra K. Association of betel nut with carcinogenesis: revisit with a clinical perspective. PLoS One. 2012;7(8):e42759. https://doi.org/10.1371/journal.pone.0042759.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jain V, Garg A, Parascandola M, Chaturvedi P, Khariwala SS, Stepanov I. Analysis of alkaloids in areca nut-containing products by liquid chromatography-tandem mass spectrometry. J Agric Food Chem. 2017;65(9):1977–83. https://doi.org/10.1021/acs.jafc.6b05140.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tilakaratne WM, Klinikowski MF, Saku T, Peters TJ, Warnakulasuriya S. Oral submucous fibrosis: review on aetiology and pathogenesis. Oral Oncol. 2006;42(6):561–8.

    Article  PubMed  Google Scholar 

  7. Rai A, Siddiqui M, Paraveen S, Rasheed A, Ali S. Molecular pathogenesis of oral submucous fibrosis: a critical appraisal. Biomed Pharmacol J. 2019;12:4.

    Article  Google Scholar 

  8. Prabhu RV, Prabhu V, Chatra L, Shenai P, Suvarna N, Dandekeri S. Areca nut and its role in oral submucous fibrosis. J Clin Exp Dent. 2014;6(5):e569–75. https://doi.org/10.4317/jced.51318.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sarode SC, Mahuli A, Sarode GS, Mahuli S. Why only areca nut chewing cannot cause oral submucous fibrosis? Med Hypotheses. 2013;81(1):47–9. https://doi.org/10.1016/j.mehy.2013.02.025.

    Article  PubMed  Google Scholar 

  10. Khrime RD, Mehra YN, Mann SB, Mehta SK, Chakraborti RN. Effect of instant preparation of betel nut (pan masala) on the oral mucosa of albino rats. Indian J Med Res. 1991;94:119–24.

    PubMed  Google Scholar 

  11. Sumeth Perera MW, Gunasinghe D, Perera PA, Ranasinghe A, Amaratunga P, Warnakulasuriya S, Kaluarachchi K. Development of an in vivo mouse model to study oral submucous fibrosis. J Oral Pathol Med. 2007;36:273–80.

    Article  PubMed  Google Scholar 

  12. Chiang MH, Chen PH, Chen YK, Chen CH, Ho ML, Wang YH. Characterization of a Novel dermal fibrosis, model induced by areca nut extract that mimics oral submucous fibrosis. PLoS ONE. 2016;11:e0166454.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Maria S, Kamath VV, Satelur K, Rajkumar K. Evaluation of transforming growth factor beta1 gene in oral submucous fibrosis induced in Sprague-Dawley rats by injections of areca nut and pan masala (commercial areca nut product) extracts. J Cancer Res. 2016;12:379–85.

    Google Scholar 

  14. Wen QT, Wang T, Yu DH, Wang ZR, Sun Y, Liang CW. Development of a mouse model of arecoline-induced oral mucosal fibrosis. Asian Pac J Trop Med. 2017;10:1177–84.

    Article  PubMed  Google Scholar 

  15. Yang B, Fu MF, Tang ZG. Rat model with oral submucous fibrosis induced by arecoline and mechanical stimulation. Hua Xi Kou Qiang Yi Xue Za Zhi. 2019;37:260–4.

    PubMed  Google Scholar 

  16. Desai VC, Shirsand SB, Malpani A, Hiremath S. Evaluation of mucoadhesive dexamethasone sodium phosphate gel in the treatment of arecoline-induced oral submucous fibrosis in Wistar albino rats: a cross-sectional study. Indian J Dent Res. 2020;31(5):685–93. https://doi.org/10.4103/ijdr.IJDR_685_19.

    Article  PubMed  Google Scholar 

  17. Chiang MH, Lee KT, Chen CH, Chen KK, Wang YH. Photobiomodulation therapy inhibits oral submucous fibrosis in mice. Oral Dis. 2020;26(7):1474–82. https://doi.org/10.1111/odi.13409.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Babu S, Bhat RV, Kumar PU, Sesikaran B, Rao KV, Aruna P, Reddy PR. A comparative clinico-pathological study of oral submucous fibrosis in habitual chewers of pan masala and betelquid. J Toxicol Clin Toxicol. 1996;34(3):317–22. https://doi.org/10.3109/15563659609013796.

    Article  PubMed  Google Scholar 

  19. Sirsat SM, Khanolkar VR. Submucous fibrosis of the palate in diet-preconditioned Wistar rats. Induction by local painting of capsaicin--an optical and electron microscopic study. Arch Pathol. 1960;70:171–9.

    PubMed  Google Scholar 

  20. Tang JG, Jian XF, Gao ML, Ling TY, Zhang KH. Epidemiological survey of oral submucous fibrosis in Xiangtan City, Hunan Province. China. Commun Dent Oral Epidemiol. 1997;25(2):177–80. https://doi.org/10.1111/j.1600-0528.1997.tb00918.x.

