Skip to main content

The Blood-Brain Barrier in Stroke and Trauma and How to Enhance Drug Delivery

  • Chapter
  • First Online:
Drug Delivery to the Brain

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 33))

  • 1385 Accesses

Abstract

Ischemic or hemorrhagic stroke and traumatic brain injury (TBI) cause marked changes in blood-brain barrier (BBB) function. Such changes increase barrier permeability and induce vasogenic edema and leukocyte extravasation into the brain. In addition, BBB dysfunction affects the entry of therapeutics into the brain. This chapter describes changes in BBB function after brain injury, how stroke and TBI affect drug delivery, the BBB as a therapeutic target, and enhancing drug delivery in stroke and TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAVs:

adeno-associated viruses

ABC transporters:

ATP-binding cassette transporters

BBB:

blood-brain barrier

BDNF:

brain-derived neurotrophic factor

bFGF:

basic fibroblast growth factor

CBF:

cerebral blood flow

CSF:

cerebrospinal fluid

Gd-DPTA:

gadolinium-diethylenetriaminepentacetate

ICH:

intracerebral hemorrhage

Nrf2:

nuclear factor erythroid 2-related factor 2

NVU:

neurovascular unit

Oat3:

organic anion transporter-3

PS product:

permeability surface area product

SAH:

subarachnoid hemorrhage

shRNA:

short hairpin RNA

SVCT2:

Na-dependent vitamin C transporter 2

TBI:

traumatic brain injury

TJ:

tight junction

tPA:

tissue plasminogen activator

References

  • Abbott NJ et al (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37:13–25

    Article  CAS  PubMed  Google Scholar 

  • Adeoye O, Broderick JP (2010) Advances in the management of intracerebral hemorrhage. Nat Rev Neurol 6:593–601

    Article  CAS  PubMed  Google Scholar 

  • Agrawal M et al (2017) Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer’s disease. J Control Release 260:61–77

    Article  CAS  PubMed  Google Scholar 

  • Alfieri A et al (2011) Targeting the Nrf2-Keap1 antioxidant defence pathway for neurovascular protection in stroke. J Physiol 589:4125–4136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andjelkovic AV et al (2019) Endothelial targets in stroke: translating animal models to human. Arterioscler Thromb Vasc Biol 39:2240–2247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anonymous (1995) Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA stroke study group. N Engl J Med 333:1581–1587

    Article  Google Scholar 

  • Astrup J, Siesjo BK, Symon L (1981) Thresholds in cerebral ischemia – the ischemic penumbra. Stroke 12:723–725

    Article  CAS  PubMed  Google Scholar 

  • Ballance WC et al (2019) Reactive oxygen species-responsive drug delivery systems for the treatment of neurodegenerative diseases. Biomaterials 217:119292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao Q et al (2018) Simultaneous blood-brain barrier crossing and protection for stroke treatment based on edaravone-loaded ceria nanoparticles. ACS Nano 12:6794–6805

    Article  CAS  PubMed  Google Scholar 

  • Bauer B et al (2004) Pregnane X receptor up-regulation of P-glycoprotein expression and transport function at the blood-brain barrier. Mol Pharmacol 66:413–419

    CAS  PubMed  Google Scholar 

  • Bederson JB et al (2009) Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke 40:994–1025

    Article  PubMed  Google Scholar 

  • Beretta S et al (2011) Acute lipophilicity-dependent effect of intravascular simvastatin in the early phase of focal cerebral ischemia. Neuropharmacology 60:878–885

    Article  CAS  PubMed  Google Scholar 

  • Bobo RH et al (1994) Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci U S A 91:2076–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borlongan CV et al (2011) The great migration of bone marrow-derived stem cells toward the ischemic brain: therapeutic implications for stroke and other neurological disorders. Prog Neurobiol 95:213–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruch GE et al (2019) Liposomes for drug delivery in stroke. Brain Res Bull 152:246–256

    Article  CAS  PubMed  Google Scholar 

  • Cai H, Zhang Z, Yang GY (2014) Preconditioned stem cells: a promising strategy for cell-based ischemic stroke therapy. Curr Drug Targets 15:771–779

    Article  CAS  PubMed  Google Scholar 

  • Cen J et al (2013) Alteration in P-glycoprotein at the blood-brain barrier in the early period of MCAO in rats. J Pharm Pharmacol 65:665–672

    Article  CAS  PubMed  Google Scholar 

  • Chabriat H et al (2020) Safety and efficacy of GABAA alpha5 antagonist S44819 in patients with ischaemic stroke: a multicentre, double-blind, randomised, placebo-controlled trial. Lancet Neurol 19:226–233

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Chopp M (2018) Exosome therapy for stroke. Stroke 49:1083–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chopp M, Zhang ZG (2015) Emerging potential of exosomes and noncoding microRNAs for the treatment of neurological injury/diseases. Expert Opin Emerg Drugs 20:523–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • CRASH-3 Trial Investigators (2019) Effects of tranexamic acid on death, disability, vascular occlusive events and other morbidities in patients with acute traumatic brain injury (CRASH-3): a randomised, placebo-controlled trial. Lancet 394:1713–1723

    Google Scholar 

  • Dazert P et al (2006) Differential regulation of transport proteins in the periinfarct region following reversible middle cerebral artery occlusion in rats. Neuroscience 142:1071–1079

    Article  CAS  PubMed  Google Scholar 

  • de Lange EC et al (1995) Application of intracerebral microdialysis to study regional distribution kinetics of drugs in rat brain. Br J Pharmacol 116:2538–2544

    Article  PubMed  PubMed Central  Google Scholar 

  • de Lange EC et al (1997) Methodological considerations of intracerebral microdialysis in pharmacokinetic studies on drug transport across the blood-brain barrier. Brain Res Brain Res Rev 25:27–49

    Article  PubMed  Google Scholar 

  • del Zoppo GJ (2010) Acute anti-inflammatory approaches to ischemic stroke. Ann N Y Acad Sci 1207:143–148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DeMars KM et al (2017) Spatiotemporal changes in P-glycoprotein levels in brain and peripheral tissues following ischemic stroke in rats. J Exp Neurosci 11:1179069517701741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deng J et al (2018) Recombinant tissue plasminogen activator-conjugated nanoparticles effectively targets thrombolysis in a rat model of middle cerebral artery occlusion. Curr Med Sci 38:427–435

    Article  CAS  PubMed  Google Scholar 

  • Dimitrijevic OB et al (2006) Effects of the chemokine CCL2 on blood-brain barrier permeability during ischemia-reperfusion injury. J Cereb Blood Flow Metab 26:797–810

    Article  CAS  PubMed  Google Scholar 

  • Dithmer S et al (2017) Claudin peptidomimetics modulate tissue barriers for enhanced drug delivery. Ann N Y Acad Sci 1397:169–184

    Article  CAS  PubMed  Google Scholar 

  • Doolittle ND et al (2014) Delivery of chemotherapeutics across the blood-brain barrier: challenges and advances. Adv Pharmacol 71:203–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • el-Bacha RS, Minn A (1999) Drug metabolizing enzymes in cerebrovascular endothelial cells afford a metabolic protection to the brain. Cell Mol Biol 45:15–23

    CAS  PubMed  Google Scholar 

  • Etminan N et al (2011) Effect of pharmaceutical treatment on vasospasm, delayed cerebral ischemia, and clinical outcome in patients with aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. J Cereb Blood Flow Metab 31:1443–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ewing JR et al (2003) Patlak plots of Gd-DTPA MRI data yield blood-brain transfer constants concordant with those of 14C-sucrose in areas of blood-brain opening. Magn Reson Med 50:283–292

    Article  PubMed  Google Scholar 

  • Fernandes LF et al (2018) Recent advances in the therapeutic and diagnostic use of liposomes and carbon nanomaterials in ischemic stroke. Front Neurosci 12:453

    Article  PubMed  PubMed Central  Google Scholar 

  • Fisher M, Albers GW (2013) Advanced imaging to extend the therapeutic time window of acute ischemic stroke. Ann Neurol 73:4–9

    Article  PubMed  Google Scholar 

  • Gan Y et al (2013) Gene delivery with viral vectors for cerebrovascular diseases. Front Biosci (Elite Ed) 5:188–203

    Article  Google Scholar 

  • GBD2016 (2017) Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390:1151–1210

