Skip to main content

Central Nervous System Neurophysiology

  • Chapter
  • First Online:
Management of Subarachnoid Hemorrhage

Abstract

The vast number of neurons in the human brain offers limitless potential for the creation of complex neuronal circuits and interconnections that mediate a wide range of functions essential for survival and well-being. Neurophysiology refers to the study of these neurons, and their various arrangements into nerves and nervous systems, describing their functions and the mechanisms by which they achieve these functions. A clear understanding of neurophysiology within the central nervous system is relevant to appreciate a variety of pathophysiological states. Such understanding must include basic principles of neuro-electrophysiology, cerebral metabolism, and blood flow and their inter-relationship, the role of the blood–brain barrier in maintaining the integrity of brain, the vital role of cerebrospinal fluid, and the regulation of intracranial pressure. In this way, pathologies such as subarachnoid haemorrhage may be better understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. OpenStax College, Biology. OpenStax College. 30 May 2013. https://cnx.org/contents/GFy_h8cu@9.87:c9j4p0aj@3/Neurons-and-Glial-Cells. Accessed 13 Apr 2020.

  2. Guyton AC, Hall JE. Textbook of medical physiology. 11th ed. Philadelphia: Elsevier Saunders; 2006. p. 57–71.

    Google Scholar 

  3. OpenStax College, Biology. OpenStax College. 30 May 2013. https://cnx.org/contents/GFy_h8cu@9.87:cs_Pb-GW@5/How-Neurons-Communicate Accessed 13 Apr 2020.

  4. Roy CS, Sherrington CS. On the regulation of the blood-supply of the brain. J Physiol. 1890;11(1–2):85–108. https://doi.org/10.1113/jphysiol.1890.sp000321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Watts ME, Pocock R, Claudianos C. Brain energy and oxygen metabolism: emerging role in normal function and disease. Front Mol Neurosci. 2018;11:216. https://doi.org/10.3389/fnmol.2018.00216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wade OL, Bishop JM. Cardiac output and regional blood flow. Oxford: Blackwell Scientific Publications; 1962.

    Google Scholar 

  7. Go KG. The cerebral blood supply. Energy metabolism of the brain. In: Go KG, editor. Cerebral pathophysiology. Amsterdam: Elsevier; 1991. p. 66–172.

    Google Scholar 

  8. Clarke DD, Sokoloff L. Circulation and energy metabolism of the brain. In: Siegel GJ, Agranoff BW, Albers RW, et al., editors. Basic neurochemistry: molecular, cellular and medical aspects. 6th ed. Philadelphia: Lippincott-Raven; 1999. p. 637–69.

    Google Scholar 

  9. Briones-Galang M, Robertson C. Cerebral metabolism: implications for Neurocritically ill patients. In: Suarez JI, editor. Critical care neurology and neurosurgery. Current Clinical Neurology. Totowa, NJ: Humana Press; 2004. p. 37–46. https://doi.org/10.1007/978-1-59259-660-7_4.

    Chapter  Google Scholar 

  10. Astrup J. Energy requiring cell functions in the ischemic brain: their critical supply and possible inhibition in protective therapy. J Neurosurg. 1982;56(4):482–97. https://doi.org/10.3171/jns.1982.56.4.0482.

    Article  CAS  PubMed  Google Scholar 

  11. Chong SP, Merkle CW, Leahy C, Srinivasan VJ. Cerebral metabolic rate of oxygen (CMRO2) assessed by combined Doppler and spectroscopic OCT. Biomed Opt Express. 2015;6(10):3941–51. https://doi.org/10.1364/BOE.6.003941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sokoloff L. The metabolism of the central nervous system in vivo. In: Field J, Magoun HW, Hall VE, editors. Handbook of physiology—neurophysiology, vol. 3. Washington, DC: American Physiological Society; 1960. p. 1843–64.

    Google Scholar 

  13. Oz G, Seaquist ER, Kumar A, Criego AB, Benedict LE, Rao JP, et al. Human brain glycogen content and metabolism: implications on its role in brain energy metabolism. Am J Physiol Endocrinol Metab. 2007;292(3):E946–51. https://doi.org/10.1152/ajpendo.00424.2006.

