Skip to main content

Advertisement

Log in

Intranasal Insulin and Insulin-Like Growth Factor 1 as Neuroprotectants in Acute Ischemic Stroke

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Treatment options for stroke remain limited. Neuroprotective therapies, in particular, have invariably failed to yield the expected benefit in stroke patients, despite robust theoretical and mechanistic background and promising animal data. Insulin and insulin-like growth factor 1 (IGF-1) play a pivotal role in critical brain functions, such as energy homeostasis, neuronal growth, and differentiation. They may exhibit neuroprotective properties in acute ischemic stroke based upon their vasodilatory, anti-inflammatory and antithrombotic effects, as well as improvements of functional connectivity, neuronal metabolism, neurotransmitter regulation, and remyelination. Intranasally administered insulin has demonstrated a benefit for prevention of cognitive decline in older people, and IGF-1 has shown potential benefit to improve functional outcomes in animal models of acute ischemic stroke. The intranasal route presents a feasible, tolerable, safe, and particularly effective administration route, bypassing the blood–brain barrier and maximizing distribution to the central nervous system (CNS), without the disadvantages of systemic side effects and first-pass metabolism. This review summarizes the neuroprotective potential of intranasally administered insulin and IGF-1 in stroke patients. We present the theoretical background and pathophysiologic mechanisms, animal and human studies of intranasal insulin and IGF-1, and the safety and feasibility of intranasal route for medication administration to the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

IN:

Intranasal

AIS:

Acute ischemic stroke

ICH:

Intracerebral hemorrhage

BBB:

Blood–brain barrier

CNS:

Central nervous system

IGF-1:

Insulin-like growth factor 1

References

  1. Kernan WN et al. Guidelines for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2014;45(7):2160–236.

    PubMed  Google Scholar 

  2. Lozano R et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2095–128.

    PubMed  Google Scholar 

  3. Murray CJ et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2197–223.

    PubMed  Google Scholar 

  4. Jauch EC et al. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44(3):870–947.

    PubMed  Google Scholar 

  5. Ciccone A, Valvassori L. Endovascular treatment for acute ischemic stroke. N Engl J Med. 2013;368(25):2433–4.

    PubMed  Google Scholar 

  6. Broderick JP et al. Endovascular therapy after intravenous t-PA versus t-PA alone for stroke. N Engl J Med. 2013;368(10):893–903.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Kidwell CS et al. A trial of imaging selection and endovascular treatment for ischemic stroke. N Engl J Med. 2013;368(10):914–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Goyal M et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med. 2015;372(11):1019–30.

    CAS  PubMed  Google Scholar 

  9. Campbell BC et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med. 2015;372(11):1009–18.

    CAS  PubMed  Google Scholar 

  10. Berkhemer OA et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med. 2015;372(1):11–20.

    CAS  PubMed  Google Scholar 

  11. Donnan GA et al. Penumbral selection of patients for trials of acute stroke therapy. Lancet Neurol. 2009;8(3):261–9.

    CAS  PubMed  Google Scholar 

  12. Ebinger M et al. Imaging the penumbra—strategies to detect tissue at risk after ischemic stroke. J Clin Neurosci. 2009;16(2):178–87.

    CAS  PubMed  Google Scholar 

  13. Zheng Z, Yenari MA. Post-ischemic inflammation: molecular mechanisms and therapeutic implications. Neurol Res. 2004;26(8):884–92.

    CAS  PubMed  Google Scholar 

  14. Ward NS, Cohen LG. Mechanisms underlying recovery of motor function after stroke. Arch Neurol. 2004;61(12):1844–8.

    PubMed Central  PubMed  Google Scholar 

  15. Vexler ZS, Tang XN, Yenari MA. Inflammation in adult and neonatal stroke. Clin Neurosci Res. 2006;6(5):293–313.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Wang Q, Tang XN, Yenari MA. The inflammatory response in stroke. J Neuroimmunol. 2007;184(1–2):53–68.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Hazell AS. Excitotoxic mechanisms in stroke: an update of concepts and treatment strategies. Neurochem Int. 2007;50(7–8):941–53.