    Google Scholar 

  • Gess B et al (2011) Sodium-dependent vitamin C transporter 2 (SVCT2) expression and activity in brain capillary endothelial cells after transient ischemia in mice. PLoS ONE [Electronic Resource] 6:e17139

    Article  CAS  Google Scholar 

  • Ghersi-Egea J-F et al (2006) Brain protection at the blood-cerebrospinal fluid interface involves a glutathione-dependent metabolic barrier mechanism. J Cereb Blood Flow Metab 26:1165–1175

    Article  CAS  PubMed  Google Scholar 

  • Gomes JA et al (2005) Glucocorticoid therapy in neurologic critical care. Crit Care Med 33:1214–1224

    Article  CAS  PubMed  Google Scholar 

  • Haar PJ et al (2010) Quantification of convection-enhanced delivery to the ischemic brain. Physiol Meas 31:1075–1089

    Article  PubMed  Google Scholar 

  • Haley MJ, Lawrence CB (2017) The blood-brain barrier after stroke: structural studies and the role of transcytotic vesicles. J Cereb Blood Flow Metab 37:456–470

    Article  PubMed  Google Scholar 

  • Hanley DF et al (2017) Thrombolytic removal of intraventricular haemorrhage in treatment of severe stroke: results of the randomised, multicentre, multiregion, placebo-controlled CLEAR III trial. Lancet 389:603–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson LR, Frey WH 2nd (2008) Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci 9(Suppl 3):S5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hermann DM, Chopp M (2014) Promoting neurological recovery in the post-acute stroke phase: benefits and challenges. Eur Neurol 72:317–325

    Article  PubMed  Google Scholar 

  • Higashida T et al (2011) The role of hypoxia-inducible factor-1alpha, aquaporin-4, and matrix metalloproteinase-9 in blood-brain barrier disruption and brain edema after traumatic brain injury. J Neurosurg 114:92–101

    Article  CAS  PubMed  Google Scholar 

  • Hollt V et al (1992) Stereoisomers of calcium antagonists which differ markedly in their potencies as calcium blockers are equally effective in modulating drug transport by P-glycoprotein. Biochem Pharmacol 43:2601–2608

    Article  CAS  PubMed  Google Scholar 

  • Horng S et al (2017) Astrocytic tight junctions control inflammatory CNS lesion pathogenesis. J Clin Invest 127:3136–3151

    Article  PubMed  PubMed Central  Google Scholar 

  • Hrabetova S, Hrabe J, Nicholson C (2003) Dead-space microdomains hinder extracellular diffusion in rat neocortex during ischemia. J Neurosci 23:8351–8359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iadecola C (2017) The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96:17–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iadecola C, Anrather J (2011) The immunology of stroke: from mechanisms to translation. Nat Med 17:796–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Injury GBDTB, Spinal Cord Injury C (2019) Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18:56–87

    Article  Google Scholar 

  • Jiang X et al (2018) Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol 163-164:144–171

    Article  CAS  PubMed  Google Scholar 

  • Jiao H et al (2011) Specific role of tight junction proteins claudin-5, occludin, and ZO-1 of the blood-brain barrier in a focal cerebral ischemic insult. J Mol Neurosci 44:130–139

    Article  CAS  PubMed  Google Scholar 

  • Johanson CE et al (2000) Choroid plexus recovery after transient forebrain ischemia: role of growth factors and other repair mechanisms. Cell Mol Neurobiol 20:197–216

    Article  CAS  PubMed  Google Scholar 

  • Jones TH et al (1981) Thresholds of focal cerebral ischemia in awake monkeys. J Neurosurg 54:773–782

    Article  CAS  PubMed  Google Scholar 

  • Juttner J et al (2019) Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates and humans. Nat Neurosci 22:1345–1356

    Article  CAS  PubMed  Google Scholar 

  • Kageyama T et al (2000) The 4F2hc/LAT1 complex transports L-DOPA across the blood-brain barrier. Brain Res 879:115–121

    Article  CAS  PubMed  Google Scholar 

  • Kago T et al (2006) Cerebral ischemia enhances tyrosine phosphorylation of occludin in brain capillaries. Biochem Biophys Res Commun 339:1197–1203