    Article  CAS  PubMed  Google Scholar 

  14. Hasselbalch SG, Knudsen GM, Jakobsen J, Hageman LP, Holm S, Paulsen OB. Brain metabolism during short-term starvation in humans. J Cereb Blood Flow Metab. 1994;14(1):125–31. https://doi.org/10.1038/jcbfm.1994.17.

    Article  CAS  PubMed  Google Scholar 

  15. Bergsneider M, Hovda DA, Shalmon E, Kelly DF, Vespa PM, Martin NA, et al. Cerebral hyperglycolysis following severe traumatic brain injury in humans: a positron emission tomography study. J Neurosurg. 1997;86(2):241–51. https://doi.org/10.3171/jns.1997.86.2.0241.

    Article  CAS  PubMed  Google Scholar 

  16. Glenn TC, Martin NA, Horning MA, McArthur DL, Hovda DA, Vespa P, et al. Lactate: brain fuel following traumatic brain injury: a comparison with normal healthy control subjects. J Neurotrauma. 2015;32(11):820–32. https://doi.org/10.1089/neu.2014.3483.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Brooks GA. Lactate: glycolytic end product and oxidative substrate during sustained exercise in mammals—the “lactate shuttle”. In: Gilles R, editor. Circulation, respiration, and metabolism. Proceedings in life sciences. Berlin, Heidelberg: Springer; 1985. p. 208–18. https://doi.org/10.1007/978-3-642-70610-3_15.

    Chapter  Google Scholar 

  18. Pellerin L, Magistretti PJ. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A. 1994;91(22):10625–9. https://doi.org/10.1073/pnas.91.22.10625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brooks GA, Martin NA. Cerebral metabolism following traumatic brain injury: new discoveries with implications for treatment. Front Neurosci. 2015;8(408):1–13. https://doi.org/10.3389/fnins.2014.00408.

    Article  Google Scholar 

  20. Tsacopoulos M, Magiestretti PJ. Metabolic coupling between glia and neurons. J Neurosci. 1996;16(3):877–85. https://doi.org/10.1523/JNEUROSCI.16-03-00877.1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kasischke KA, Vishwasrao HD, Fisher PJ, Zipfel WR, Webb WW. Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science. 2004;305(5680):99–103. https://doi.org/10.1126/science.1096485.

    Article  CAS  PubMed  Google Scholar 

  22. Donnely J, Budohoski KP, Smielewski P, Czosnyka M. Regulation of the cerebral circulation: bedside assessment and clinical implications. Crit Care. 2016;20(1):129. https://doi.org/10.1186/s13054-016-1293-6.

    Article  Google Scholar 

  23. Melamed E, Lavy S, Bentin S, Cooper G, Rinot Y. Reduction in regional cerebral blood flow during normal aging in man. Stroke. 1980;11(1):31–5. https://doi.org/10.1161/01.str.11.1.31.

    Article  CAS  PubMed  Google Scholar 

  24. Nordstrom CH, Koskinen LO, Olivecrona M. Aspects on the physiological and biochemical foundations of neurocritical care. Front Neurol. 2017;8:274. https://doi.org/10.3389/fneur.2017.00274.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Peterson EC, Wang Z, Britz G. Regulation of cerebral blood flow. Int J Vasc Med. 2011. 2011823525. https://doi.org/10.1155/2011/823525.

  26. Harary M, Dolmans RGF, Gormley WB. Intracranial pressure monitoring – review and avenues for development. Sensors. 2018;18(2):465. https://doi.org/10.3390/s18020465.

    Article  PubMed Central  Google Scholar 

  27. Knot HJ, Nelson MT. Regulation of arterial diameter and wall [Ca2+] in cerebral arteries of rat by membrane potential and intravascular pressure. J Physiol. 1998;508(1):199–209. https://doi.org/10.1111/j.1469-7793.1998.199br.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kontos HA. Regulation of the cerebral circulation. Annu Rev Physiol. 1981;43:397–407. https://doi.org/10.1146/annurev.ph.43.030181.002145.

    Article  CAS  PubMed  Google Scholar 

  29. Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci. 2004;5(5):347–60. https://doi.org/10.1038/nrn1387.