    Article  Google Scholar 

  21. Ahmad MS, Ali SA, Ali AS, Chaubey KK. Epidemiological and etiological study of oral submucous fibrosis among gutkha chewers of Patna, Bihar, India. J Indian Soc Pedod Prev Dent. 2006;24(2):84–9. https://doi.org/10.4103/0970-4388.26022.

    Article  PubMed  Google Scholar 

  22. Seedat HA, Van Wyk CW. Submucous fibrosis in non-betel nut chewing subjects. J Biol Buccale. 1988;16:3–6.

    PubMed  Google Scholar 

  23. Haque MF, Meghji S, Khitab U, Harris M. Oral submucous fibrosis patients have altered levels of cytokine production. J Oral Pathol Med. 2000;29(3):123–8. https://doi.org/10.1034/j.1600-0714.2000.290304.x.

    Article  PubMed  Google Scholar 

  24. Trivedy C, Baldwin D, Warnakulasuriya S, et al. Copper content in Areca catechu (betel nut) products and oral submucous fibrosis. Lancet. 1997;349:1447.

    Article  PubMed  Google Scholar 

  25. Trivedy CR, Warnakulasuriya KA, Peters TJ, Senkus R, Hazarey VK, Johnson NW. Raised tissue copper levels in oral submucous fibrosis. J Oral Pathol Med. 2000;29(6):241–8. https://doi.org/10.1034/j.1600-0714.2000.290601.x.

    Article  PubMed  Google Scholar 

  26. Arakeri G, Hunasgi S, Colbert S, Merkx MA, Brennan PA. Role of drinking water copper in pathogenesis of oral submucous fibrosis: a prospective case control study. Br J Oral Maxillofac Surg. 2014;52(6):507–12. https://doi.org/10.1016/j.bjoms.2014.03.023.

    Article  PubMed  Google Scholar 

  27. DiSilvestro RA, Harris ED. Evaluation of (+)-catechin action on lysyl oxidase activity in aortic tissue. Biochem Pharmacol. 1983;32(2):343–6. https://doi.org/10.1016/0006-2952(83)90565-8.

    Article  PubMed  Google Scholar 

  28. Chiu CJ, Chang ML, Chiang CP, Hahn LJ, Hsieh LL, Chen CJ. Interaction of collagen-related genes and susceptibility to betel quid-induced oral submucous fibrosis. Cancer Epidemiol Biomark Prev. 2002;11(7):646–53.

    Google Scholar 

  29. Chaudhary AK, Pandya S, Mehrotra R, Bharti AC, Jain S, Singh M. Functional polymorphism of the MMP-1 promoter (-1607 1G/2G) in potentially malignant and malignant head and neck lesions in an Indian population. Biomarkers. 2010;15(8):684–92.

    Article  PubMed  Google Scholar 

  30. Lin SC, Chung MY, Huang JW, Shieh TM, Liu CJ, Chang KW. Correlation between functional genotypes in the matrix metalloproteinases-1 promoter and risk of oral squamous cell carcinomas. J Oral Pathol Med. 2004;33(6):323–6. https://doi.org/10.1111/j.1600-0714.2004.00214.x.

    Article  PubMed  Google Scholar 

  31. Tu HF, Liu CJ, Chang CS, et al. The functional (-1171 5A–>6A) polymorphisms of matrix metalloproteinase 3 gene as a risk factor for oral submucous fibrosis among male areca users. J Oral Pathol Med. 2006;35(2):99–103.

    Article  PubMed  Google Scholar 

  32. Chaudhary AK, Singh M, Bharti AC, et al. Synergistic effect of stromelysin-1 (matrix metalloproteinase-3) promoter (-1171 5A-> 6A) polymorphism in oral submucous fibrosis and head and neck lesions. BMC Cancer. 2010;10:369.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rajendran R, Harish RK, Anil S, Vidyadharan R, Banerjee M. Transforming growth factor-β-1 polymorphisms are infrequent but exist at selected loci in oral submucous fibrosis. Indian J Dent Res. 2010;21(3):413–9. https://doi.org/10.4103/0970-9290.70815.

    Article  PubMed  Google Scholar 

  34. Shieh TM, Tu HF, Ku TH, Chang SS, Chang KW, Liu CJ. Association between lysyl oxidase polymorphisms and oral submucous fibrosis in older male areca chewers. J Oral Pathol Med. 2009;38(1):109–13.

    Article  PubMed  Google Scholar 

  35. Ray JG, Mukherjee S, Mahato B, Sripathi Rao BH, Chaudhuri K. Comparative distribution of lysyl oxidase (G473A) and NQO1 (C609T) polymorphism among tea-garden workers (habitual chewers of betel quid) of Darjeeling district and Kolkata city of West Bengal. Contemp Clin Dent. 2013;4(4):476–81.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu CJ, Lee YJ, Chang KW, Shih YN, Liu HF, Dang CW. Polymorphism of the MICA gene and risk for oral submucous fibrosis. J Oral Pathol Med. 2004;33(1):1–6.

    Article  PubMed  Google Scholar 

  37. Agrawal D, Gupta S, Agarwal D, Gupta OP, Agarwal M. Role of GSTM1 and GSTT1 polymorphism: susceptibility to oral submucous fibrosis in the North Indian population. Oncology. 2009;79(3-4):181–6.

    Article  Google Scholar 

  38. Mukherjee S, Bhowmik AD, Roychoudhury P, Mukhopadhyay K, Ray JG, Chaudhuri K. Association of XRCC1, XRCC3, and NAT2 polymorphisms with the risk of oral submucous fibrosis among eastern Indian population. J Oral Pathol Med. 2012;41(4):292–302.

    Article  PubMed  Google Scholar 

  39. Chaudhuri SR, Mukherjee S, Paul RR, Haldar A, Chaudhuri K. CYP1AI and CYP2E1 gene polymorphisms may increase susceptibility to oral submucous fibrosis among betel quid chewers of Eastern India. Gene. 2013;513(2):268–71.

    Article  PubMed  Google Scholar 

  40. Chen HM, Hsieh RP, Yang H, Kuo YS, Kuo MY, Chiang CP. HLA typing in Taiwanese patients with oral submucous fibrosis. J Oral Pathol Med. 2004;33(4):191–9. https://doi.org/10.1111/j.0904-2512.2004.00195.x.

    Article  PubMed  Google Scholar 

  41. Purohit A, Purohit BM, Mani A, Bhambal A. Genetic implications of HLA-DR and HLA-DQ genotype on tobacco smoking and oral submucous fibrosis. Oral Health Prev Dent. 2020;18(1):455–60. https://doi.org/10.3290/j.ohpd.a44683.

    Article  PubMed  Google Scholar 

  42. Cox S, Vickers ER, Ghu S, Zoellner H. Salivary arecoline levels during areca nut chewing in human volunteers. J Oral Pathol Med. 2010;39(6):465–9. https://doi.org/10.1111/j.1600-0714.2009.00881.x.

    Article  PubMed  Google Scholar 

  43. Lee HH, Chen LY, Wang HL, Chen BH. Quantification of salivary arecoline, arecaidine and N-methylnipecotic acid levels in volunteers by liquid chromatography-tandem mass spectrometry. J Anal Toxicol. 2015;39(9):714–9. https://doi.org/10.1093/jat/bkv077.

    Article  PubMed  Google Scholar 

  44. Venkatesh D, Puranik RS, Vanaki SS, Puranik SR. Study of salivary arecoline in areca nut chewers. J Oral Maxillofac Pathol. 2018;22(3):446. https://doi.org/10.4103/jomfp.JOMFP_143_18.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Franke AA, Li X, Lai JF. Pilot study of the pharmacokinetics of betel nut and betel quid biomarkers in saliva, urine, and hair of betel consumers. Drug Test Anal. 2016;8(10):1095–9. https://doi.org/10.1002/dta.1912.

    Article  PubMed  Google Scholar 

  46. Khokhar A, GVR R, Deswal BS, Mohapatra S. Study of salivary arecoline in areca nut chewers. Int J Scientific Res. 2017;6(12)

    Google Scholar 

  47. Canniff JP, Harvey W. The aetiology of oral submucous fibrosis: the stimulation of collagen synthesis by extracts of areca nut. Int J Oral Surg. 1981;10(Suppl. 1):163–7.

    PubMed  Google Scholar 

  48. Chang YC, Tai KW, Cheng MH, Chou LS, Chou MY. Cytotoxic and non-genotoxic effects of arecoline on human buccal fibroblasts in vitro. J Oral Pathol Med. 1998;27:68–71.

    Article  PubMed  Google Scholar 

  49. Giri S, Idle JR, Chen C, Zabriskie TM, Krausz KW, Gonzalez FJ. A metabolomic approach to the metabolism of the areca nut alkaloids arecoline and arecaidine in the mouse. Chem Res Toxicol. 2006;19:818–27.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kaur J, Jacobs R. Proinflammatory cytokine levels in oral lichen planus, oral leukoplakia, and oral submucous fibrosis. J Korean Assoc Oral Maxillofac Surg. 2015;41(4):171–5. https://doi.org/10.5125/jkaoms.2015.41.4.171.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Dineshkumar T, Ashwini BK, Rameshkumar A, Rajashree P, Ramya R, Rajkumar K. Salivary and serum interleukin-6 levels in oral premalignant disorders and squamous cell carcinoma: diagnostic value and clinicopathologic correlations. Asian Pac J Cancer Prev. 2016;17(11):4899–906. https://doi.org/10.22034/APJCP.2016.17.11.4899.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wang L, Gu L, Tang Z. Cytokines secreted by arecoline activate fibroblasts that affect the balance of TH17 and Treg. J Oral Pathol Med. 2020;49(2):156–63. https://doi.org/10.1111/jop.12965.

    Article  PubMed  Google Scholar 

  53. Jeng JH, Wang YJ, Chiang BL, Lee PH, Chan CP, Ho YS, Wang TM, Lee JJ, Hahn LJ, Chang MC. Roles of keratinocyte inflammation in oral cancer: regulating the prostaglandin E2, interleukin-6 and TNF-alpha production of oral epithelial cells by areca nut extract and arecoline. Carcinogenesis. 2003;8:1301–15. https://doi.org/10.1093/carcin/bgg083.

    Article  Google Scholar 

  54. Gupta S, Reddy MV, Harinath BC. Role of oxidative stress and antioxidants in aetiopathogenesis and management of oral submucous fibrosis. Indian J Clin Biochem. 2004;19(1):138–41. https://doi.org/10.1007/BF02872409.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chitra S, Balasubramaniam M, Hazra J. Effect of α-tocopherol on salivary reactive oxygen species and trace elements in oral submucous fibrosis. Ann Clin Biochem. 2012;49(3):262–5. https://doi.org/10.1258/acb.2011.011050.

    Article  PubMed  Google Scholar 

  56. Bose KS, Vyas P, Singh M. Plasma non-enzymatic antioxidants-vitamin C, E, beta-carotenes, reduced glutathione levels and total antioxidant activity in oral sub mucous fibrosis. Eur Rev Med Pharmacol Sci. 2012;16(4):530–2.

    PubMed  Google Scholar 

  57. Meera S, Sarangarajan R, Rajkumar K. 8-Isoprostane: a salivary oxidative stress biomarker for oral submucous fibrosis and oral squamous cell carcinoma. J Oral Maxillofac Pathol. 2020;24(2):279–84. https://doi.org/10.4103/jomfp.JOMFP_235_19.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ganta SR, Chittemsetti S, Sravya T, Guttikonda VR. Salivary malondialdehyde in oral submucous fibrosis—a marker for oxidative damage. J Oral Maxillofac Pathol. 2021;25(1):82–7. https://doi.org/10.4103/jomfp.JOMFP_279_18.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Shakunthala GK, Annigeri RG, Arunkumar S. Role of oxidative stress in the pathogenesis of oral submucous fibrosis: a preliminary prospective study. Contemp Clin Dent. 2015;6(Suppl. 1):S172–4. https://doi.org/10.4103/0976-237X.166823.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Nair UJ, Nair J, Friesen MD, Bartsch H, Ohshima H. Ortho- and meta-tyrosine formation from phenylalanine in human saliva as a marker of hydroxyl radical generation during betel quid chewing. Carcinogenesis. 1995;16(5):1195–8. https://doi.org/10.1093/carcin/16.5.1195.

    Article  PubMed  Google Scholar 

  61. Uikey AK, Hazarey VK, Vidya SM. Estimation of antioxidant dismutase and glutathione peroxidase in oral submucous fibrosis. J Oral Maxillofac Pathol. 2003;7(2):44–5.

    Article  Google Scholar 

  62. Nieschultz V, Schmersahl P. Zur Phamakologie der Wirkstoffe des Betels Umwenlung des arecolin in arecadin. Arzneimitrel-Forsch. 1968;18:222–5.

    Google Scholar 

  63. Wang J, You J, Wang L, Wang H, Tian T, Wang W, Jia L, Jiang C. PTMA, a new identified autoantigen for oral submucous fibrosis, regulates oral submucous fibroblast proliferation and extracellular matrix. Oncotarget. 2017;8(43):74806–19. https://doi.org/10.18632/oncotarget.20419.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Chiang CP, Hsieh RP, Chen TH, Chang YF, Liu BY, Wang JT, Sun A, Kuo MY. High incidence of autoantibodies in Taiwanese patients with oral submucous fibrosis. J Oral Pathol Med. 2002;31(7):402–9. https://doi.org/10.1034/j.1600-0714.2002.00117.x.

    Article  PubMed  Google Scholar 

  65. Wang YP, Wu YC, Cheng SJ, Chen HM, Sun A, Chang JY. High frequencies of vitamin B12 and folic acid deficiencies and gastric parietal cell antibody positivity in oral submucous fibrosis patients. J Formos Med Assoc. 2015;114(9):813–9. https://doi.org/10.1016/j.jfma.2015.05.011.

    Article  PubMed  Google Scholar 

  66. Gupta A, Das SN, Das BK, Bhuyan L. Characterization of anti-nuclear antibodies in patients with oral submucous fibrosis and its clinicopathologic implications—an immunofluorescence study. J Oral Maxillofac Pathol. 2021;25(1):201. https://doi.org/10.4103/jomfp.jomfp_376_20.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Shah N, Kumar R, Shah MK. Immunological studies in oral submucous fibrosis. Indian J Dent Res. 1994;5(3):81–7.

    PubMed  Google Scholar 

  68. Van Wyk CW, Grobler Rabie AF, Martel RW, Hammond MG. HLA antigens in oral submucous fibrosis. J Oral Pathol Med. 1994;23:23–7.

    Article  PubMed  Google Scholar 

  69. Ma RH, Tsai CC, Shieh TY. Increased lysyl oxidase activity in fibroblasts cultured from oral submucous fibrosis associated with betel nut chewing in Taiwan. J Oral Pathol Med. 1995;24(9):407–12. https://doi.org/10.1111/j.1600-0714.1995.tb01210.x.