    Article  CAS  PubMed  Google Scholar 

  • Karimy JK et al (2017) Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. Nat Med 23:997–1003

    Article  CAS  PubMed  Google Scholar 

  • Keep RF, Hua Y, Xi G (2012) Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol 11:720–731

    Article  CAS  PubMed  Google Scholar 

  • Keep RF et al (2014) Vascular disruption and blood-brain barrier dysfunction in intracerebral hemorrhage. Fluids Barriers CNS 11:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Keep RF et al (2018) Brain endothelial cell junctions after cerebral hemorrhage: changes, mechanisms and therapeutic targets. J Cereb Blood Flow Metab 38:1255–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kernie SG, Parent JM (2010) Forebrain neurogenesis after focal ischemic and traumatic brain injury. Neurobiol Dis 37:267–274

    Article  PubMed  Google Scholar 

  • King ZA et al (2018) Profile of intravenous glyburide for the prevention of cerebral edema following large hemispheric infarction: evidence to date. Drug Des Devel Ther 12:2539–2552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knowland D et al (2014) Stepwise recruitment of transcellular and paracellular pathways underlies blood-brain barrier breakdown in stroke. Neuron 82:603–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohle C, Bock KW (2007) Coordinate regulation of phase I and II xenobiotic metabolisms by the Ah receptor and Nrf2. Biochem Pharmacol 73:1853–1862

    Article  PubMed  CAS  Google Scholar 

  • Korley FK et al (2018) Performance evaluation of a multiplex assay for simultaneous detection of four clinically relevant traumatic brain injury biomarkers. J Neurotrauma 36(1):182–187

    Article  PubMed Central  Google Scholar 

  • Kurinami H et al (2014) Prohibitin viral gene transfer protects hippocampal CA1 neurons from ischemia and ameliorates postischemic hippocampal dysfunction. Stroke 45:1131–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leinenga G et al (2016) Ultrasound treatment of neurological diseases – current and emerging applications. Nat Rev Neurol 12:161–174

    Article  PubMed  Google Scholar 

  • Lioutas VA et al (2015) Intranasal insulin and insulin-like growth factor 1 as neuroprotectants in acute ischemic stroke. Transl Stroke Res 6:264–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XD, Zhang L, Xie L (2003) Effect of P-glycoprotein inhibitors erythromycin and cyclosporin A on brain pharmacokinetics of nimodipine in rats. Eur J Drug Metab Pharmacokinet 28:309–313

    Article  CAS  PubMed  Google Scholar 

  • Lochhead JJ, Thorne RG (2012) Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev 64:614–628

    Article  CAS  PubMed  Google Scholar 

  • Logsdon AF et al (2015) Role of microvascular disruption in brain damage from traumatic brain Injury. Compr Physiol 5:1147–1160

    Article  PubMed  PubMed Central  Google Scholar 

  • Lyden P et al (2019) Final results of the RHAPSODY trial: a multi-center, phase 2 trial using a continual reassessment method to determine the safety and tolerability of 3K3A-APC, a recombinant variant of human activated protein C, in combination with tissue plasminogen activator, mechanical thrombectomy or both in moderate to severe acute ischemic stroke. Ann Neurol 85:125–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma H et al (2019) Thrombolysis guided by perfusion imaging up to 9 hours after onset of stroke. N Engl J Med 380:1795–1803

    Article  PubMed  Google Scholar 

  • Maas AI, Stocchetti N, Bullock R (2008) Moderate and severe traumatic brain injury in adults. Lancet Neurol 7:728–741

    Article  PubMed  Google Scholar 

  • Marmarou A (2007) A review of progress in understanding the pathophysiology and treatment of brain edema. Neurosurg Focus 22:E1

    PubMed  Google Scholar 

  • Martin-Schild S et al (2009) Combined neuroprotective modalities coupled with thrombolysis in acute ischemic stroke: a pilot study of caffeinol and mild hypothermia. J Stroke Cerebrovasc Dis 18:86–96

    Article  PubMed  PubMed Central  Google Scholar 

  • Meijer OC et al (1998) Penetration of dexamethasone into brain glucocorticoid targets is enhanced in mdr1A P-glycoprotein knockout mice. Endocrinology 139:1789–1793