    Article  CAS  PubMed  Google Scholar 

  30. Archer SL, Huang JM, Hampl V, Nelson DP, Shultz PJ, Weir EK. Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin-sensitive K+ channel by cGMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1994;91(16):7583–7. https://doi.org/10.1073/pnas.91.16.7583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X, et al. Astrocyte-mediated control of cerebral blood flow. Nat Neurosci. 2006;9(2):260–7. https://doi.org/10.1038/nn1623.

    Article  CAS  PubMed  Google Scholar 

  32. Godoy DA, Seifi A, Garza D, et al. Hyperventilation therapy for control of posttraumatic intracranial hypertension. Front Neurol. 2017;8:250. https://doi.org/10.3389/fneur.2017.00250.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gupta S, Dhanda S, Sandhir R. Anatomy and physiology of blood-brain barrier. In: Gao H, Gao X, editors. Brain targeted drug delivery systems: a focus on nanotechnology and nanoparticulates. Academic Press Elsevier; 2019. p. 7–31. https://doi.org/10.1016/B978-0-12-814001-7.00002-0.

    Chapter  Google Scholar 

  34. Serlin Y, Shelef I, Knyazer B, Friedman A. Anatomy and physiology of the blood-brain barrier. Semin Cell Dev Biol. 2015;38:2–6. https://doi.org/10.1016/j.semcdb.2015.01.002.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Betz AL, Goldstein GW. Polarity of the blood-brain barrier: neutral amino acid transport into isolated brain capillaries. Science. 1978;202(4364):225–7. https://doi.org/10.1126/science.211586.

    Article  CAS  PubMed  Google Scholar 

  36. Daneman R, Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol. 2015;7(1):a020412. https://doi.org/10.1101/cshperspect.a020412.

    Article  PubMed  PubMed Central  Google Scholar 

  37. McCaffrey G, Davis TP. Physiology and pathophysiology of the blood brain barrier: P-glycoprotein and occludin trafficking as therapeutic targets to optimize central nervous system drug delivery. J Investig Med. 2012;60(8):1131–40. https://doi.org/10.2310/JIM.0b013e318276de79.

    Article  CAS  PubMed  Google Scholar 

  38. Brightman MW, Reese TS. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol. 1969;40(3):648–77. https://doi.org/10.1083/jcb.40.3.648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tuma PL, Hubbard AL. Transcytosis: crossing cellular barriers. Physiol Rev. 2003;83(3):871–932. https://doi.org/10.1152/physrev.00001.2003.

    Article  CAS  PubMed  Google Scholar 

  40. Chow BW, Gu C. The molecular constituents of the blood-brain barrier. Trends Neurosci. 2015;38(10):598–608. https://doi.org/10.1016/j.tins.2015.08.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Engelhardt B, Ransohoff RM. Capture, crawl, cross: the T cell code to breach the blood-brain barriers. Trends Immunol. 2012;33(12):579–89. https://doi.org/10.1016/j.it.2012.07.004.

    Article  CAS  PubMed  Google Scholar 

  42. Dubois LG, Campanati L, Righy C, et al. Gliomas and the vascular fragility of the blood brain barrier. Front Cell Neurosci. 2014;8:418. https://doi.org/10.3389/fncel.2014.00418.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kaur C, Ling EA. The circumventricular organs. Histol Histopathol. 2017;32(9):879–92. https://doi.org/10.14670/HH-11-881.

    Article  PubMed  Google Scholar 

  44. Vidu R, Rahman M, Mahmoudi M, et al. Nanostructures: a platform for brain repair and augmentation. Front Neurol. 2014;9:91. https://doi.org/10.3389/fnsys.2014.00091.

    Article  Google Scholar 

  45. Sakka L, Coll G, Chazal J. Anatomy and physiology of cerebrospinal fluid. Eur Ann Otorhinolaryngol Head Neck Dis. 2011;128(6):309–16. https://doi.org/10.1016/j.anorl.2011.03.002.