    CAS  PubMed  Google Scholar 

  18. Moskowitz MA, Lo EH. Neurogenesis and apoptotic cell death. Stroke. 2003;34(2):324–6.

    PubMed  Google Scholar 

  19. Sairanen T et al. Apoptosis dominant in the periinfarct area of human ischaemic stroke–a possible target of antiapoptotic treatments. Brain. 2006;129(Pt 1):189–99.

    PubMed  Google Scholar 

  20. Broughton BR, Reutens DC, Sobey CG. Apoptotic mechanisms after cerebral ischemia. Stroke. 2009;40(5):e331–9.

    PubMed  Google Scholar 

  21. Yuan J. Neuroprotective strategies targeting apoptotic and necrotic cell death for stroke. Apoptosis. 2009;14(4):469–77.

    PubMed Central  PubMed  Google Scholar 

  22. Albers GW et al. Safety, tolerability, and pharmacokinetics of the N-methyl-D-aspartate antagonist dextrorphan in patients with acute stroke. Dextrorphan Study Group. Stroke. 1995;26(2):254–8.

    CAS  PubMed  Google Scholar 

  23. Davis SM et al. Termination of acute stroke studies involving selfotel treatment. ASSIST Steering Committed. Lancet. 1997;349(9044):32.

    CAS  PubMed  Google Scholar 

  24. Lees KR. Cerestat and other NMDA antagonists in ischemic stroke. Neurology. 1997;49(5 Suppl 4):S66–9.

    CAS  PubMed  Google Scholar 

  25. Muir KW et al. Magnesium for acute stroke (intravenous magnesium efficacy in stroke trial): randomised controlled trial. Lancet. 2004;363(9407):439–45.

    CAS  PubMed  Google Scholar 

  26. Sacco RL et al. Glycine antagonist in neuroprotection for patients with acute stroke: GAIN Americas: a randomized controlled trial. JAMA. 2001;285(13):1719–28.

    CAS  PubMed  Google Scholar 

  27. Horn J et al. Very Early Nimodipine Use in Stroke (VENUS): a randomized, double-blind, placebo-controlled trial. Stroke. 2001;32(2):461–5.

    CAS  PubMed  Google Scholar 

  28. Bath PM et al. Tirilazad for acute ischaemic stroke. Cochrane Database Syst Rev. 2001;4:CD002087.

    PubMed  Google Scholar 

  29. Shuaib A et al. NXY-059 for the treatment of acute ischemic stroke. N Engl J Med. 2007;357(6):562–71.

    CAS  PubMed  Google Scholar 

  30. Lees KR et al. NXY-059 for acute ischemic stroke. N Engl J Med. 2006;354(6):588–600.

    CAS  PubMed  Google Scholar 

  31. Lees KR et al. Additional outcomes and subgroup analyses of NXY-059 for acute ischemic stroke in the SAINT I trial. Stroke. 2006;37(12):2970–8.

    PubMed  Google Scholar 

  32. Davalos A et al. Oral citicoline in acute ischemic stroke: an individual patient data pooling analysis of clinical trials. Stroke. 2002;33(12):2850–7.

    CAS  PubMed  Google Scholar 

  33. Davalos A et al. Citicoline in the treatment of acute ischaemic stroke: an international, randomised, multicentre, placebo-controlled study (ICTUS trial). Lancet. 2012;380(9839):349–57.

    CAS  PubMed  Google Scholar 

  34. Use of anti-ICAM-1 therapy in ischemic stroke: results of the enlimomab acute stroke trial. Neurology. 2001;57(8):1428–34.

  35. Taoufik E, Probert L. Ischemic neuronal damage. Curr Pharm Des. 2008;14(33):3565–73.

    CAS  PubMed  Google Scholar 

  36. Arundine M, Tymianski M. Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci. 2004;61(6):657–68.

    CAS  PubMed  Google Scholar 

  37. Chapman KZ et al. A rapid and transient peripheral inflammatory response precedes brain inflammation after experimental stroke. J Cereb Blood Flow Metab. 2009;29(11):1764–8.

    PubMed  Google Scholar 

  38. Danton GH, Dietrich WD. Inflammatory mechanisms after ischemia and stroke. J Neuropathol Exp Neurol. 2003;62(2):127–36.

    CAS  PubMed  Google Scholar 

  39. Vila N et al. Levels of anti-inflammatory cytokines and neurological worsening in acute ischemic stroke. Stroke. 2003;34(3):671–5.

    CAS  PubMed  Google Scholar 

  40. Mattson MP, Culmsee C, Yu ZF. Apoptotic and antiapoptotic mechanisms in stroke. Cell Tissue Res. 2000;301(1):173–87.

    CAS  PubMed  Google Scholar 

  41. Schulingkamp RJ et al. Insulin receptors and insulin action in the brain: review and clinical implications. Neurosci Biobehav Rev. 2000;24(8):855–72.

    CAS  PubMed  Google Scholar 

  42. Margolis RU, Altszuler N. Insulin in the cerebrospinal fluid. Nature. 1967;215(5108):1375–6.

    CAS  PubMed  Google Scholar 

  43. King GL, Johnson SM. Receptor-mediated transport of insulin across endothelial cells. Science. 1985;227(4694):1583–6.

    CAS  PubMed  Google Scholar 

  44. Banks WA. The source of cerebral insulin. Eur J Pharmacol. 2004;490(1–3):5–12.

    CAS  PubMed  Google Scholar 

  45. Duarte AI, Moreira PI, Oliveira CR. Insulin in central nervous system: more than just a peripheral hormone. J Aging Res. 2012;2012:384017.

    PubMed Central  PubMed  Google Scholar 

  46. Adamo M, Raizada MK, LeRoith D. Insulin and insulin-like growth factor receptors in the nervous system. Mol Neurobiol. 1989;3(1–2):71–100.

    CAS  PubMed  Google Scholar 

  47. Hopkins DF, Williams G. Insulin receptors are widely distributed in human brain and bind human and porcine insulin with equal affinity. Diabet Med. 1997;14(12):1044–50.

    CAS  PubMed  Google Scholar 

  48. Albrecht J, Wroblewska B, Mossakowski MJ. The binding of insulin to cerebral capillaries and astrocytes of the rat. Neurochem Res. 1982;7(4):489–94.

    CAS  PubMed  Google Scholar 

  49. Horsch D, Kahn CR. Region-specific mRNA expression of phosphatidylinositol 3-kinase regulatory isoforms in the central nervous system of C57BL/6J mice. J Comp Neurol. 1999;415(1):105–20.

    CAS  PubMed  Google Scholar 

  50. Recio-Pinto E, Rechler MM, Ishii DN. Effects of insulin, insulin-like growth factor-II, and nerve growth factor on neurite formation and survival in cultured sympathetic and sensory neurons. J Neurosci. 1986;6(5):1211–9.

    CAS  PubMed  Google Scholar 

  51. Reger MA et al. Effects of intranasal insulin on cognition in memory-impaired older adults: modulation by APOE genotype. Neurobiol Aging. 2006;27(3):451–8.

    CAS  PubMed  Google Scholar 

  52. Plum L, Belgardt BF, Bruning JC. Central insulin action in energy and glucose homeostasis. J Clin Invest. 2006;116(7):1761–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Bingham EM et al. The role of insulin in human brain glucose metabolism: an 18fluoro-deoxyglucose positron emission tomography study. Diabetes. 2002;51(12):3384–90.

    CAS  PubMed  Google Scholar 

  54. Figlewicz DP, Benoit SC. Insulin, leptin, and food reward: update 2008. Am J Physiol Regul Integr Comp Physiol. 2009;296(1):R9–19.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Plitzko D, Rumpel S, Gottmann K. Insulin promotes functional induction of silent synapses in differentiating rat neocortical neurons. Eur J Neurosci. 2001;14(8):1412–5.

    CAS  PubMed  Google Scholar 

  56. Plum L, Schubert M, Bruning JC. The role of insulin receptor signaling in the brain. Trends Endocrinol Metab. 2005;16(2):59–65.

    CAS  PubMed  Google Scholar 

  57. Dandona P et al. Insulin inhibits intranuclear nuclear factor kappaB and stimulates IkappaB in mononuclear cells in obese subjects: evidence for an anti-inflammatory effect? J Clin Endocrinol Metab. 2001;86(7):3257–65.

    CAS  PubMed  Google Scholar 

  58. Aljada A et al. Insulin inhibits the pro-inflammatory transcription factor early growth response gene-1 (Egr)-1 expression in mononuclear cells (MNC) and reduces plasma tissue factor (TF) and plasminogen activator inhibitor-1 (PAI-1) concentrations. J Clin Endocrinol Metab. 2002;87(3):1419–22.

    CAS  PubMed  Google Scholar 

  59. Dandona P et al. Insulin suppresses plasma concentration of vascular endothelial growth factor and matrix metalloproteinase-9. Diabetes Care. 2003;26(12):3310–4.

    CAS  PubMed  Google Scholar 

  60. Garg R et al. Hyperglycemia, insulin, and acute ischemic stroke: a mechanistic justification for a trial of insulin infusion therapy. Stroke. 2006;37(1):267–73.

    CAS  PubMed  Google Scholar 

  61. Aljada A et al. Insulin inhibits the expression of intercellular adhesion molecule-1 by human aortic endothelial cells through stimulation of nitric oxide. J Clin Endocrinol Metab. 2000;85(7):2572–5.

    CAS  PubMed  Google Scholar 

  62. Huang SS et al. The essential role of endothelial nitric oxide synthase activation in insulin-mediated neuroprotection against ischemic stroke in diabetes. J Vasc Surg. 2014;59(2):483–91.

    PubMed  Google Scholar 

  63. Philpott KL et al. Activated phosphatidylinositol 3-kinase and Akt kinase promote survival of superior cervical neurons. J Cell Biol. 1997;139(3):809–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Dimmeler S et al. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999;399(6736):601–5.

    CAS  PubMed  Google Scholar 

  65. McKay MK, Hester RL. Role of nitric oxide, adenosine, and ATP-sensitive potassium channels in insulin-induced vasodilation. Hypertension. 1996;28(2):202–8.

    CAS  PubMed  Google Scholar 

  66. Duarte AI et al. Insulin neuroprotection against oxidative stress is mediated by Akt and GSK-3beta signaling pathways and changes in protein expression. Biochim Biophys Acta. 2008;1783(6):994–1002.

    CAS  PubMed  Google Scholar 

  67. Ueda H. Prothymosin alpha plays a key role in cell death mode-switch, a new concept for neuroprotective mechanisms in stroke. Naunyn Schmiedebergs Arch Pharmacol. 2008;377(4–6):315–23.

    CAS  PubMed  Google Scholar 

  68. Song J et al. Axons guided by insulin receptor in Drosophila visual system. Science. 2003;300(5618):502–5.

    CAS  PubMed  Google Scholar 

  69. Guyot LL et al. The effect of topical insulin on the release of excitotoxic and other amino acids from the rat cerebral cortex during streptozotocin-induced hyperglycemic ischemia. Brain Res. 2000;872(1–2):29–36.

    CAS  PubMed  Google Scholar 

  70. Novak V et al. Enhancement of vasoreactivity and cognition by intranasal insulin in type 2 diabetes. Diabetes Care. 2014;37(3):751–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Craft S et al. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol. 2012;69(1):29–38.

    PubMed Central  PubMed  Google Scholar 

  72. Zhang H, et al. Intranasal insulin enhanced resting-state functional connectivity of hippocampal regions in type 2 diabetes. Diabetes. 2014.

  73. Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2012;64(7):614–28.

    CAS  PubMed  Google Scholar 

  74. Costantino HR et al. Intranasal delivery: physicochemical and therapeutic aspects. Int J Pharm. 2007;337(1–2):1–24.

    CAS  PubMed  Google Scholar 

  75. Migliore MM et al. Brain delivery of proteins by the intranasal route of administration: a comparison of cationic liposomes versus aqueous solution formulations. J Pharm Sci. 2010;99(4):1745–61.

    CAS  PubMed  Google Scholar 

  76. Liu XF et al. Intranasal administration of insulin-like growth factor-I bypasses the blood–brain barrier and protects against focal cerebral ischemic damage. J Neurol Sci. 2001;187(1–2):91–7.

    CAS  PubMed  Google Scholar 

  77. Hanson LR, Frey 2nd WH. Intranasal delivery bypasses the blood–brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci. 2008;9 Suppl 3:S5.

    PubMed Central  PubMed  Google Scholar 

  78. Merkus FW, van den Berg MP. Can nasal drug delivery bypass the blood–brain barrier?: questioning the direct transport theory. Drugs R&D. 2007;8(3):133–44.

    CAS  Google Scholar 

  79. Merkus P et al. Direct access of drugs to the human brain after intranasal drug administration? Neurology. 2003;60(10):1669–71.

    CAS  PubMed  Google Scholar 

  80. Thorne RG et al. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience. 2004;127(2):481–96.

    CAS  PubMed  Google Scholar 

  81. Ross TM et al. Intranasal administration of interferon beta bypasses the blood–brain barrier to target the central nervous system and cervical lymph nodes: a non-invasive treatment strategy for multiple sclerosis. J Neuroimmunol. 2004;151(1–2):66–77.

    CAS  PubMed  Google Scholar 

  82. Hilsted J et al. Intranasal insulin therapy: the clinical realities. Diabetologia. 1995;38(6):680–4.

    CAS  PubMed  Google Scholar 

  83. Benedict C et al. Intranasal insulin improves memory in humans. Psychoneuroendocrinology. 2004;29(10):1326–34.

    CAS  PubMed  Google Scholar 

  84. Reger MA et al. Intranasal insulin improves cognition and modulates beta-amyloid in early AD. Neurology. 2008;70(6):440–8.

    CAS  PubMed  Google Scholar 

  85. Park CR et al. Intracerebroventricular insulin enhances memory in a passive-avoidance task. Physiol Behav. 2000;68(4):509–14.

    CAS  PubMed  Google Scholar 

  86. Benedict C et al. Intranasal insulin improves memory in humans: superiority of insulin aspart. Neuropsychopharmacology. 2007;32(1):239–43.

    CAS  PubMed  Google Scholar 

  87. Reger MA et al. Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-beta in memory-impaired older adults. J Alzheimers Dis. 2008;13(3):323–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Freiherr J et al. Intranasal insulin as a treatment for Alzheimer’s disease: a review of basic research and clinical evidence. CNS Drugs. 2013;27(7):505–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Banks WA, Owen JB, Erickson MA. Insulin in the brain: there and back again. Pharmacol Ther. 2012;136(1):82–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Cholerton B, Baker LD, Craft S. Insulin, cognition, and dementia. Eur J Pharmacol. 2013;719(1–3):170–9.

    CAS  PubMed  Google Scholar 

  91. Cholerton B et al. Insulin and sex interactions in older adults with mild cognitive impairment. J Alzheimers Dis. 2012;31(2):401–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Schioth HB et al. Brain insulin signaling and Alzheimer’s disease: current evidence and future directions. Mol Neurobiol. 2012;46(1):4–10.

    PubMed Central  PubMed  Google Scholar 

  93. Benedict C et al. Immediate but not long-term intranasal administration of insulin raises blood pressure in human beings. Metabolism. 2005;54(10):1356–61.

    CAS  PubMed  Google Scholar 

  94. Figlewicz DP. Insulin, food intake, and reward. Semin Clin Neuropsychiatry. 2003;8(2):82–93.

    PubMed  Google Scholar 

  95. Farris W et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci U S A. 2003;100(7):4162–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Humpel C. Chronic mild cerebrovascular dysfunction as a cause for Alzheimer’s disease? Exp Gerontol. 2011;46(4):225–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Exalto LG et al. An update on type 2 diabetes, vascular dementia and Alzheimer’s disease. Exp Gerontol. 2012;47(11):858–64.

    CAS  PubMed  Google Scholar 

  98. Dede DS et al. Assessment of endothelial function in Alzheimer’s disease: is Alzheimer’s disease a vascular disease? J Am Geriatr Soc. 2007;55(10):1613–7.

    PubMed  Google Scholar 

  99. Yang Y et al. Intranasal insulin ameliorates tau hyperphosphorylation in a rat model of type 2 diabetes. J Alzheimers Dis. 2013;33(2):329–38.

    CAS  PubMed  Google Scholar 

  100. Wang X et al. Insulin deficiency exacerbates cerebral amyloidosis and behavioral deficits in an Alzheimer transgenic mouse model. Mol Neurodegener. 2010;5:46.

    PubMed Central  PubMed  Google Scholar 

  101. Liu Y et al. Deficient brain insulin signalling pathway in Alzheimer’s disease and diabetes. J Pathol. 2011;225(1):54–62.

    CAS  PubMed  Google Scholar 

  102. Hoyer S. The aging brain. Changes in the neuronal insulin/insulin receptor signal transduction cascade trigger late-onset sporadic Alzheimer disease (SAD). A mini-review. J Neural Transm. 2002;109(7–8):991–1002.

    CAS  PubMed  Google Scholar 

  103. Jauch-Chara K et al. Intranasal insulin suppresses food intake via enhancement of brain energy levels in humans. Diabetes. 2012;61(9):2261–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Heni M et al. Nasal insulin changes peripheral insulin sensitivity simultaneously with altered activity in homeostatic and reward-related human brain regions. Diabetologia. 2012;55(6):1773–82.

    CAS  PubMed  Google Scholar 

  105. McInnes GT. The expanding role of angiotensin receptor blockers in the management of the elderly hypertensive. Curr Med Res Opin. 2003;19(5):452–5.

    CAS  PubMed  Google Scholar 

  106. Benedict C et al. Differential sensitivity of men and women to anorexigenic and memory-improving effects of intranasal insulin. J Clin Endocrinol Metab. 2008;93(4):1339–44.

    CAS  PubMed  Google Scholar 

  107. Dong X et al. The relationship between serum insulin-like growth factor I levels and ischemic stroke risk. PLoS One. 2014;9(4):e94845.

    PubMed Central  PubMed  Google Scholar 

  108. Benarroch EE. Insulin-like growth factors in the brain and their potential clinical implications. Neurology. 2012;79(21):2148–53.

    PubMed  Google Scholar 

  109. Kern W et al. Improving influence of insulin on cognitive functions in humans. Neuroendocrinology. 2001;74(4):270–80.

    CAS  PubMed  Google Scholar 

  110. Kern W et al. Central nervous system effects of intranasally administered insulin during euglycemia in men. Diabetes. 1999;48(3):557–63.

    CAS  PubMed  Google Scholar 

  111. Kalmijn S et al. A prospective study on circulating insulin-like growth factor I (IGF-I), IGF-binding proteins, and cognitive function in the elderly. J Clin Endocrinol Metab. 2000;85(12):4551–5.

    CAS  PubMed  Google Scholar 

  112. Fernandez AM, Torres-Aleman I. The many faces of insulin-like peptide signalling in the brain. Nat Rev Neurosci. 2012;13(4):225–39.

    CAS  PubMed  Google Scholar 

  113. Frauman AG, Jerums G, Louis WJ. Effects of intranasal insulin in non-obese type II diabetics. Diabetes Res Clin Pract. 1987;3(4):197–202.

    CAS  PubMed  Google Scholar 

  114. Hallschmid M et al. Towards the therapeutic use of intranasal neuropeptide administration in metabolic and cognitive disorders. Regul Pept. 2008;149(1–3):79–83.

    CAS  PubMed  Google Scholar 

  115. Schilling TM et al. Intranasal insulin increases regional cerebral blood flow in the insular cortex in men independently of cortisol manipulation. Hum Brain Mapp. 2014;35(5):1944–56.

    PubMed  Google Scholar 

  116. Lalej-Bennis D et al. Six month administration of gelified intranasal insulin in 16 type 1 diabetic patients under multiple injections: efficacy vs subcutaneous injections and local tolerance. Diabetes Metab. 2001;27(3):372–7.

    CAS  PubMed  Google Scholar 

  117. Frauman AG et al. Long-term use of intranasal insulin in insulin-dependent diabetic patients. Diabetes Care. 1987;10(5):573–8.

    CAS  PubMed  Google Scholar 

  118. Lalej-Bennis D et al. Efficacy and tolerance of intranasal insulin administered during 4 months in severely hyperglycaemic Type 2 diabetic patients with oral drug failure: a cross-over study. Diabet Med. 2001;18(8):614–8.

    CAS  PubMed  Google Scholar 

  119. Chesik D, De Keyser J, Wilczak N. Insulin-like growth factor system regulates oligodendroglial cell behavior: therapeutic potential in CNS. J Mol Neurosci. 2008;35(1):81–90.

    CAS  PubMed  Google Scholar 

  120. Espinosa-Jeffrey A et al. Transferrin regulates transcription of the MBP gene and its action synergizes with IGF-1 to enhance myelinogenesis in the md rat. Dev Neurosci. 2002;24(2–3):227–41.

    CAS  PubMed  Google Scholar 

  121. Heck S et al. Insulin-like growth factor-1-mediated neuroprotection against oxidative stress is associated with activation of nuclear factor kappaB. J Biol Chem. 1999;274(14):9828–35.

    CAS  PubMed  Google Scholar 

  122. Matsuzaki H et al. Activation of Akt kinase inhibits apoptosis and changes in Bcl-2 and Bax expression induced by nitric oxide in primary hippocampal neurons. J Neurochem. 1999;73(5):2037–46.

    CAS  PubMed  Google Scholar 

  123. Vincent AM et al. IGF-I prevents glutamate-induced motor neuron programmed cell death. Neurobiol Dis. 2004;16(2):407–16.

    CAS  PubMed  Google Scholar 

  124. Johnston BM et al. Insulin-like growth factor-1 is a potent neuronal rescue agent after hypoxic-ischemic injury in fetal lambs. J Clin Invest. 1996;97(2):300–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Russo VC et al. The insulin-like growth factor system and its pleiotropic functions in brain. Endocr Rev. 2005;26(7):916–43.

    CAS  PubMed  Google Scholar 

  126. Torres-Aleman I. Insulin-like growth factors as mediators of functional plasticity in the adult brain. Horm Metab Res. 1999;31(2–3):114–9.

    CAS  PubMed  Google Scholar 

  127. Torres Aleman I. Role of insulin-like growth factors in neuronal plasticity and neuroprotection. Adv Exp Med Biol. 2005;567:243–58.

    PubMed  Google Scholar 

  128. Johnsen SP et al. Insulin-like growth factor (IGF) I, −II, and IGF binding protein-3 and risk of ischemic stroke. J Clin Endocrinol Metab. 2005;90(11):5937–41.

    CAS  PubMed  Google Scholar 

  129. Aberg D et al. Serum IGF-I levels correlate to improvement of functional outcome after ischemic stroke. J Clin Endocrinol Metab. 2011;96(7):E1055–64.

    PubMed  Google Scholar 

  130. Denti L et al. Insulin-like growth factor 1 as a predictor of ischemic stroke outcome in the elderly. Am J Med. 2004;117(5):312–7.

    CAS  PubMed  Google Scholar 

  131. Schabitz WR et al. Delayed neuroprotective effect of insulin-like growth factor-i after experimental transient focal cerebral ischemia monitored with MRI. Stroke. 2001;32(5):1226–33.

    CAS  PubMed  Google Scholar 

  132. Rizk NN et al. Insulin like growth factor-1 (IGF-1) decreases ischemia-reperfusion induced apoptosis and necrosis in diabetic rats. Endocrine. 2007;31(1):66–71.

    CAS  PubMed  Google Scholar 

  133. Shirakura M et al. Postischemic administration of Sendai virus vector carrying neurotrophic factor genes prevents delayed neuronal death in gerbils. Gene Ther. 2004;11(9):784–90.

    CAS  PubMed  Google Scholar 

  134. Wang JM et al. Reduction of ischemic brain injury by topical application of insulin-like growth factor-I after transient middle cerebral artery occlusion in rats. Brain Res. 2000;859(2):381–5.

    CAS  PubMed  Google Scholar 

  135. Liu XF et al. The window of opportunity for treatment of focal cerebral ischemic damage with noninvasive intranasal insulin-like growth factor-I in rats. J Stroke Cerebrovasc Dis. 2004;13(1):16–23.

    PubMed  Google Scholar 

  136. Liu XF et al. Non-invasive intranasal insulin-like growth factor-I reduces infarct volume and improves neurologic function in rats following middle cerebral artery occlusion. Neurosci Lett. 2001;308(2):91–4.

    CAS  PubMed  Google Scholar 

  137. Rizk NN, Rafols J, Dunbar JC. Cerebral ischemia induced apoptosis and necrosis in normal and diabetic rats. Brain Res. 2005;1053(1–2):1–9.

    CAS  PubMed  Google Scholar 

  138. Rizk NN, Rafols JA, Dunbar JC. Cerebral ischemia-induced apoptosis and necrosis in normal and diabetic rats: effects of insulin and C-peptide. Brain Res. 2006;1096(1):204–12.

    CAS  PubMed  Google Scholar 

  139. Kooijman R et al. Insulin-like growth factor I: a potential neuroprotective compound for the treatment of acute ischemic stroke? Stroke. 2009;40(4):e83–8.

    PubMed  Google Scholar 

  140. Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke. 1999;30(12):2752–8.

  141. Hanson LR et al. Intranasal deferoxamine provides increased brain exposure and significant protection in rat ischemic stroke. J Pharmacol Exp Ther. 2009;330(3):679–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Akpan N et al. Intranasal delivery of caspase-9 inhibitor reduces caspase-6-dependent axon/neuron loss and improves neurological function after stroke. J Neurosci. 2011;31(24):8894–904.

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Fletcher L et al. Intranasal delivery of erythropoietin plus insulin-like growth factor-I for acute neuroprotection in stroke. Laboratory investigation. J Neurosurg. 2009;111(1):164–70.

    CAS  PubMed  Google Scholar 

  144. Yang JP et al. The dose-effectiveness of intranasal VEGF in treatment of experimental stroke. Neurosci Lett. 2009;461(3):212–6.

    CAS  PubMed  Google Scholar 

  145. Di Lazzaro V et al. Motor cortex plasticity predicts recovery in acute stroke. Cereb Cortex. 2010;20(7):1523–8.

    PubMed  Google Scholar 

  146. Witsch J et al. Hypoglycemic encephalopathy: a case series and literature review on outcome determination. J Neurol. 2012;259(10):2172–81.

    PubMed  Google Scholar 

  147. Fujioka M et al. Specific changes in human brain after hypoglycemic injury. Stroke. 1997;28(3):584–7.

    CAS  PubMed  Google Scholar 

  148. Albers GW et al. Stroke Treatment Academic Industry Roundtable (STAIR) recommendations for maximizing the use of intravenous thrombolytics and expanding treatment options with intra-arterial and neuroprotective therapies. Stroke. 2011;42(9):2645–50.

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Katharina Dormanns, PhD candidate Brains Trust Research Group, BlueFern Supercomputing Unit (University of Canterbury), for her contribution in the design of the figures presented in the paper.

Dr V.N. has received grants from the NIH–National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) (5R21-DK-084463-02 and 1R01 DK103902-01A1) and National Institute on Aging (NIA) (1R01-AG-0287601-A2) and National Instittute of Diabetes and Digestive and Kidney Diseases  (1R01DK103902-01A1) related to this study, and V.N. received salaries from these grants.

Conflict of Interest

Drs Lioutas, Alfaro-Martinez, Bedoya, Chung, Pimentel, and Novak declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasileios-Arsenios Lioutas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lioutas, VA., Alfaro-Martinez, F., Bedoya, F. et al. Intranasal Insulin and Insulin-Like Growth Factor 1 as Neuroprotectants in Acute Ischemic Stroke. Transl. Stroke Res. 6, 264–275 (2015). https://doi.org/10.1007/s12975-015-0409-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-015-0409-7

Keywords

Navigation