    Article  CAS  PubMed  Google Scholar 

  • Menard C et al (2017) Social stress induces neurovascular pathology promoting depression. Nat Neurosci 20:1752–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menzies SA, Betz AL, Hoff JT (1993) Contributions of ions and albumin to the formation and resolution of ischemic brain edema. J Neurosurg 78:257–266

    Article  CAS  PubMed  Google Scholar 

  • Milhorat TH et al (1971) Cerebrospinal fluid production by the choroid plexus and brain. Science 173:330–332

    Article  CAS  PubMed  Google Scholar 

  • Miller DS (2015) Regulation of ABC transporters blood-brain barrier: the good, the bad, and the ugly. Adv Cancer Res 125:43–70

    Article  CAS  PubMed  Google Scholar 

  • Morris-Blanco KC et al (2019) Induction of DNA hydroxymethylation protects the brain after stroke. Stroke. https://doi.org/10.1161/STROKEAHA.119.025665

  • Nagaraja TN et al (2007) Relative distribution of plasma flow markers and red blood cells across BBB openings in acute cerebral ischemia. Neurol Res 29:78–80

    Article  PubMed  Google Scholar 

  • Nijboer CH et al (2018) Intranasal stem cell treatment as a novel therapy for subarachnoid hemorrhage. Stem Cells Dev 27:313–325

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM (2006) Molecular Trojan horses for blood-brain barrier drug delivery. Curr Opin Pharmacol 6:494–500

    Article  CAS  PubMed  Google Scholar 

  • Patak P, Hermann DM (2011) ATP-binding cassette transporters at the blood-brain barrier in ischaemic stroke. Curr Pharm Des 17:2787–2792

    Article  CAS  PubMed  Google Scholar 

  • Piriyawat P et al (2003) Pilot dose-escalation study of caffeine plus ethanol (caffeinol) in acute ischemic stroke. Stroke 34:1242–1245

    Article  CAS  PubMed  Google Scholar 

  • Powers WJ et al (2018) 2018 guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 49:e46–e110

    Article  PubMed  Google Scholar 

  • Preston E, Foster DO (1997) Evidence for pore-like opening of the blood-brain barrier following forebrain ischemia in rats. Brain Res 761:4–10

    Article  CAS  PubMed  Google Scholar 

  • Preston E, Webster J (2002) Differential passage of [14C]sucrose and [3H]inulin across rat blood-brain barrier after cerebral ischemia. Acta Neuropathol 103:237–242

    Article  CAS  PubMed  Google Scholar 

  • Raichle ME et al (1976) Blood-brain barrier permeability of 11C-labeled alcohols and 15O-labeled water. Am J Phys 230:543–552

    Article  CAS  Google Scholar 

  • Rayasam A et al (2018) Immune responses in stroke: how the immune system contributes to damage and healing after stroke and how this knowledge could be translated to better cures? Immunology 154:363–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhodes J (2011) Peripheral immune cells in the pathology of traumatic brain injury? Curr Opin Crit Care 17:122–130

    Article  PubMed  Google Scholar 

  • Robinson PJ (1990) Measurement of blood-brain barrier permeability. Clin Exp Pharmacol Physiol 17:829–840

    Article  CAS  PubMed  Google Scholar 

  • Roger VL et al (2012) Heart disease and stroke statistics – 2012 update: a report from the American Heart Association. Circulation 125:e2–e220

    PubMed  Google Scholar 

  • Romermann K et al (2017) Multiple blood-brain barrier transport mechanisms limit bumetanide accumulation, and therapeutic potential, in the mammalian brain. Neuropharmacology 117:182–194

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg GA, Yang Y (2007) Vasogenic edema due to tight junction disruption by matrix metalloproteinases in cerebral ischemia. Neurosurg Focus 22:E4

    Article  PubMed  Google Scholar 

  • Schinkel AH et al (1995) Absence of the mdr1a P-glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J Clin Investig 96:1698–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schubert GA, Thome C (2008) Cerebral blood flow changes in acute subarachnoid hemorrhage. Front Biosci 13:1594–1603

    Article  CAS  PubMed  Google Scholar 

  • Sheth KN et al (2016) Safety and efficacy of intravenous glyburide on brain swelling after large hemispheric infarction (GAMES-RP): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol 15:1160–1169

    Article  CAS  PubMed  Google Scholar 

  • Shi Y et al (2016) Rapid endothelial cytoskeletal reorganization enables early blood-brain barrier disruption and long-term ischaemic reperfusion brain injury. Nat Commun 7:10523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y et al (2017) Endothelium-targeted overexpression of heat shock protein 27 ameliorates blood-brain barrier disruption after ischemic brain injury. Proc Natl Acad Sci U S A 114:E1243–E1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shlosberg D et al (2010) Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurosci 6:393–403

    CAS  Google Scholar 

  • Sladojevic N et al (2019) Claudin-1-dependent destabilization of the blood-brain barrier in chronic stroke. J Neurosci 39:743–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith DE et al (2011) Distribution of glycylsarcosine and cefadroxil among cerebrospinal fluid, choroid plexus, and brain parenchyma after intracerebroventricular injection is markedly different between wild-type and Pept2 null mice. J Cereb Blood Flow Metab 31:250–261

    Article  CAS  PubMed  Google Scholar 

  • Song B-W et al (2002) Enhanced neuroprotective effects of basic fibroblast growth factor in regional brain ischemia after conjugation to a blood-brain barrier delivery vector. J Pharmacol Exp Ther 301:605–610

    Article  CAS  PubMed  Google Scholar 

  • Spudich A et al (2006) Inhibition of multidrug resistance transporter-1 facilitates neuroprotective therapies after focal cerebral ischemia. Nat Neurosci 9:487–488

    Article  CAS  PubMed  Google Scholar 

  • Stamatovic SM, Keep RF, Andjelkovic AV (2008) Brain endothelial cell-cell junctions: how to “open” the blood brain barrier. Curr Neuropharmacol 6:179–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stamatovic SM et al (2009) Caveolae-mediated internalization of occludin and claudin-5 during CCL2-induced tight junction remodeling in brain endothelial cells. J Biol Chem 284:19053–19066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stamatovic SM et al (2016) Junctional proteins of the blood-brain barrier: new insights into function and dysfunction. Tissue Barriers 4:e1154641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stevens J et al (2009) A new minimal-stress freely-moving rat model for preclinical studies on intranasal administration of CNS drugs. Pharm Res 26:1911–1917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stonesifer C et al (2017) Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms. Prog Neurobiol 158:94–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sweeney MD, Ayyadurai S, Zlokovic BV (2016) Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosci 19:771–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sykova E (1997) Extracellular space volume and geometry of the rat brain after ischemia and central injury. Adv Neurol 73:121–135

    CAS  PubMed  Google Scholar 

  • Szmydynger-Chodobska J et al (2012) Posttraumatic invasion of monocytes across the blood-cerebrospinal fluid barrier. J Cereb Blood Flow Metab 32:93–104

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Mizojiri K (1999) Drug-protein binding and blood-brain barrier permeability. J Pharmacol Exp Ther 288:912–918

    CAS  PubMed  Google Scholar 

  • Thimmulappa RK et al (2002) Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res 62:5196–5203

    CAS  PubMed  Google Scholar 

  • Topakian R et al (2010) Blood-brain barrier permeability is increased in normal-appearing white matter in patients with lacunar stroke and leucoaraiosis. J Neurol Neurosurg Psychiatry 81:192–197

    Article  CAS  PubMed  Google Scholar 

  • Tuazon JP, Castelli V, Borlongan CV (2019) Drug-like delivery methods of stem cells as biologics for stroke. Expert Opin Drug Deliv 16(8):823–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchida Y et al (2011) Blood-brain barrier (BBB) pharmacoproteomics: reconstruction of in vivo brain distribution of 11 P-glycoprotein substrates based on the BBB transporter protein concentration, in vitro intrinsic transport activity, and unbound fraction in plasma and brain in mice. J Pharmacol Exp Ther 339:579–588

    Article  CAS  PubMed  Google Scholar 

  • Ullah I et al (2018) Intranasal delivery of a Fas-blocking peptide attenuates Fas-mediated apoptosis in brain ischemia. Sci Rep 8:15041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Velthoven CTJ et al (2009) Regeneration of the ischemic brain by engineered stem cells: fuelling endogenous repair processes. Brain Res Rev 61:1–13

    Article  PubMed  CAS  Google Scholar 

  • Vogelbaum MA, Iannotti CA (2012) Convection-enhanced delivery of therapeutic agents into the brain. Handb Clin Neurol 104:355–362

    Article  PubMed  Google Scholar 

  • Wahlgren N et al (2017) Randomized assessment of imatinib in patients with acute ischaemic stroke treated with intravenous thrombolysis. J Intern Med 281:273–283

    Article  CAS  PubMed  Google Scholar 

  • Walker PA et al (2010) Intravenous multipotent adult progenitor cell therapy for traumatic brain injury: preserving the blood brain barrier via an interaction with splenocytes. Exp Neurol 225:341–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J (2010) Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog Neurobiol 92:463–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu SK et al (2014) Targeted delivery of erythropoietin by transcranial focused ultrasound for neuroprotection against ischemia/reperfusion-induced neuronal injury: a long-term and short-term study. PLoS One 9:e90107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiang J et al (2017) The choroid plexus as a site of damage in hemorrhagic and ischemic stroke and its role in responding to injury. Fluids Barriers CNS 14:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamaguchi T et al (2017) Edaravone with and without. 6 Mg/Kg Alteplase within 4.5 hours after ischemic stroke: a prospective cohort study (PROTECT4.5). J Stroke Cerebrovasc Dis 26:756–765

    Article  PubMed  Google Scholar 

  • Yamamoto Y, Danhof M, de Lange ECM (2017) Microdialysis: the key to physiologically based model prediction of human CNS target site concentrations. AAPS J 19:891–909

    Article  PubMed  Google Scholar 

  • Yang Y et al (2007) Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab 27:697–709

    Article  CAS  PubMed  Google Scholar 

  • Yao Y (2019) Basement membrane and stroke. J Cereb Blood Flow Metab 39:3–19

    Article  CAS  PubMed  Google Scholar 

  • Yates CR et al (2003) Structural determinants of P-glycoprotein-mediated transport of glucocorticoids. Pharm Res 20:1794–1803

    Article  CAS  PubMed  Google Scholar 

  • Zacchigna S, Zentilin L, Giacca M (2014) Adeno-associated virus vectors as therapeutic and investigational tools in the cardiovascular system. Circ Res 114:1827–1846

    Article  CAS  PubMed  Google Scholar 

  • Zagrean AM et al (2018) Multicellular crosstalk between exosomes and the neurovascular unit after cerebral ischemia. Ther Implications Front Neurosci 12:811

    Article  Google Scholar 

  • Zhang ZG, Chopp M (2016) Exosomes in stroke pathogenesis and therapy. J Clin Invest 126:1190–1197

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Pardridge WM (2001) Neuroprotection in transient focal brain ischemia after delayed intravenous administration of brain-derived neurotrophic factor conjugated to a blood-brain barrier drug targeting system. Stroke 32:1378–1384

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZG, Buller B, Chopp M (2019) Exosomes – beyond stem cells for restorative therapy in stroke and neurological injury. Nat Rev Neurol 15:193–203

    Article  PubMed  Google Scholar 

  • Zhao J et al (2007) Enhancing expression of Nrf2-driven genes protects the blood brain barrier after brain injury. J Neurosci 27:10240–10248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J et al (2019) The role of endogenous tissue-type plasminogen activator in neuronal survival after ischemic stroke: friend or foe? Cell Mol Life Sci 76:1489–1506

    Article  CAS  PubMed  Google Scholar 

  • Zlokovic BV et al (1993) Differential brain penetration of cerebroprotective drugs. Adv Exp Med Biol 331:117–120

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard F. Keep .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Keep, R.F., Xiang, J., Zhou, N., Andjelkovic, A.V. (2022). The Blood-Brain Barrier in Stroke and Trauma and How to Enhance Drug Delivery. In: de Lange, E.C., Hammarlund-Udenaes, M., Thorne, R.G. (eds) Drug Delivery to the Brain. AAPS Advances in the Pharmaceutical Sciences Series, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-030-88773-5_23

Download citation

Publish with us

Policies and ethics