    Article  CAS  PubMed  Google Scholar 

  46. Whish S, Dziegielewska KM, Møllgård K, Noor NM, Liddelow SA, Habgood MD, et al. The inner csf brain barrier: developmentally controlled access to the brain via intercellular junctions. Front Neurosci. 2015;9:16. https://doi.org/10.3389/fnins.2015.00016.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Spector R, Robert Snodgrass S, Johanson CE. A balanced view of the cerebrospinal fluid composition and functions: focus on adult humans. Exp Neurol. 2015;273:57–68. https://doi.org/10.1016/j.expneurol.2015.07.027.

    Article  CAS  PubMed  Google Scholar 

  48. Dreha-Kulaczewski S, Joseph AA, Merboldt KD, Ludwig HC, Gärtner J, Frahm J. Inspiration is the major regulator of human CSF flow. J Neurosci. 2015;35(6):2485–91. https://doi.org/10.1523/JNEUROSCI.3246-14.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Khasawneh AH, Garling RJ, Harris CA. Cerebrospinal fluid circulation: what do we know and how do we know it? Brain Circ. 2018;4(1):14–8. https://doi.org/10.4103/bc.bc_3_18.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lundberg N. Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr Scand Suppl. 1960;36(149):1–193. https://doi.org/10.1111/j.1600-0447.1961.tb06112.x.

    Article  CAS  PubMed  Google Scholar 

  51. Nag DS, Sahu S, Swain A, et al. Intracranial pressure monitoring: gold standard and recent innovations. World J Clin Cases. 2019;7(13):1535–53. https://doi.org/10.12998/wjcc.v7.i13.1535.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Rodríguez-Boto G, Rivero-Garvía M, Gutiérrez-González R, Márquez-Rivas J. Conceptos básicos sobre lafisiopatología cerebral y la monitorización de la presión intracraneal. Neurologia. 2015;30(1):16–22. https://doi.org/10.1016/j.nrl.2012.09.002.

    Article  PubMed  Google Scholar 

  53. Carney N, Totten AM, O’Reilly C, Ullman JS, Hawryluk GW, Bell MJ, et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery. 2017;80(1):6–15. https://doi.org/10.1227/NEU.0000000000001432.

    Article  Google Scholar 

  54. Vik A, Nag T, Fredriksli OA, Skandsen T, Moen KG, Schirmer-Mikalsen K, et al. Relationship of “dose” of intracranial hypertension to outcome in severe traumatic brain injury. J Neurosurg. 2008;109(4):678–84. https://doi.org/10.3171/JNS/2008/109/10/0678.

    Article  PubMed  Google Scholar 

  55. Güiza F, Depreitere B, Piper I, Citerio G, Chambers I, Jones PA, et al. Visualizing the pressure and time burden of intracranial hypertension in adult and paediatric traumatic brain injury. Intensive Care Med. 2015;41(6):1067–76. https://doi.org/10.1007/s00134-015-3806-1.

    Article  PubMed  Google Scholar 

  56. Ravoel PH, Bartek J, Andresen M, Bellander BM, Romner B. Intracranial pressure monitoring: invasive versus non-invasive methods – a review. Crit Care Res Prac. 2012;2012:950393. https://doi.org/10.1155/2012/950393.

    Article  Google Scholar 

  57. Le Roux P. Intracranial pressure monitoring and management. In: Laskowitz D, Grant G, editors. Translational research in traumatic brain injury. Boca Raton, FL: CRC Press/Taylor and Francis Group; 2016. Chapter 15. Available from: https://www.ncbi.nlm.nih.gov/books/NBK326713/.

    Google Scholar 

  58. Kawoos U, McCarron RM, Auker CR, Chavko M. Advances in intracranial pressure monitoring and its significance in managing traumatic brain injury. Int J Mol Sci. 2015;16:28979–97.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pragasan Dean Gopalan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gopalan, P.D., de Castro, A. (2022). Central Nervous System Neurophysiology. In: Ganaw, A.E.A., Shaikh, N., Shallik, N.A., Marcus, M.A.E. (eds) Management of Subarachnoid Hemorrhage. Springer, Cham. https://doi.org/10.1007/978-3-030-81333-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81333-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81332-1

  • Online ISBN: 978-3-030-81333-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics