Skip to main content

Physics-Based Coarse-Grained Modeling in Bio- and Nanochemistry

  • Chapter
  • First Online:
Practical Aspects of Computational Chemistry V

Abstract

Coarse-grained approaches, in which groups of atoms are represented by single interaction sites, are very important in biological and materials sciences because they enable us to cover the size- and time-scales by several orders of magnitude larger than those available all-atom simulations, while largely keeping the details of the systems studied. The coarse-grained approaches differ by the scheme of reduction and by the origin and parameterization of the respective force fields. Both statistical (database-derived) and physics-based potentials are used, the physics-based potentials enabling us to bridge the coarse-grained level with the all-atom level, which is necessary when carrying out the simulations at multiple resolutions (multiscale simulations). The physics-based potentials originate from the potential of mean force (PMF) of a system under study, in which the degrees of freedom that are not considered in the model are averaged out. For tractability and transferability the PMF has to be expressed as a sum of contributions that constitute the effective energy terms. These terms are often assigned analytical expressions imported from all-atom force fields or engineered to reproduce certain structural patterns (e.g., the secondary structures of proteins or nucleic acids). Tabulated (model-free) potentials are also applied. Approaches also exist in which the effective energy terms are derived systematically by splitting the potential of mean force into transferable terms, e.g., by expressing the PMF by the Kubo cluster-cumulant functions. Two approaches, or a combination thereof, are applied in the parameterization of the coarse-grained force fields: the bottom-up one, in which the potentials of mean force are determined from atomistically-detailed calculations and then used to parameterize the respective expressions, and the top-down approach, in which the force field is tuned to fit the experimental data. In this chapter, the theory and parameterization of the physics-based coarse-grained force fields, along with the corresponding methods of conformational search are reviewed. Examples of physics-based coarse-grained force fields applied to study biomolecules and their assemblies and nanosystems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frenkel D, Smit B (2000) Understanding molecular simulation: from algorithms to applications. Academic Press, New York

    Google Scholar 

  2. Mackerell, Jr AD (2004) J Comput Chem 25:1584–1604

    Article  CAS  PubMed  Google Scholar 

  3. Leach AR (2010) Molecular modeling: principles and applications. Pearson Education Limited, Harlow

    Google Scholar 

  4. Voth G (2008) Coarse-graining of condensed phase and biomolecular systems, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  5. Peter C, Kremer K (2009) Soft Matter 5:4357–4366

    Article  CAS  Google Scholar 

  6. Rapaport DC (2011) The art of molecular dynamics simulations. Cambridge University Press, Cambridge

    Google Scholar 

  7. Liwo A (2018) Computational methods to study the structure and dynamics of biomolecules and biomolecular processes from bioinformatics to molecular quantum mechanics. Springer Nature Switzerland AG, Cham

    Google Scholar 

  8. Kryshtafovych A, Schwede T, Topf M, Fidelis K, Moult J (2019) Proteins 87:1011–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lensink MF, Brysbaert G, Nadzirin N, Velankar S, Chaleil RAG, Gerguri T, Bates PA, Laine E, Carbone A, Grudinin S, Kong R, Liu RR, Xu X-M, Shi H, Chang S, Eisenstein M, Karczynska A, Czaplewski C, Lubecka E, Lipska A, Krupa P, Mozolewska M, Golon Ł, Samsonov S, Liwo A, Crivelli S, Yan Y, Huang S-Y, Rosell M, Rodríguez-Lumbreras LA, Romero-Durana M, Díaz-Bueno L, Fernandez-Recio J, Christoffer C, Terashi G, Shin W-H, Aderinwale T, Raghavendra S, Subraman MV, Kihara D, Kozakov D, Vajda S, Porter K, Padhorny D, Desta I, Beglov D, Ignato M, Kotelnikov S, Moal IH, Ritchie DW, Chauvot de Beauchêne I, Maigret B, Devignes M-D, Ruiz Echartea ME, Barradas-Bautista D, Cao Z, Cavallo L, Oliva R, Cao Y, Shen Y, Baek M, Park T, Woo H, Seok C, Scheidman D, Dapkūnas J, Olechnovič K, Venclovas Č, Kundrotas PJ, S Belkin, Chakravarty D, Badal VD, Vakser IA, Vreven T, Vangaveti S, Borrman T, Weng Z, Guest JD, Gowthaman R, Pierce BG, Xu X, Duan R, Qiu L, Hou J, Merideth BR, Ma Z, Cheng J, Zou X, Wodak SJ (2019) Proteins 87:1200–1221

    Google Scholar 

  10. Miao Z, Adamiak RW, Antczak M, Batey RT, Becka AJ, Biesiada M, Boniecki M, Bujnicki JM, Chen SJ, Cheng CY, Chou FC, Ferré-D’Amaré AR, Das R, Dawson WK, Ding F, Dokholyan NV, Dunin-Horkawicz S, Geniesse C, Kappel K, Kladwang W, Krokhotin A, Łach GE, Major F, Mann TH, Magnus M, Pachulska-Wieczorek K, Patel DJ, Piccirilli JA, Popenda M, Purzycka KJ, Ren A, Rice GM, Santalucia J, Sarzynska J, Szachniuk M, Tandon A, Trausch JJ, Tian S, Wang J, Weeks KM, Williams B, Xiao Y, Xu X, Zhang D, Zok T, Westhof E (2017) RNA 23:655–672

    Google Scholar 

  11. Bardwell DA, Adjimanxi CS, Arnautova YA, Bartashevich E, Boerrigter SXM, Braun DE, Cruz-Cabeza AJ, Day GM, Valle RGDella, Desiraju GR, van Eijck BP, Facelli JC, Ferraro MB, Grillo D, Habgood M, Hofmann DWM, Hofmann F, Jose KVJ, Karamertzanis PG, Kazantsev AV, Kendrick J, Kuleshova LN, Leusen FJJ, Maleev AV, Misquitta AJ, Mohamed S, Needs RJ, Neumann MA, Nikylov D, Orendt AM, Pal R, Pickard CC Pantelides CJ, Price LS, Price SL, Scheraga HA, van de Streek J, Thakur TS, Tiwari S, Venuti E, Zhitkov IK (2011) Acta Cryst B 67:535–551

    Google Scholar 

  12. Kmiecik S, Gront D, Koliński M, Wieteska L, Dawid A, Koliński A (2016) Chem Rev 116:7898–7936

    Article  CAS  PubMed  Google Scholar 

  13. Atkins P, Friedman R (2010) Molecular quantum mechanics. Oxford University Press, Oxford

    Google Scholar 

  14. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  15. Stewart JJ (1990) J Comput Aided Mol Des 4:1–105

    Article  PubMed  Google Scholar 

  16. Friedrichs MS, Eastman P, Vaidyanathan V, Houston M, Legrand S, Beberg AL, Ensign DL, Bruns CM, Pande VS (2009) J Comput Chem 30:864–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pande VS, Baker I, Chapman J, Elmer S, Kaliq S, Larson SM, Rhee YM, Shirts MR, Snow CD, Sorin EJ, Zagrovic B (2003) Biopolymers 68:91–109

    Article  CAS  PubMed  Google Scholar 

  18. Shaw DE, Deneroff MM, Dror RO, Kuskin JS, Larson RH, Salmon JK, Young C, Batson B, Bowers KJ, Chao JC, Eastwood MP, Gagliardo J, Grossman JP, Ho CR, Ierardi DJ, Kolossvary I, Klepeis JL, Layman T, Mcleavey C, Moraes MA, Mueller R, Priest EC, Shan Y, Spengler J, Theobald M, Towles B, Wang SC (2008) Commun ACM 51:91–97

    Article  Google Scholar 

  19. Shaw DE, Maragakis P, Lindorff-Larsen K, Piana S, Dror RO, Eastwood MP, Bank JA, Jumper JM, Salmon JK, Shan Y, Wriggers W (2010) Science 330:341–346

    Article  CAS  PubMed  Google Scholar 

  20. Kolinski A, Skolnick J (1992) J Chem Phys 97:9412–9426

    Article  CAS  Google Scholar 

  21. Kolinski A, Skolnick J (2004) Polymer 45:511–524

    Article  CAS  Google Scholar 

  22. Liwo A, Pincus MR, Wawak RJ, Rackovsky S, Ołdziej S, Scheraga HA (1997) J Comput Chem 18:874–887

    Article  CAS  Google Scholar 

  23. Tozzini V (2005) Curr Opinion Struct Biol 15:144–150

    Article  CAS  Google Scholar 

  24. Ayton GS, Noid WG, Voth GA (2007) Curr Opinion Struct Biol 17:192–198

    Article  CAS  Google Scholar 

  25. Voltz K, Trylska J, Tozzini V, Kurkal-Siebert V, Langowski J, Smith J (2008) J Comput Chem 29:1429–1439

    Article  CAS  PubMed  Google Scholar 

  26. Clementi C (2008) Curr Opinion Struct Biol 18:10–15

    Article  CAS  Google Scholar 

  27. Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink S-J (2008) J Chem Theory Comput 4:819–834

    Article  CAS  PubMed  Google Scholar 

  28. Czaplewski C, Liwo A, Makowski M, Ołdziej S, Scheraga HA (2010) Coarse-grained models of proteins: theory and applications. In: Koliński A (ed) Multiscale approaches to protein modeling, Chapter 3. Springer, Berlin, pp 35–83

    Google Scholar 

  29. Sauders MG, Voth GA (2013) Annu Rev Biophys 42:73–93

    Article  CAS  Google Scholar 

  30. Sterpone F, Melchionna S, Tuffery P, Pasquali S, Mousseau N, Cragnolini T, Chebaro Y, St-Pierre J-F, Kalimeri M, Barducci A, Laurin Y, Tek A, Baaden M, Phuong HN, Derreumaux P (2014) Chem Soc Rev 43:4871–4893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Marrink SJ, Tieleman DP (2013) Chem Soc Rev 42:6801–6822

    Article  CAS  PubMed  Google Scholar 

  32. Ingolfsson HI, Uusitalo JJ, de Jong DH, Gopal S, Periole X, Marrink S-J (2014) WIREs Comput Mol Sci 4:225–248

    Article  CAS  Google Scholar 

  33. Kar P, Feig M (2014) Adv Protein Chem Struct Biol 96:143–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Papoian GA (2017) Coarse-grained modeling of biomolecules. CRC Press, Boca Raton

    Book  Google Scholar 

  35. Sieradzan AK, Makowski M, Augustynowicz A, Liwo A (2017) J Chem Phys 146:124106

    Article  PubMed  CAS  Google Scholar 

  36. Singh N, Li W (2019) Int J Mol Sci 20:3774

    Article  CAS  PubMed Central  Google Scholar 

  37. Mirzoev A, Nordenskiöld L, Lyubartsev A (2019) Comput Phys Commun 237:263–273

    Article  CAS  Google Scholar 

  38. Liwo A, Czaplewski C, Sieradzan AK, Lubecka EA, Lipska AG, Golon Ł, Karczyńka A, Krupa P, Mozolewska MA, Makowski M, Ganzynkowicz R, Giełdoń A, Maciejczyk MD (2020) Scale-consistent approach to the derivation of coarse-grained force fields for simulating structure, dynamics, and thermodynamics of biopolymers. In: Strodel B, Barz B (eds.) Progress in molecular biology and translational science computational approaches for understanding dynamical systems: protein folding and assembly, vol 170, chapter 2. Academic Press, London, pp 73–122

    Google Scholar 

  39. Liwo A, Czaplewski C, Pillardy J, Scheraga HA (2001) J Chem Phys 115:2323–2347

    Article  CAS  Google Scholar 

  40. Khalili M, Liwo A, Jagielska A, Scheraga HA (2005) J Phys Chem B 109:13798–13810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Murarka RK, Liwo A, Scheraga HA (2007) J Chem Phys 127:155103

    Article  PubMed  CAS  Google Scholar 

  42. Senn MH, Thiel W (2009) Angew Chem Int Ed 48:1198–1229

    Article  CAS  Google Scholar 

  43. Levitt M, Warshell A (1975) Nature 253:694–698

    Article  CAS  PubMed  Google Scholar 

  44. Levitt M (1976) J Mol Biol 104:59–107

    Article  CAS  PubMed  Google Scholar 

  45. Karplus M (2014) Angew Chem Int Ed 53:9992–10005

    Article  CAS  Google Scholar 

  46. Ben Naim A (1997) J Chem Phys 107:3698–3706

    Article  CAS  Google Scholar 

  47. Liwo A, Khalili M, Czaplewski C, Kalinowski S, Ołdziej S, Wachucik K, Scheraga HA (2007) J Phys Chem B 111:260–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liwo A, Baranowski M, Czaplewski C, Gołaś E, He Y, Jagieła D, Krupa P, Maciejczyk M, Makowski M, Mozolewska MA, Niadzvedtski A, Ołdziej S, Scheraga HA, Sieradzan AK, Ślusarz R, Wirecki T, Yin Y, Zaborowski B (2014) J Mol Model 20:2306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Izvekov S, Voth GA (2005) J Phys Chem B 109:2469–2473

    Article  CAS  PubMed  Google Scholar 

  50. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) J Phys Chem B 111:7812–7824

    Article  CAS  PubMed  Google Scholar 

  51. Gay JG, Berne BJ (1981) J Chem Phys 74:3316–3319

    Article  CAS  Google Scholar 

  52. Kubo R (1962) J Phys Soc Japan 17:1100–1120

    Article  Google Scholar 

  53. Ball P (2008) Chem Rev 108:74–108

    Article  CAS  PubMed  Google Scholar 

  54. Buckle AM, Henrick K, Fersht AR (1993) J Mol Biol 234:847–860

    Article  CAS  PubMed  Google Scholar 

  55. Rhee YM, Sorin EJ, Jayachandran G, Lindahl E, Pande VS (2004) Proc Natl Acad Sci USA 101:6456–6461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ladbury JE (1996) Chem Biol 3:973–980

    Article  CAS  PubMed  Google Scholar 

  57. Darré L, Machado MR, Brandner AF, González HC, Ferreira S, Pantano S (2015) J Chem Theory Comput 11:723–739

    Article  PubMed  CAS  Google Scholar 

  58. Machado MR, Barrera EE, Klein F, Sóñora M, Silva S, Pantano S (2019) J Chem Theory Comput 15:2719–2733

    Article  CAS  PubMed  Google Scholar 

  59. Elezgaray J, Laguerre M (2006) Comp Phys Commun 175:264–268

    Article  CAS  Google Scholar 

  60. Yesylevskyy SO, Schäfer LV, Sengupta D, Marrink S-J (2010) PLOS Comput Biol 6:e1000810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Hadley KR, McCabe C (2012) Mol Simul 38:671–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Arnarez C, Uusitalo JJ, Masman MF, Ingólfsson HI, de Jong DH, Melo MN, Periole X, de Vries AH, Marrink S-J (2015) J Chem Theory Comput 11:260–275

    Article  CAS  PubMed  Google Scholar 

  63. Liwo A, Ołdziej S, Pincus MR, Wawak RJ, Rackovsky S, Scheraga HA (1997) J Comput Chem 18:849–873

    Article  CAS  Google Scholar 

  64. Bashford D, Case DA (2000) Annu Rev Phys Chem 51:129–152

    Article  CAS  PubMed  Google Scholar 

  65. Makowski M (2018) Physics-based modeling of side chain-side chain interactions in the UNRES force field. In: Liwo A (ed) Computational methods to study the structure and dynamics of biomolecules and biomolecular processes from bioinformatics to molecular quantum mechanics. Springer Nature Switzerland AG, Cham, pp 89–115

    Google Scholar 

  66. Makowski M, Liwo A, Scheraga HA (2007) J Phys Chem B 111:2910–2916

    Article  CAS  PubMed  Google Scholar 

  67. Makowski M, Sobolewski E, Czaplewski C, Ołdziej S, Liwo A, No JH, Scheraga HA (2007) J Phys Chem B 111:2925–2931

    Article  CAS  PubMed  Google Scholar 

  68. Makowski M, Liwo A, Scheraga HA (2017) J Phys Chem B 121:379–390

    Article  CAS  PubMed  Google Scholar 

  69. Pincus MR, Scheraga HA (1977) J Phys Chem 81:1579–1583

    Article  CAS  Google Scholar 

  70. Sieradzan AK, Scheraga HA, Liwo A (2012) J Chem Theor Comput 8:1334–1343

    Article  CAS  Google Scholar 

  71. Sieradzan AK, Niadzvedtski A, Scheraga HA, Liwo A (2014) J Chem Theory Comput 10:2194–2203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kozłowska U, Maisuradze GG, Liwo A, Scheraga HA (2010) J Comput Chem 31:1154–1167

    PubMed  PubMed Central  Google Scholar 

  73. Kumar S, Bouzida D, Swendsen RH, Kollman PA, Rosenberg JM (1992) J Comput Chem 13:1011–1021

    Article  CAS  Google Scholar 

  74. Samsonov SA, Lubecka EA, Bojarski KK, Ganzynkowicz R, Liwo A (2019) Biopolymers 110:e23269

    Article  PubMed  CAS  Google Scholar 

  75. Lubecka EA, Liwo A (2017) J Chem Phys 147:115101

    Article  PubMed  CAS  Google Scholar 

  76. Izvekov S, Voth GA (2005) J Chem Phys 123:134105

    Article  PubMed  CAS  Google Scholar 

  77. Thorpe IF, Goldenberg DP, Voth GA (2011) J Phys Chem B 115:11911–11926

    Article  CAS  PubMed  Google Scholar 

  78. Liwo A, Czaplewski C (2020) J Chem Phys 152:054902

    Article  CAS  PubMed  Google Scholar 

  79. Soper AK (1996) Chem Phys 202:295–306

    Article  CAS  Google Scholar 

  80. Reith D, Püt M, Müller-Plathe F (2003) J Comput Chem 24:1624–1636

    Article  CAS  PubMed  Google Scholar 

  81. Lyubartsev AP, Laaksonen A (1995) Phys Rev E 52:3730–3737

    Article  CAS  Google Scholar 

  82. Lyubartsev AP, Naômé A, Vercauteren DP, Laaksonen A (2015) J Chem Phys 143:243120

    Article  PubMed  CAS  Google Scholar 

  83. Mirzoev A, Lyubartsev AP (2013) J Chem Theory Comput 9:1512–1520

    Article  CAS  PubMed  Google Scholar 

  84. He Y, Liwo A, Scheraga HA (2015) J Chem Phys 143:243111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Brungelson JD, Wolynes PG (1987) Proc Natl Acad Sci USA 84:7524–7528

    Article  Google Scholar 

  86. Eastwood MP, Hardin C, Luthey-Schulten Z, Wolynes PG (2002) J Chem Phys 117:4602–4615

    Article  CAS  Google Scholar 

  87. Eastwood MP, Hardin C, Luthey-Schulten Z, Wolynes PG (2003) J Chem Phys 118:8500–8512

    Article  CAS  Google Scholar 

  88. Fujitsuka Y, Takada S, Luthey-Schulten ZA, Wolynes PG (2004) Proteins Struct Funct Genet 54:88–103

    Article  CAS  PubMed  Google Scholar 

  89. Seetharamulu P, Crippen GM (1991) J Math Chem 6:91–110

    Article  CAS  Google Scholar 

  90. Ołdziej S, Liwo A, Czaplewski C, Pillardy J, Scheraga HA (2004) J Phys Chem B 108:16934–16949

    Article  CAS  Google Scholar 

  91. Ołdziej S, Ła̧giewka J, Liwo A, Czaplewski C, Chinchio M, Nanias M, Scheraga HA (2004) J Phys Chem B 108:16950–16959

    Article  CAS  Google Scholar 

  92. Zaborowski B, Jagieła D, Czaplewski C, Hałabis A, Lewandowska A, Żmudzińska W, Ołdziej S, Karczyńska A, Omieczynski C, Wirecki T, Liwo A (2015) J Chem Inf Model 55:2050–2070

    Article  CAS  PubMed  Google Scholar 

  93. Krupa P, Hałabis A, Żmudzińska W, Ołdziej S, Scheraga HA, Liwo A (2017) J Chem Inf Model 57:2364–2377

    Article  CAS  PubMed  Google Scholar 

  94. Liwo A, Sieradzan AK, Lipska AG, Czaplewski C, Joung I, Żmudzińska W, Hałabis A, Ołdziej S (2019) J Chem Phys 150:155104

    Article  PubMed  CAS  Google Scholar 

  95. Wales DJ, Scheraga HA (1999) Science 285:1368–1372

    Article  CAS  PubMed  Google Scholar 

  96. Liwo A, Czaplewski C, Ołdziej S, Rojas AV, Kaźmierkiewicz R, Makowski M, Murarka RK, Scheraga HA (2008) Simulation of protein structure and dynamics with the coarse-grained UNRES force field. In: Voth G (ed) Coarse-graining of condensed phase and biomolecular systems, Chapter 8. CRC Press, Boca Raton, pp 1391–1411

    Google Scholar 

  97. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) J Chem Phys 21:1087–1092

    Article  CAS  Google Scholar 

  98. Kolinski A, Godzik A, Skolnick J (1993) J Chem Phys 98:7420–7433

    Article  CAS  Google Scholar 

  99. Khalili M, Liwo A, Rakowski F, Grochowski P, Scheraga HA (2005) J Phys Chem B 109:13785–13797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Paterlini MG, Ferguson DM (1998) Chem Phys 236:243–252

    Article  CAS  Google Scholar 

  101. Swope WC, Anderson HC, Berens PH, Wilson KR (1982) J Chem Phys 76:637–649

    Article  CAS  Google Scholar 

  102. Hoover WG (1985) Phys Rev A 31:1695–1697

    Article  CAS  Google Scholar 

  103. Nosé S (2001) J Phys Soc Jpn 70:75–77

    Article  Google Scholar 

  104. Tuckerman M, Berne BJ, Martyna GJ (1992) J Chem Phys 97:1990–2001

    Article  CAS  Google Scholar 

  105. Martyna GJ, Tuckerman ME, Tobias DJ, Klein ML (1996) Molec Phys 87:1117–1157

    Article  CAS  Google Scholar 

  106. Ciccotti G, Kalibaeva G (2004) Phil Trans R Soc Lond A 362:1583–1594

    Article  Google Scholar 

  107. Rakowski F, Grochowski P, Lesyng B, Liwo A, Scheraga HA (2006) J Chem Phys 125:204107

    Article  PubMed  CAS  Google Scholar 

  108. Hansmann UHE, Okamoto Y (1994) Physica A 212:415–437

    Article  CAS  Google Scholar 

  109. Sugita Y, Okamoto Y (2000) Phys Rev Lett 329:261–270

    CAS  Google Scholar 

  110. Shen H, Liwo A, Scheraga HA (2009) J Phys Chem B 113:8738–8744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rhee YM, Pande VS (2003) Biophys J 84:775–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Czaplewski C, Kalinowski S, Liwo A, Scheraga HA (2009) J Chem Theor Comput 5:627–640

    Article  CAS  Google Scholar 

  113. Fukunishi H, Watanabe O, Takada S (2002) J Chem Phys 116:9058–9067

    Article  CAS  Google Scholar 

  114. Lee KH, Chen J (2015) J Comput Chem 37:550–557

    Article  PubMed  CAS  Google Scholar 

  115. Karczyńska AS, Czaplewski C, Krupa P, Mozolewska MA, Joo K, Lee J, Liwo A (2017) J Comput Chem 38:2730–2746

    Article  PubMed  CAS  Google Scholar 

  116. Berg BA, Neuhaus T (1992) Phys Rev Lett 68:9–12

    Article  CAS  PubMed  Google Scholar 

  117. Lee J (1993) Phys Rev Lett 71:211–214

    Article  CAS  PubMed  Google Scholar 

  118. Nanias M, Czaplewski C, Scheraga HA (2006) J Chem Theory Comput 2:513–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Scheraga HA, Lee J, Pillardy J, Ye Y-J, Liwo A, Ripoll DR (1999) J Glob Optim 15:235–260

    Article  Google Scholar 

  120. Scheraga HA, Pillardy J, Liwo A, Lee J, Czaplewski C, Ripoll DR, Wedemeyer WJ, Arnautova YA (2002) J Comput Chem 23:28–34

    Article  CAS  PubMed  Google Scholar 

  121. Piela L, Kostrowicki J, Scheraga HA (1989) J Phys Chem 93:3339–3346

    Article  CAS  Google Scholar 

  122. Kostrowicki J, Scheraga HA (1992) J Phys Chem 96:7442–7449

    Article  CAS  Google Scholar 

  123. Amara P, Hsu D, Straub JE (1993) J Phys Chem 97:6715–6721

    Article  CAS  Google Scholar 

  124. Pillardy J, Liwo A, Groth M, Scheraga HA (1999) J Phys Chem 103:7353–7366

    Article  CAS  Google Scholar 

  125. Li Z, Scheraga HA (1987) Proc Natl Acad Sci USA 84:6611–6615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Liwo A, Pincus MR, Wawak RJ, Rackovsky S, Scheraga HA (1993) Protein Sci 2:1715–1731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wales DJ (1992) J Chem Soc Faraday Trans 88:653–657

    Article  CAS  Google Scholar 

  128. Androulakis IP, Maranas CD, Floudas CA (1995) J Glob Optimiz 11:337–363

    Article  Google Scholar 

  129. Lee J, Scheraga HA (1999) Int J Quant Chem 75:255–265

    Article  CAS  Google Scholar 

  130. Lee J, Liwo A, Scheraga HA (1999) Proc Natl Acad Sci USA 96:2025–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sieradzan AK, Golon Ł, Liwo A (2018) Phys Chem Chem Phys 20:19656–19663

    Article  CAS  PubMed  Google Scholar 

  132. Lee J, Liwo A, Ripoll DR, Pillardy J, Scheraga HA (1999) Proteins: Struct Funct Genet Suppl 3:204–408

    Article  Google Scholar 

  133. Pillardy J, Czaplewski C, Liwo A, Lee J, Ripoll DR, Kaźmierkiewicz R, Oldziej S, Wedemeyer WJ, Gibson KD, Arnautova YA, Saunders J, Ye Y-J, Scheraga HA (2001) Proc Natl Acad Sci USA 98:2329–2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ołdziej S, Czaplewski C, Liwo A, Chinchio M, Nanias M, Vila JA, Khalili M, Arnautova YA, Jagielska A, Makowski M, Schafroth HD, Kaźmierkiewicz R, Ripoll DR, Pillardy J, Saunders JA, Kang YK, Gibson KD, Scheraga HA (2005) Proc Natl Acad Sci USA 102:7547–7552

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Koukos PI, Bonvin AMJJ (2020) J Mol Biol 432:2861–2881

    Article  CAS  PubMed  Google Scholar 

  136. Różycki B, Boura E (2014) J Phys Condens Matter 26:463103

    Article  PubMed  CAS  Google Scholar 

  137. Sali A, Berman HM, Schwede T, Trewhella J, Kleywegt G, Burley SK, Markley J, Nakamura H, Adams P, Bonvin AM, Chiu W, Peraro MD, Di Maio F, Ferrin TE, Grünewald K, Gutmanas A, Henderson R, Hummer G, Iwasaki K, Lawson CL, Johnson G, Meiler J, Marti-Renom MA, Montelione GT, M23 MNilges, Nussinov R, Patwardhan A, Rappsilber J, Read RJ, Saibil H, Schröder GF, Schwieters CD, Seidel CA, Svergun D, Topf M, Ulrich EL, Velankar S, Westbrook JD (2015) Structure 23:1156–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sinz A, Arlt C, Chorev D, Sharon M (2015) Protein Sci 24:1193–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Leitner A, Fainiand M, Stengel F, Aebersold R (2016) Trends Biochem Sci 41:20–32

    Article  CAS  PubMed  Google Scholar 

  140. Heck AJR (2008) Nat Meth 5:927–933

    Article  CAS  Google Scholar 

  141. Lubecka EA, Liwo A (2019) J Comput Chem 40:2164–2178

    Article  CAS  PubMed  Google Scholar 

  142. Joo K, Lee J, Sim S, Lee SY, Lee K, Heo S, Lee IH, Lee SJ, Lee J (2014) Proteins: Struct Funct Bioinf 82:188

    Article  CAS  Google Scholar 

  143. Sieradzan AK, Jakubowski R (2017) J Comput Chem 38:553

    Article  CAS  PubMed  Google Scholar 

  144. Fajardo JE, Shrestha R, Gil N, Belsom A, Crivelli SN, Czaplewski C, Fidelis K, Grudinin S, Karasikov M, Karczyńska AS, Kryshtafovych A, Leitner A, Liwo A, Lubecka EA, Monastyrskyy B, Pages G, Rappsilber J, Sieradzan AK, Sikorska C, Trabjerg E, Fiser A (2019) Proteins 87:1283–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Dimura M, Peulen TO, Hanke CA, Prakash A, Gohlke H, Seidel CA (2016) Curr Opin Struct Biol 163–185

    Google Scholar 

  146. Hoefling M, Lima N, Haenni D, Seidel CAM, Schuler B, Grubmüller H (2011) PLOS One 6:e19791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kalinin S, Felekyan S, Valeri A, MSeidel CAM (2008) J Phys Chem B 112:8361–8374

    Article  CAS  PubMed  Google Scholar 

  148. Wozniak A, Nottrott S, Kuhn-Holsken E, G GSchröder, Grubmüller H, Lührmann R, Seidel CAM, Oesterhelt F (2005) RNA 11:1545–1554

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Sindbert S, Kalinin S, Nguyen H, Kienzler A, Clima L, Bannwarth W, Appel B, Müller S, Seidel CA (2011) J Am Chem Soc 133:2463–2480

    Article  CAS  PubMed  Google Scholar 

  150. Graewert MA, Svergun DI (2013) Curr Opin Struct Biol 23:748–754

    Article  CAS  PubMed  Google Scholar 

  151. Brosey CA, Tainer JA (2019) Curr Opin Struct Biol 58:197–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Yang S, Park S, Makowski L, Roux B (2009) Biophys J 96:4449–4463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Stovgaard K, Andreetta C, Ferkinghoff-Borg J, Hamelryck T (2010) BMC Bioinf 11:429

    Article  CAS  Google Scholar 

  154. Grudinin S, Garkavenko M, Kazennov A (2017) Acta Cryst D D73:449–464

    Article  Google Scholar 

  155. Schneidman-Duhovny D, Hammel M, Sali A (2010) Nucleic Acids Res 38:W540–W544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Schneidman-Duhovny D, Hammel M, Tainer JA, Sali A (2013) Biophys J 105:962–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Karczyńska AS, Mozolewska MA, Krupa P, Giełdoń A, Liwo A, Czaplewski C (2018) Proteins 86:228–239

    Article  PubMed  CAS  Google Scholar 

  158. Gorba C, Miyashita O, Tama F (2008) Biophys J 94:1589–1599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Hura GL, Hodge CD, Rosenberg D, Guzenko D, Duarte JM, Monastyrskyy B, Grudinin S, Kryshtafovych A, Tainer JA, Fidelis K (2019) Proteins 87:1298–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Rambo RP, Tainer JA (2013) Annu Rev Biophys 42:415–441

    Article  CAS  PubMed  Google Scholar 

  161. Svergun D, Barberato C, Koch MHJ (1995) J Appl Cryst 28:768–773

    Article  CAS  Google Scholar 

  162. Petoukhov MV, Franke D, Shkumatov AV, Tria G, Kikhney AG, Gajda AG, Gorba C, Mertens HDT, Konarev PV, Svergun DI (2012) J Appl Cryst 45:342–350

    Article  CAS  Google Scholar 

  163. Stuhrmann HB (1970) Acta Cryst A26:297–306

    Article  Google Scholar 

  164. Zheng W, Tekpinar M (2011) Biophys J 101:2981–2991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Watson MC, Curtis JE (2013) J Appl Cryst 46:1171–1177

    Article  CAS  Google Scholar 

  166. Merzel F, Smith JC (2002) Acta Cryst D58:242–249

    CAS  Google Scholar 

  167. Artemova S, Grudinin S, Redon S (2011) J Comput Chem 32:2865–2877

    Article  CAS  PubMed  Google Scholar 

  168. Chen P, Shevchuk R, Strnad FM, Lorenz C, Karge L, Gilles R, Stadler A, Hennig J, Hub JS (2019) J Chem Theory Comput 15:4687–4698

    Article  CAS  PubMed  Google Scholar 

  169. Larsen AH, Wang Y, Bottaro S, Grudinin S, Arleth L, Lindorff-Larsen K (2020) PLOS Comput Biol 16:e1007870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Bowerman S, Rana AS JB, Rice A, Pham GH, Strieter ER, Wereszczynski J (2017) J Chem 13:2418–2429

    CAS  Google Scholar 

  171. Bottaro S, Bengtsen T, Lindorff-Larsen K (2020) Integrating molecular simulation and experimental data: a bayesian/maximum entropy reweighting approach. In: Gáspari Z (ed) Structural bioinformatics methods in molecular biology, New York, , pp 219–240

    Google Scholar 

  172. Karaca E, Rodrigues JP G LM, Graziadei A, Bonvin AMJJ, Carlomagno T (2017) Nat Meth 14:897–902

    Article  CAS  Google Scholar 

  173. Vajdos FF, Adams CW, Breece TN, Presta LG, de Vos AM, Sidhu SS (2002) J Mol Biol 320:415–428

    Article  CAS  PubMed  Google Scholar 

  174. Yu EW, Aires JR, McDermott G, Nikaido H (2005) J Bacteriol 187:6804–6815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Ashkenazi A, Presta LG, Marsters SA, Camerato TR, Rosenthal KA, Fendly BM, Capon DJ (1990) Proc Natl Acad Sci USA 87:7150–7154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Englander SW, Kallenbach NR (1983) Q Rev Biophys 16:521–655

    Article  CAS  PubMed  Google Scholar 

  177. Konermann L, Pan J, Liu Y-H (2011) Chem Soc Rev 40:1224–1234

    Article  CAS  PubMed  Google Scholar 

  178. Masson GR, Burke JE, Ahn NG, Anand GS, Borchers C, Brier S, Bou-Assaf GM, Engen JR, Englander SW, Faber J, Garlish R, Griffin PR, Gross ML, Guttman M, Hamuro Y, Heck AJR, Houde D, Iacob RE, Jørgensen TJD, Kaltashov IA, Klinman JP, Konermann L, Man P, Mayne L, Pascal BD, Reichmann D, Skehel M, Snijder J, Strutzenberg TS, Underbakke ES, Wagner C, Wales TE, Walters BT, Weis DD, Wilson DJ, Wintrode PL, Zhang Z, Zhengand J, Schriemer DC, Rand KD (2019) Nat Methods 16:595–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Rey M, Sarpe V, Burns KM, Buse J, Baker CAH, van Dijk M, Wordeman L, Bonvin AMJJ, Schriemer DC (2014) Structure 22:1538–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Williamson MP, Havel TF, Wüthrich K (1985) J Mol Biol 182:295–315

    Article  CAS  PubMed  Google Scholar 

  181. Linge J, Nilges M (1999) J Biomol NMR 13:51–59

    Article  CAS  PubMed  Google Scholar 

  182. Rohl CA, Strauss CEM, Misura KMS, Baker D (2004) Meth Enzymol 383:66

    Article  CAS  Google Scholar 

  183. Das R, Baker D (2008) Annual Rev Biochem 77:363–382

    Article  CAS  Google Scholar 

  184. Kuhlman B, Baker D (2000) Proc Natl Acad Sci USA 97:10383–10388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Mao B, Tejero R, Baker D, Montelione G (2014) J Am Chem Soc 136:1893–1906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Ramelot TA, Raman S, Kuzin AP, Xiao R, Ma L-C, Acton TB, Hunt JF, Montelione GT, Baker D, Kennedy MA (2009) Proteins: Struct Funct Bioinf 75:147–167

    Article  CAS  Google Scholar 

  187. Latek D, Koliński A (2011) J Comput Chem 32:536–544

    Article  CAS  PubMed  Google Scholar 

  188. Kolinski A (2004) Acta Biochim Pol 51:349–371

    Article  CAS  PubMed  Google Scholar 

  189. Lubecka EA, Karczyńska AS, Lipska AG, Sieradzan AK, Ziȩba K, Sikorska C, Uciechowska U, Samsonov SA, Krupa P, Mozolewska MA, Golon Ł, Giełdoń A, Czaplewski C, Ślusarz R, Ślusarz M, Crivelli SN, Liwo A (2019) J Molec Graphics Modell 92:154–166

    Article  CAS  Google Scholar 

  190. Nishikawa K, Momany FA, Scheraga HA (1974) Macromolecules 7:797–806

    Article  CAS  PubMed  Google Scholar 

  191. Modi V, Xu Q, Adhikari S, Dunbrack Jr RL (2016) Proteins: Struct Func Bioinf 84:200–220

    Article  CAS  Google Scholar 

  192. Lafita A, Bliven Sp, Kryshtafovych A, Bertoni M, Monastyrskyy B, Duarte JM, Schwede T, Capitani G (2018) Proteins 86:247–256

    Article  CAS  PubMed  Google Scholar 

  193. Dawson WK, Maciejczyk M, Jankowska EJ, Bujnicki J (2016) Methods 103:138–156

    Article  CAS  PubMed  Google Scholar 

  194. Wang S, Li W, Zhang R, Liu S, Xu J (2016) Nucl Acids Res 44:W361–W366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Zhang W, Yang J, He B, Walker SE, Zhang H, Govindarajoo B, Virtanen J, Xue Z, Shen H-B, Zhang Y (2016) Proteins: Struct Funct Bioinf 84:76–86

    Article  CAS  Google Scholar 

  196. Ji S, Oruç T, Mead L, Rehman MF, Thomas CM, Butterworth S, Winn P (2019) PLOS One 14:e0205214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Jianyi Y, Zhang Y (2015) Nucl Acids Res 43:W174–W181

    Article  CAS  Google Scholar 

  198. Zhang C, Mortuza SM, He B, Wang Y, Zhang Y (2018) Proteins 86:136–151

    Article  CAS  PubMed  Google Scholar 

  199. Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, Qin C, Židek A, Nelson AWR, Bridgland A, Penedones H, Petersen S, Simonyan K, Crossan S, Kohli P, Jones DT, Silver D, Kavukcuoglu K, Hassabis D (2019) Proteins 87:1141–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, Qin C, Žídek A, Nelson AWR, Bridgland A, Penedones H, Petersen S, Simonyan K, Crossan S, Kohli P, Jones DT, Silver D, Kavukcuoglu K, Hassabis D (2020) Nature 577:706–710

    Article  CAS  PubMed  Google Scholar 

  201. Davtyan A, Schafer NP, Zheng W, Clementi C, Wolynes PG, Papoian GA (2012) J Phys Chem B 116:8494–8503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Maupetit J, Tuffery P, Derreumaux P (2007) Proteins 69:394–408

    Article  CAS  PubMed  Google Scholar 

  203. Papoian G, Ulander J, Eastwood M, Luthey-Schulten Z, Wolynes P (2004) Proc Natl Acad Sci USA 101:3352–3357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Sasai M, Wolynes PG (1990) Phys Rev Lett 65:2740–2743

    Article  CAS  PubMed  Google Scholar 

  205. Plimpton SJ (1995) J Comput Phys 117:1–19

    Article  CAS  Google Scholar 

  206. Chen M, Lin X, Lu W, Onuchic JN, Wolynes PG (2017) J Phys Chem B 121:3473–3482

    Article  CAS  PubMed  Google Scholar 

  207. Chen X, Chen M, Schafer NP, Wolynes PG (2020) Proc Natl Acad Sci USA 117:4125–4130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Lopez CA, Rzepiela A, de Vries AH, Dijkhuizen L, Hunenberger PH, Marrink SJ (2009) J Chem Theor Comput 5:3195–3210

    Article  CAS  Google Scholar 

  209. Uusitalo JJ, Ingólfsson HI, Akhshi P, Tieleman DP, Marrink SJ (2015) J Chem Theory Comput 11:3932–3945

    Article  CAS  PubMed  Google Scholar 

  210. van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) J Comput Chem 26:1701–1718

    Article  CAS  Google Scholar 

  211. Hou Q, Lensink MF, Heringa J, Feenstra KA (2016) PLOS One 11:e0155251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Honorato RV, Roel-Touris J, Bonvin AMJJ (2016) Front Mol Biosci 6:102

    Article  CAS  Google Scholar 

  213. Shen Y, Maupetit J, Derreumaux P, Tufféry P (2014) J Chem Theor Comput 10:4745–4758

    Article  CAS  Google Scholar 

  214. Silva FLBarroso, Sterpone F, Derreumaux P (2019) J Chem Theory Comput 15:3875–3888

    Google Scholar 

  215. Lamiable A, Thevenet P, Rey J, Vavrusa M, Derreumaux P, Tuffery P (2016) Nucl Acids Res 44:W449–W454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Cragnolini T, Laurin Y, Derreumaux P, Pasquali S (2015) J Chem Theory Comput 11:3510–3522

    Article  CAS  PubMed  Google Scholar 

  217. Kynast P, Derreumaux P, Strodel B (2016) BMC Biophys 9:4

    Article  PubMed  PubMed Central  Google Scholar 

  218. Ouldridge TE, Louis AA, Doye JPK (2010) Phys Rev Lett 104:178101

    Article  PubMed  CAS  Google Scholar 

  219. Ouldridge TE, Louis AA, Doye JPK (2011) J Chem Phys 134:085101

    Article  PubMed  CAS  Google Scholar 

  220. Šulc P, Romano F, Ouldridge TE, Rovigatti L, Doye JPK, Louis AA (2012) J Chem Phys 137

    Google Scholar 

  221. Šulc P, Romano F, Ouldridge TE, Doye JPK, Louis AA (2014) J Chem Phys 140:235102

    Article  PubMed  CAS  Google Scholar 

  222. Snodin BEK, Randisi F, Mosayebi M, Šulc P, Schreck JS, Romano F, Ouldridge TE, Tsukanov R, Nir E, Louis AA, Doye JPK (2015) J Chem Phys 142:234901

    Article  PubMed  CAS  Google Scholar 

  223. Snodin BEK, Romano F, Rovigatti L, Ouldridge TE, Louis AA, Doye JPK (2016) ACS Nano 10:1724–1737

    Article  CAS  PubMed  Google Scholar 

  224. Brandner A, Schüller A, Melo F, Pantano S (2018) Biochem Biophys Res Commun 498:319–326

    Article  CAS  PubMed  Google Scholar 

  225. Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE, III, DeBolt S, Ferguson D, Seibel G, Kollman P (1995) Comp Phys Commun 91:1–41

    Article  CAS  Google Scholar 

  226. He Y, Maciejczyk M, Ołdziej S, Scheraga HA, Liwo A (2013) Phys Rev Lett 110:098101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. Sieradzan AK, Giełdoń A, Yin Y, He Y, Scheraga HA, Liwo A (2018) J Comput Chem 39:2360–2370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Liwo A, Kaźmierkiewicz R, Czaplewski C, Groth M, Ołdziej S, Wawak RJ, Rackovsky S, Pincus MR, Scheraga HA (1998) J Comput Chem 19:259–276

    Article  CAS  Google Scholar 

  229. Ziȩba K, Ślusarz M, Ślusarz R, Liwo A, Czaplewski C, Sieradzan AK (2019) J Phys Chem B 22:4758

    Google Scholar 

  230. He Y, Mozolewska MA, Krupa P, Sieradzan AK, Wirecki TK, Liwo A, Kachlishvili K, Rackovsky S, Jagieła D, Ślusarz R, Czaplewski CR, Ołdziej S, Scheraga HA (2013) Proc Nat Acad Sci USA 110:14936–14941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Krupa P, Mozolewska MA, Wiśniewska M, Yin Y, He Y, Sieradzan AK, Ganzynkowicz R, Lipska AG, Karczyńska A, Ślusarz M, Ślusarz R, Giełdoń A, Czaplewski C, Jagieła D, Zaborowski B, Scheraga HA, Liwo A (2016) Bioinformatics 32:3270–3278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Karczyńska AS, Mozolewska MA, Krupa P, Giełdoń A, Liwo A, Czaplewski C (2018) Proteins 86:228–239

    Article  PubMed  CAS  Google Scholar 

  233. Karczyńska A, Mozolewska MA, Krupa P, Giełdoń A, Bojarski KK, Zaborowski B, Liwo A, Ślusarz R, Ślusarz M, Lee J, Joo K, Czaplewski C (2018) J Mol Graphics Modell 83:92–99

    Article  CAS  Google Scholar 

  234. Karczyńska A, Ziȩba K, Uciechowska U, Mozolewska MA, Krupa P, Lubecka EA, Lipska AG, Sikorska C, Samsonov SA, Sieradzan AK, Giełdoń A, Liwo A, Ślusarz R, Ślusarz M, Lee J, Joo K, Czaplewski C (2020) J Chem Inf Model 60:1844–1864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Sieradzan AK, Bogunia M, Mech P, Ganzynkowicz R, Giełdoń A, Liwo A Makowski M (2019) J Phys Chem B 119:8526-8534

    Google Scholar 

  236. Chinchio M, Czaplewski C, Liwo A, Ołdziej S, Scheraga HA (2007) J Chem Theory and Comput 3:1236–1248

    Article  CAS  Google Scholar 

  237. Sieradzan AK, Mozolewska MA (2018) J Mol Model 24:121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  238. Czaplewski C, Karczyńska AS, Sieradzan AK, Liwo A (2018) Nucl Acids Res 46:W304–W309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Kurcinski M, Jamroz M, Blaszczyk M, Kolinski A, Kmiecik S (2015) Nucl Acids Res 43:W419–W424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Kurcinski M, Badaczewska-Dawid A, Kolinski M, Kolinski A, Kmiecik S (2020) Prot Sci 29:211–222

    Article  CAS  Google Scholar 

  241. Krupa P, Karczyńska AS, Mozolewska MA, Liwo A, Czaplewski C (2021) Bioinformatics 37:1613–1615

    Article  PubMed  Google Scholar 

  242. Zhou R, Maisuradze GG, Sunol D, Todorovski T, Macias MJ, Xiao Y, Scheraga HA, Czaplewski C, Liwo A (2014) Proc Natl Acad Sci USA 111:18243–18248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Maisuradze GG, Senet P, Czaplewski C, Liwo A, Scheraga HA (2010) J Phys Chem A 114:4471–4485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Golas EI, Maisuradze GG, Senet P, Ołdziej S, Czaplewski C, Scheraga HA, Liwo A (2012) J Chem Theor Comput 8:1334–1343

    Article  CAS  Google Scholar 

  245. Mozolewska M, Krupa P, Scheraga HA, Liwo A (2015) Proteins: Struct, Funct, Bioinf 83:1414–1426

    Article  CAS  Google Scholar 

  246. Rojas A, Liwo A, Browne D, Scheraga HA (2010) J Mol Biol 404:537–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Rojas A, Liwo A, Scheraga HA (2011) J Phys Chem B 115:12978–12983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Rojas AV, Maisuradze GG, Scheraga HA (2018) J Phys Chem B 122:7049–7056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Nguyen HL, Krupa P, Hai NM, Linh HQ, Li MS (2019) J Phys Chem B 123:7253–7269

    Article  CAS  PubMed  Google Scholar 

  250. Sieradzan AK, Krupa P, Wales DJ (2017) J Phys Chem B 121:2207–2219

    Article  CAS  PubMed  Google Scholar 

  251. Krupa P, Wales DJ, Sieradzan AK (2018) J Phys Chem B 122:8166–8173

    Article  CAS  PubMed  Google Scholar 

  252. Esko JD, Kimata K, Lindahl U (2009) Proteoglycans and sulfated glycosaminoglycans. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of Glycobiology, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  253. Peng Y, Yu Y, Lin L, Liu X, Zhang X, Wang P, Hoffman P, Kim SY, Zhang F, Linhardt RJ (2018) Glycoconj J 35:119–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Shute J (2012) Handb Exp Pharmacol 207:307–324

    Article  CAS  Google Scholar 

  255. Li Z, Yasuda Y, Li W, Bogyo M, Katz N, Gordon RE, Fields GB, Brömme D (2004) J Biol Chem 279:5470–5479

    Article  CAS  PubMed  Google Scholar 

  256. Sankaranarayanan NV, Nagarajan B, Desai UR (2018) Curr Opin Struct Biol 50:91–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Taketomi H, Ueda Y, Gō N (1975) Int J Peptide Protein Res 7:445–459

    Article  CAS  Google Scholar 

  258. Hills RD, Brooks CL (2009) Int J Mol Sci 10:889–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Yang SC, Onuchic JN, Levine H (2004) J Chem Phys 125:054910

    Article  CAS  Google Scholar 

  260. Schug A, Hyeon C, Onuchic JN (2008) Coarse-grained structure-based simulations of proteins and RNA. In: Voth G (ed) Coarse-graining of condensed phase and biomolecular systems, Chapter 9. CRC Press, Boca Raton, pp 123–140

    Google Scholar 

  261. Hoang TX, Cieplak M (2000) J Chem Phys 112:6851–6862

    Article  CAS  Google Scholar 

  262. Sułkowska JI, Sułkowski P, Szymczak P, Cieplak M (2010) J Am Chem Soc 132:13954–13956

    Article  PubMed  CAS  Google Scholar 

  263. Cieplak M (2018) Mechanostability of virus capsids and their proteins in structure-based models. In: Liwo A (ed) Computational methods to study the structure and dynamics of biomolecules and biomolecular processes—from bioinformatics to molecular quantum mechanics. Springer, Heidelberg, pp 295–315

    Google Scholar 

  264. Brown S, Fawzi NJ, Head-Gordon T (2003) Proc Natl Acad Sci USA 100:10712–10717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Brown S, Head-Gordon T (2004) Prot Sci 13:958–970

    Article  CAS  Google Scholar 

  266. Sinitskiy AV, Voth GA (2008) Chem Phys 422:165–174

    Article  CAS  Google Scholar 

  267. Trylska J (2010) J Phys Cond Mat 22:453101

    Article  CAS  Google Scholar 

  268. Kmiecik S, Badaczewska-Dawid A, Kouza M, Kloczkowski A, Kolinski A (2018) Int J Mol Sci 19:3496

    Article  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants UMO-2017/25/B/ST4/01026, UMO-2017/27/B/ST4/00926, UMO-2017/26/M/ST4/00044, UMO-2018/30/E/ST4/00037, UMO-2015/17/N/ST4/03935, and UMO-2015/17/N/ST4/03937 from the National Science Center of Poland (Narodowe Centrum Nauki). Calculations were carried out using the computational resources provided by (a) the supercomputer resources at the Centre of Informatics—Tricity Academic Supercomputer & networK (CI TASK) in Gdańsk, (b) the supercomputer resources at the Interdisciplinary Center of Mathematical and Computer Modeling (ICM), University of Warsaw (grant GA71-23), (c) the Polish Grid Infrastructure (PL-GRID; grants unres19, unres2021, and gagstr), and (d) our 488-processor Beowulf cluster at the Faculty of Chemistry, University of Gdańsk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Liwo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liwo, A. et al. (2022). Physics-Based Coarse-Grained Modeling in Bio- and Nanochemistry. In: Leszczynski, J., Shukla, M.K. (eds) Practical Aspects of Computational Chemistry V. Springer, Cham. https://doi.org/10.1007/978-3-030-83244-5_2

Download citation

Publish with us

Policies and ethics