    Article  PubMed  Google Scholar 

  70. Sachdev PK, Freeland-Graves J, Beretvas SN, Sanjeevi N. Zinc, copper, and iron in oral submucous fibrosis: a meta-analysis. Int J Dent. 2018;2018:3472087. https://doi.org/10.1155/2018/3472087.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Anuradha CD, Devi CS. Serum protein, ascorbic acid and iron and tissue collagen in oral submucous fibrosis—a preliminary study. Indian J Med Res. 1993;98:147–51.

    PubMed  Google Scholar 

  72. Khanna SS, Karjodkar FR. Circulating immune complexes and trace elements (copper, iron and selenium) as markers in oral precancer and cancer: a randomised, controlled clinical trial. Head Face Med. 2006;2:33.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Xia L, Tian-You L, Yi-Jun G, Dong-Sheng T, Wen-Hui L. Arecoline and oral keratinocytes may affect the collagen metabolism of fibroblasts. J Oral Pathol Med. 2009;38(5):422–6. https://doi.org/10.1111/j.1600-0714.2009.00758.x.

    Article  PubMed  Google Scholar 

  74. Krishnakumar K, Ramadoss R, Krishnan R, Sukhija H. In vitro quantification of collagen and Snail1 gene expression in experimentally induced fibrosis by arecoline and commercial smokeless tobacco products. Asian Pac J Cancer Prev. 2020;21(4):1143–8. https://doi.org/10.31557/APJCP.2020.21.4.1143.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Thangjam GS, Agarwal P, Balapure AK, Rao SG, Kondaiah P. Regulation of extracellular matrix genes by arecoline in primary gingival fibroblasts requires epithelial factors. J Periodontal Res. 2009;44(6):736–43. https://doi.org/10.1111/j.1600-0765.2008.01185.x.

    Article  PubMed  Google Scholar 

  76. Yang SF, Tsai CH, Chang YC. The upregulation of heat shock protein 47 expression in human buccal fibroblasts stimulated with arecoline. J Oral Pathol Med. 2008;37(4):206–10. https://doi.org/10.1111/j.1600-0714.2007.00633.x.

    Article  PubMed  Google Scholar 

  77. Harvey W, Scutt A, Meghji S, Canniff JP. Stimulation of human buccal mucosa fibroblasts in vitro by betel-nut alkaloids. Arch Oral Biol. 1986;31(1):45–9. https://doi.org/10.1016/0003-9969(86)90112-3.

    Article  PubMed  Google Scholar 

  78. Chang YC, Tai KW, Lii CK, Chou MY. Cytopathologic effects of arecoline on human gingival fibroblasts in vitro. Clin Oral Investig. 1999;3:25–9.

    Article  PubMed  Google Scholar 

  79. Van Wyk CW, Olivier A, de Miranda CM, van der Bijl P, Grobler-Rabie AF. Observations on the effect of areca nut extracts on oral fibroblast proliferation. J Oral Pathol Med. 1994;23(4):145–8. https://doi.org/10.1111/j.1600-0714.1994.tb01103.x.

    Article  PubMed  Google Scholar 

  80. Kuo MY, Chen HM, Hahn LJ, Hsieh CC, Chiang CP. Collagen biosynthesis in human oral submucous fibrosis fibroblast cultures. J Dent Res. 1995;74(11):1783–8. https://doi.org/10.1177/00220345950740111101.

    Article  PubMed  Google Scholar 

  81. Jeng JH, Lan WH, Hahn LJ, Hsieh CC, Kuo MYP. Inhibition of the migration, attachment, spreading, growth and collagen synthesis of human gingival fibroblasts by arecoline, a major areca alkaloid, in vitro. J Oral Pathol Med. 1996;25:371–5.

    Article  PubMed  Google Scholar 

  82. Chang MC, Kuo MYP, Hahn LJ, Hsieh CC, Lin SK, Jeng JH. Areca nut extract inhibits the growth, attachment, and matrix protein synthesis of cultured human gingival fibroblasts. J Periodontol. 1998;69:1092–7.

    Article  PubMed  Google Scholar 

  83. Chen Q, Jiao J, Wang Y, Mai Z, Ren J, He S, Li X, Chen Z. Egr-1 mediates low-dose arecoline induced human oral mucosa fibroblast proliferation via transactivation of Wnt5a expression. BMC Mol Cell Biol. 2020;21(1):80. https://doi.org/10.1186/s12860-020-00325-7.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Chang YC, Lii CK, Tai KW, Chou MY. Adverse effects of arecoline and nicotine on human periodontal ligament fibroblasts in vitro. J Clin Periodontol. 2001;28(3):277–82. https://doi.org/10.1034/j.1600-051x.2001.028003277.x.

    Article  PubMed  Google Scholar 

  85. Jimenez SA, Hitraya E, Varga J. Pathogenesis of scleroderma. Collagen. Rheum Dis Clin North Am. 1996;22(4):647–74. https://doi.org/10.1016/s0889-857x(05)70294-5.

    Article  PubMed  Google Scholar 

  86. Tsai CH, Chou MY, Chang YC. The up-regulation of cyclooxygenase-2 expression in human buccal mucosal fibroblasts by arecoline: a possible role in the pathogenesis of oral submucous fibrosis. J Oral Pathol Med. 2003;32(3):146–53. https://doi.org/10.1034/j.1600-0714.2003.00004.x.

    Article  PubMed  Google Scholar 

  87. Jeng JH, Ho YS, Chan CP, Wang YJ, Hahn LJ, Lei D. Areca nut extract up-regulates prostaglandin production, cyclooxygenase-2 mRNA and protein expression of human oral keratinocytes. Carcinogenesis. 2000;21:1365–70.

    Article  PubMed  Google Scholar 

  88. Chang MC, Chen YJ, Chang HH, Chan CP, Yeh CY, Wang YL, et al. Areca nut components affect COX-2, cyclin B1/cdc25C and keratin expression, PGE2 production in keratinocyte is related to reactive oxygen species, CYP1A1, Src, EGFR and Ras signaling. PLOS One. 2014;9:e101959.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Khan I, Kumar N, Pant I, Narra S, Kondaiah P. Activation of TGF-beta pathway by areca nut constituents: a possible cause of oral submucous fibrosis. PLoS One. 2012;7(12):e51806. https://doi.org/10.1371/journal.pone.0051806.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Pant I, Kumar N, Khan I, Rao SG, Kondaiah P. Role of areca nut induced TGF-β and epithelial-mesenchymal interaction in the pathogenesis of oral submucous fibrosis. PLoS One. 2015;10(6):e0129252. https://doi.org/10.1371/journal.pone.0129252.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hsieh YP, Chen HM, Chang JZ, Chiang CP, Deng YT, Kuo MY. Arecoline stimulated early growth response-1 production in human buccal fibroblasts: suppression by epigallocatechin-3-gallate. Head Neck. 2015;37(4):493–7. https://doi.org/10.1002/hed.23614.

    Article  PubMed  Google Scholar 

  92. Hsieh YP, Wu KJ, Chen HM, Deng YT. Arecoline activates latent transforming growth factor β1 via mitochondrial reactive oxygen species in buccal fibroblasts: suppression by epigallocatechin-3-gallate. J Formos Med Assoc. 2018;117(6):527–34. https://doi.org/10.1016/j.jfma.2017.07.003.

    Article  PubMed  Google Scholar 

  93. Pant I, Rao SG, Kondaiah P. Role of areca nut induced JNK/ATF2/Jun axis in the activation of TGF-beta pathway in precancerous oral submucous fibrosis. Sci Rep. 2016;6:34314.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Moutasim KA, Jenei V, Sapienza K, Marsh D, Weinreb PH, Violette SM, Lewis MP, Marshall JF, Fortune F, Tilakaratne WM, Hart IR, Thomas GJ. Betel-derived alkaloid up-regulates keratinocyte alphavbeta6 integrin expression and promotes oral submucous fibrosis. J Pathol. 2011;223(3):366–77. https://doi.org/10.1002/path.2786.

    Article  PubMed  Google Scholar 

  95. Chang JZ, Hsieh YP, Lin WH, Chen HM, Kuo MY. Activation of transforming growth factor-β1 by thrombin via integrins αvβ1, αvβ3, and αvβ5 in buccal fibroblasts: suppression by epigallocatechin-3-gallate. Head Neck. 2017;39(7):1436–45. https://doi.org/10.1002/hed.24791.

    Article  PubMed  Google Scholar 

  96. Lee YH, Yang LC, Hu FW, Peng CY, Yu CH, Yu CC. Elevation of Twist expression by arecoline contributes to the pathogenesis of oral submucous fibrosis. J Formos Med Assoc. 2016;115(5):311–7. https://doi.org/10.1016/j.jfma.2015.05.009.

    Article  PubMed  Google Scholar 

  97. Chang MC, Lin LD, Wu HL, Ho YS, Hsien HC, Wang TM, Jeng PY, Cheng RH, Hahn LJ, Jeng JH. Areca nut-induced buccal mucosa fibroblast contraction and its signaling: a potential role in oral submucous fibrosis—a precancer condition. Carcinogenesis. 2013;34(5):1096–104. https://doi.org/10.1093/carcin/bgt012.

    Article  PubMed  Google Scholar 

  98. Chang YC, Tsai CH, Lai YL, et al. Arecoline-induced myofibroblast transdifferentiation from human buccal mucosal fibroblasts is mediated by ZEB1. J Cell Mol Med. 2014;18(4):698–708. https://doi.org/10.1111/jcmm.12219.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Liao YW, Yu CC, Hsieh PL, Chang YC. miR-200b ameliorates myofibroblast transdifferentiation in precancerous oral submucous fibrosis through targeting ZEB2. J Cell Mol Med. 2018;22(9):4130–8. https://doi.org/10.1111/jcmm.13690.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Peng CY, Liao YW, Lu MY, Yang CM, Hsieh PL, Yu CC. Positive feedback loop of SNAIL-IL-6 mediates myofibroblastic differentiation activity in precancerous oral submucous fibrosis. Cancers (Basel). 2020;12(6):1611. https://doi.org/10.3390/cancers12061611.

    Article  PubMed  Google Scholar 

  101. Yu CH, Fang CY, Yu CC, Hsieh PL, Liao YW, Tsai LL, Chu PM. LINC00312/YBX1 axis regulates myofibroblast activities in oral submucous fibrosis. Int J Mol Sci. 2020;21(8):2979. https://doi.org/10.3390/ijms21082979.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Chang YC, Yang SF, Tai KW, Chou MY, Hsieh YS. Increased tissue inhibitor of metalloproteinase-1 expression and inhibition of gelatinase A activity in buccal mucosal fibroblasts by arecoline as possible mechanisms for oral submucous fibrosis. Oral Oncol. 2002;38(2):195–200. https://doi.org/10.1016/s1368-8375(01)00045-8.

    Article  PubMed  Google Scholar 

  103. Shieh DH, Chiang LC, Shieh TY. Augmented mRNA expression of tissue inhibitor of metalloproteinase-1 in buccal mucosal fibroblasts by arecoline and safrole as a possible pathogenesis for oral submucous fibrosis. Oral Oncol. 2003;39(7):728–35. https://doi.org/10.1016/s1368-8375(03)00101-5.

    Article  PubMed  Google Scholar 

  104. Pitiyage GN, Lim KP, Gemenitzidis E, Teh MT, Waseem A, Prime SS, Tilakaratne WM, Fortune F, Parkinson EK. Increased secretion of tissue inhibitors of metalloproteinases 1 and 2 (TIMPs-1 and -2) in fibroblasts are early indicators of oral sub-mucous fibrosis and ageing. J Oral Pathol Med. 2012;41(6):454–62. https://doi.org/10.1111/j.1600-0714.2012.01129.x.

    Article  PubMed  Google Scholar 

  105. Yu CC, Tsai CH, Hsu HI, Chang YC. Elevation of S100A4 expression in buccal mucosal fibroblasts by arecoline: involvement in the pathogenesis of oral submucous fibrosis. PLoS One. 2013;8(1):e55122. https://doi.org/10.1371/journal.pone.0055122.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Scutt A, Meghji S, Canniff JP, Harvey W. Stabilization of collagen by betel nut polyphenols as a mechanism in oral submucous fibrosis. Experimentia. 1987;43:391–3.

    Article  Google Scholar 

  107. Thangjam GS, Agarwal P, Khan I, Verma UP, Balapure AK, Rao SG, et al. Transglutaminase-2 regulation by arecoline in gingival fibroblasts. J Dent Res. 2009;88(2):170–7.

    Article  PubMed  Google Scholar 

  108. Lee SS, Chen YJ, Tsai CH, Huang FM, Chang YC. Elevated transglutaminase-2 expression mediates fibrosis in areca quid chewing-associated oral submucosal fibrosis via reactive oxygen species generation. Clin Oral Investig. 2016;20(5):1029–34.

    Article  PubMed  Google Scholar 

  109. Yang SF, Hsieh YS, Tsai CH, Chou MY, Chang YC. The upregulation of type I plasminogen activator inhibitor in oral submucous fibrosis. Oral Oncol. 2003;39(4):367–72. https://doi.org/10.1016/s1368-8375(02)00123-9.

    Article  PubMed  Google Scholar 

  110. Tsai CH, Lee SS, Chang YC. Hypoxic regulation of plasminogen activator inhibitor-1 expression in human buccal mucosa fibroblasts stimulated with arecoline. J Oral Pathol Med. 2015;44(9):669–73. https://doi.org/10.1111/jop.12284.

    Article  PubMed  Google Scholar 

  111. Trivedy C, Meghji S, Warnakulasuriya KA, et al. Copper stimulates human oral fibroblasts in vitro: a role in the pathogenesis of oral sub-mucous fibrosis. J Oral Pathol Med. 2001;30:465–70.13.

    Article  PubMed  Google Scholar 

  112. Chung-Hung T, Shun-Fa Y, Yu-Chao C. The upregulation of cystatin C in oral submucous fibrosis. Oral Oncol. 2007;43(7):680–5. https://doi.org/10.1016/j.oraloncology.2006.08.009.

    Article  PubMed  Google Scholar 

  113. Tsai CH, Yang SF, Chen YJ, Chou MY, Chang YC. Raised keratinocyte growth factor-1 expression in oral submucous fibrosis in vivo and upregulated by arecoline in human buccal mucosal fibroblasts in vitro. J Oral Pathol Med. 2005;34(2):100–5. https://doi.org/10.1111/j.1600-0714.2004.00288.x.

    Article  PubMed  Google Scholar 

  114. Tsai CC, Ma RH, Shieh TY. Deficiency in collagen and fibronectin phagocytosis by human buccal mucosa fibroblasts in vitro as a possible mechanism for oral submucous fibrosis. J Oral Pathol Med. 1999;28(2):59–63. https://doi.org/10.1111/j.1600-0714.1999.tb01997.x.

    Article  PubMed  Google Scholar 

  115. Shieh DH, Chiang LC, Lee CH, Yang YH, Shieh TY. Effects of arecoline, safrole, and nicotine on collagen phagocytosis by human buccal mucosal fibroblasts as a possible mechanism for oral submucous fibrosis in Taiwan. J Oral Pathol Med. 2004;33(9):581–7. https://doi.org/10.1111/j.1600-0714.2004.00229.x.

    Article  PubMed  Google Scholar 

  116. Nair UJ, Obe G, Friesen M, Goldberg MT, Bartsch H. Role of lime in the generation of reactive oxygen species from betel-quid ingredients. Environ Health Perspect. 1992;98:203–5.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Chen PH, Tsai CC, Lin YC, Ko YC, Yang YH, Shieh TY, et al. Ingredients contribute to variation in production of reactive oxygen species by areca quid. J Toxicol Environ Health A. 2006;69:1055–69.

    Article  PubMed  Google Scholar 

  118. Illeperuma RP, Kim DK, Park YJ, Son HK, Kim JY, Kim J, et al. Areca nut exposure increases secretion of tumor-promoting cytokines in gingival fibroblasts that trigger DNA damage in oral keratinocytes. Int J Cancer. 2015;137:2545–57.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Chang LY, Wan HC, Lai YL, Chou IC, Chen YT, Hung SL. Areca nut extracts increased the expression of cyclooxygenase-2, prostaglandin E2 and interleukin-1alpha in human immune cells via oxidative stress. Arch Oral Biol. 2013;58:1523–31.

    Article  PubMed  Google Scholar 

  120. Deng YT, Chen HM, Cheng SJ, Chiang CP, Kuo MY. Arecoline-stimulated connective tissue growth factor production in human buccal mucosal fibroblasts: modulation by curcumin. Oral Oncol. 2009;45(9):e99–e105. https://doi.org/10.1016/j.oraloncology.2009.04.004.

    Article  PubMed  Google Scholar 

  121. Khan I, Pant I, Narra S, Radhesh R, Ranganathan K, Rao SG, Kondaiah P. Epithelial atrophy in oral submucous fibrosis is mediated by copper (II) and arecoline of areca nut. J Cell Mol Med. 2015;19(10):2397–412. https://doi.org/10.1111/jcmm.12622.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Paranagama MP, Piyarathne NS, Nandasena TL, Jayatilake S, Navaratne A, Galhena BP, Williams S, Rajapakse J, Kita K. The Porphyromonas gingivalis inhibitory effects, antioxidant effects and the safety of a Sri Lankan traditional betel quid—an in vitro study. BMC Complement Med Ther. 2020;20(1):259. https://doi.org/10.1186/s12906-020-03048-6.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Sazwi NN, Nalina T, Abdul Rahim ZH. Antioxidant and cytoprotective activities of Piper betle, Areca catechu, Uncaria gambir and betel quid with and without calcium hydroxide. BMC Complement Altern Med. 2013;13:351. https://doi.org/10.1186/1472-6882-13-351.

    Article  PubMed  Google Scholar 

  124. Tsai CH, Yang SF, Lee SS, Chang YC. Augmented heme oxygenase-1 expression in areca quid chewing-associated oral submucous fibrosis. Oral Dis. 2009;15(4):281–6. https://doi.org/10.1111/j.1601-0825.2009.01523.x.

    Article  PubMed  Google Scholar 

  125. Li J, Zhao TT, Zhang P, Xu CJ, Rong ZX, Yan ZY, Fang CY. Autophagy mediates oral submucous fibrosis. Exp Ther Med. 2016;11(5):1859–64. https://doi.org/10.3892/etm.2016.3145.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Dai Z, Zhu B, Yu H, Jian X, Peng J, Fang C, Wu Y. Role of autophagy induced by arecoline in angiogenesis of oral submucous fibrosis. Arch Oral Biol. 2019;102:7–15. https://doi.org/10.1016/j.archoralbio.2019.03.021.

    Article  PubMed  Google Scholar 

  127. Zhu B, Jiang Q, Que G, Dai Z, Wu Y. Role of autophagy and apoptosis in atrophic epithelium in oral submucous fibrosis. J Oral Sci. 2020;62(2):184–8. https://doi.org/10.2334/josnusd.19-0170.

    Article  PubMed  Google Scholar 

  128. Tseng SK, Chang MC, Su CY, Chi LY, Chang JZ, Tseng WY, Yeung SY, Hsu ML, Jeng JH. Arecoline induced cell cycle arrest, apoptosis, and cytotoxicity to human endothelial cells. Clin Oral Investig. 2012;16(4):1267–73. https://doi.org/10.1007/s00784-011-0604-1.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Primali Jayasooriya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jayasooriya, P., Dissanayake, U. (2023). In Vivo and In Vitro Experimental Evidence. In: Warnakulasuriya, S., Ranganathan, K. (eds) Oral Submucous Fibrosis. Textbooks in Contemporary Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-031-12855-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12855-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12854-7

  • Online ISBN: 978-3-031-12855-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics