Skip to main content
Log in

A potential function for protein folding

  • Papers
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

One of the most difficult problems in computational chemistry is the prediction of the three-dimensional structure of a protein molecule given only its amino acid sequence. Although there are several programs for calculating the empirical or quantum mechanical energies, and there are more programs for either minimizing the energy as a function of conformation or for simulating the dynamics of a system of molecules, these approaches generally fail either to locate the known native conformation of small proteins and/or show that the native structure is preferred over alternative conformations. In this paper, we present the latest extension of our ongoing effort to devise an empirical potential function that correctly discriminates between the native and essentially all other conformations for more than one protein. Furthermore, the potential incorporates such a simplified description of the polypeptide chain that there is hope for locating nearly the global minimum as a means of predicting globular protein conformation. The current potential function has been parameterized to agree with the crystal structures of crambin and avian pancreatic polypeptide and [lie parameters thus derived are able to correctly predict the native conformations of apamin and mellitin. The key to this accomplishment is a novel nondifferentiable optimization approach to solving the nonlinear program for determining the parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.E. Creighton, Proc. Natl. Acad. Sci. USA 85 (1988)5082.

    PubMed  Google Scholar 

  2. R.L. Baldwin, Discussion of the pathway of protein folding, in:Protein Structure Folding, Des. 2, vol. New Ser. 69, UCLA Symp. Mol. Cell. Biol. (1987), pp. 313–320.

  3. K. Kuwajima, Proteins 6 (1989)87.

    PubMed  Google Scholar 

  4. D. Goldberg, R. Frieden, J. Haack and T. Morrison, Nature 338 (1989)127.

    PubMed  Google Scholar 

  5. T. Noguti and N. Go, Proteins 5 (1989)97.

    PubMed  Google Scholar 

  6. J. Sprague, J. Tai, Y. Yuh and N. Allinger, J. Comp. Chem. 8 (1987)581.

    Google Scholar 

  7. S. Weiner, P. Kollman, D. Nguyen and D. Case, J. Comp. Chem. 7 (1986)230.

    Google Scholar 

  8. B. Brooks, R. Bruccoleri, B. Olafson, D. States, S. Swaminathan and M. Karplus, J. Comp. Chem. 4 (1983)187.

    Google Scholar 

  9. G.M. Crippon, J. Comp. Phys. 18 (1975)224.

    Google Scholar 

  10. I. Roterman, K. Gibson and H. Scheraga, J. Biomol. Struct. Dynamics 7 (1989)391.

    Google Scholar 

  11. M. Levitt and A. Warshel, Nature 253 (1975)694.

    PubMed  Google Scholar 

  12. S. Tanaka and H. Scheraga, Macromolecules 9 (1976)945.

    PubMed  Google Scholar 

  13. I.D. Kuntz, G.M. Crippen, P.A. Kollman and D. Kimelman, J. Mol. Biol. 106 (1976)983.

    PubMed  Google Scholar 

  14. C. Wilson and S. Doniach, Proteins 6(1989)193.

    PubMed  Google Scholar 

  15. G.M. Crippen and Y. Viswanadhan, Int. J. Peptide Protein Res. 25 (1985)487.

    Google Scholar 

  16. A. Hagler and B. Honig, Proc. Natl. Acad. Sci. USA 75 (1978)554.

    PubMed  Google Scholar 

  17. S. Bryant and L. Amzel, Int. J. Peptide protein Res. 29 (1987)46.

    Google Scholar 

  18. J. Novotny, A.A. Rashin and R.E. Bruccoleri, Proteins: Struct., Funct., Genet. 4 (1988)19.

    Google Scholar 

  19. G.M. Crippen and M. Snow, Biopolymers 29 (1990)1479–1489.

    PubMed  Google Scholar 

  20. G.M. Crippen and T. Havel, J. Chem. Inf. Comp Sci. 30 (1990)222–227.

    Google Scholar 

  21. W. Hendrickson and M. Teeter, Nature (London) 290 (1981)107.

    Google Scholar 

  22. I. Glover, I. Haneef, J. Pitts, S. Wood, D. Moss, I. Tickle and T. Blundell, Bioyolymers 22 (1983)293.

    Google Scholar 

  23. T. Terwillinger and D. Eisenberg, J. Biol. Chem. 257 (1982)6010.

    PubMed  Google Scholar 

  24. J. Walter, W. Steigemann, T. Singh, H. Bartuik, W. Bode and R. Huber, Acta Cryst. Sect. B 38 (1982)1462.

    Google Scholar 

  25. A. Wlodawer, J. Walter, R. Huber and L. Sjolin, J. Mol. Biol. 180 (1984)307.

    Google Scholar 

  26. J. Pease and D. Wemmer, Biochemistry 27 (1988)8491.

    PubMed  Google Scholar 

  27. D. Wemmer, private communication (1989).

  28. M. Vasquez, G. Nemethy and H. Scheraga, Macromolecules 16 (1983)1043.

    Google Scholar 

  29. M. Sueki, S. Lee, S. Powers, J. Denton, Y. Konishi and H. Scheraga, Macromolecules 17 (1984)148.

    Google Scholar 

  30. R. Fletcher,Practical Methods of Optimization (Wiley, New York, 1987).

    Google Scholar 

  31. K. Platzer, V. Ananthanarayanan, R. Andreatta and H. Scheraga, Macromolecules 5 (1972)177.

    Google Scholar 

  32. V. Ananthanarayanan, R. Andreatta, D. Poland and H. Scheraga, Macromolecules 4 (1971)417.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from School of Mathematics and Computer/Information Sciences, University of Hyderabad, Hyderabad 500 134, India.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seetharamulu, P., Crippen, G.M. A potential function for protein folding. J Math Chem 6, 91–110 (1991). https://doi.org/10.1007/BF01192576

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01192576

Keywords

Navigation