Skip to main content

Resistance to Immunotherapy: Mechanisms and Means for Overcoming

  • Chapter
  • First Online:
Immunotherapy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1342))

Abstract

Immune checkpoint blockade transformed cancer therapy during the last decade. However, durable responses remain uncommon, early and late relapses occur over the course of treatment, and many patients with PD-L1-expressing tumors do not respond to PD-(L)1 blockade. In addition, while some malignancies exhibit inherent resistance to treatment, others develop adaptations that allow them to evade antitumor immunity after a period of response. It is crucial to understand the pathophysiology of the tumor-immune system interplay and the mechanisms of immune escape in order to circumvent primary and acquired resistance. Here we provide an outline of the most well-defined mechanisms of resistance and shed light on ongoing efforts to reinvigorate immunoreactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

B2M:

beta-2 microglobulin

CAF:

cancer-associated fibroblast

CAR:

chimeric antigen receptor

CCR:

chemokine receptor

CR:

complete response

CRC:

colorectal carcinoma

CSF:

colony-stimulating factor

CSF1R:

colony-stimulating factor 1 receptor

CTL:

cytotoxic T lymphocyte

CTLA-4:

cytotoxic T-lymphocyte-associated protein 4

CXCL:

CXC chemokine ligand

CXCR:

CXC chemokine receptor

DC:

dendritic cell

EGFR:

epidermal growth factor receptor

FasL:

Fas ligand

FcγR:

Fcγ receptor

FDA:

US Food and Drug Administration

HIF-1:

hypoxia-inducible factor 1

ICAM:

intercellular adhesion molecule

ICB:

immune checkpoint blockade

ICI:

immune checkpoint inhibitor

IDO:

indoleamine 2,3-dioxygenase

IFN-γ:

interferon-gamma

iRECIST:

immune response evaluation criteria in solid tumors

iRs:

immune downregulating checkpoints

ITIM:

immunoreceptor tyrosine-based inhibitory motif

JAK:

Janus kinase

LAG-3:

lymphocyte-activation gene 3

LAIR-1:

leukocyte-associated immunoglobulin-like receptor 1

mAb:

monoclonal antibody

MAPK:

mitogen-activated protein kinase

MDSC:

myeloid-derived suppressor cell

MHC:

major histocompatibility complex

MICA-B:

MHC-I-related chain B

M-MDSC:

monocytic subtype of myeloid-derived suppressor cell

MMR:

mismatch repair

MPR:

major pathologic response

MSI-H:

microsatellite instability high

NK:

natural killer

NSCLC:

nonsmall cell lung cancer

OS:

overall survival

PBMC:

peripheral blood mononuclear cell

PD:

progressive disease

PD-1:

programmed cell death protein 1

PD-L1:

programmed death-ligand 1

PFS:

progression-free survival

PI3K:

phosphatidylinositol 3-kinase

PR:

partial response

PTEN:

phosphatase and tensin homolog

RCC:

renal cell carcinoma

RECIST:

response evaluation criteria in solid tumors

SD:

stable disease

STAT:

signal transducers and activators of transcription

STING:

stimulator of interferon genes

TAM:

tumor-associated macrophage

Teff:

effector T cell

TGF-β:

transforming growth factor beta

Th:

T-helper cell

TIGIT:

T-cell immunoreceptor with Ig and ITIM domains

TIL:

tumor-infiltrating lymphocyte

TIM-3:

T-cell immunoglobulin 3

TKI:

tyrosine kinase inhibitor

TLR:

toll-like receptor

TMB:

tumor mutational burden

TME:

tumor microenvironment

TNBC:

triple-negative breast cancer

TNF-α:

tumor necrosis factor alpha

Treg:

regulatory T cell

VCAM:

vascular cell adhesion molecule

VEGF:

vascular endothelial growth factor

References

  1. Hodi, F. S., O'Day, S. J., McDermott, D. F., Weber, R. W., Sosman, J. A., Haanen, J. B., et al. (2010). Improved survival with ipilimumab in patients with metastatic melanoma. The New England Journal of Medicine, 363(8), 711–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kluger, H. M., Tawbi, H. A., Ascierto, M. L., Bowden, M., Callahan, M. K., Cha, E., et al. (2020). Defining tumor resistance to PD-1 pathway blockade: Recommendations from the first meeting of the SITC immunotherapy resistance taskforce. Journal for Immunotherapy of Cancer, 8(1), e000398.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schoenfeld, J. D., Hanna, G. J., Jo, V. Y., Rawal, B., Chen, Y. H., Catalano, P. S., et al. (2020). Neoadjuvant Nivolumab or Nivolumab plus Ipilimumab in untreated Oral cavity squamous cell carcinoma: A phase 2 open-label randomized clinical trial. JAMA Oncology, 6(10), 1563–1570.

    Article  PubMed  Google Scholar 

  4. Ling, Y., Li, N., Li, L., Guo, C., Wei, J., Yuan, P., et al. (2020). Different pathologic responses to neoadjuvant anti-PD-1 in primary squamous lung cancer and regional lymph nodes. NPJ Precision Oncology, 4(1), 32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schwartz, L. H., Litiere, S., de Vries, E., Ford, R., Gwyther, S., Mandrekar, S., et al. (2016). RECIST 1.1-update and clarification: From the RECIST committee. European Journal of Cancer, 62, 132–137.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Seymour, L., Bogaerts, J., Perrone, A., Ford, R., Schwartz, L. H., Mandrekar, S., et al. (2017). iRECIST: Guidelines for response criteria for use in trials testing immunotherapeutics. The Lancet Oncology, 18(3), e143–ee52.

    Article  PubMed  PubMed Central  Google Scholar 

  7. O'Donnell, J. S., Teng, M. W. L., & Smyth, M. J. (2019). Cancer immunoediting and resistance to T cell-based immunotherapy. Nature Reviews. Clinical Oncology, 16(3), 151–167.

    Article  CAS  PubMed  Google Scholar 

  8. Mardis, E. R. (2019). Neoantigens and genome instability: Impact on immunogenomic phenotypes and immunotherapy response. Genome Medicine, 11(1), 71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Schumacher, T. N., & Schreiber, R. D. (2015). Neoantigens in cancer immunotherapy. Science, 348(6230), 69–74.

    Article  CAS  PubMed  Google Scholar 

  10. Marabelle, A., Le, D. T., Ascierto, P. A., Di Giacomo, A. M., De Jesus-Acosta, A., Delord, J. P., et al. (2020). Efficacy of Pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient Cancer: Results from the phase II KEYNOTE-158 study. Journal of Clinical Oncology, 38(1), 1–10.

    Article  CAS  PubMed  Google Scholar 

  11. Andre, T., Shiu, K. K., Kim, T. W., Jensen, B. V., Jensen, L. H., Punt, C., et al. (2020). Pembrolizumab in microsatellite-instability-high advanced colorectal Cancer. The New England Journal of Medicine, 383(23), 2207–2218.

    Article  CAS  PubMed  Google Scholar 

  12. McGranahan, N., Furness, A. J., Rosenthal, R., Ramskov, S., Lyngaa, R., Saini, S. K., et al. (2016). Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science, 351(6280), 1463–1469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rizvi, N. A., Hellmann, M. D., Snyder, A., Kvistborg, P., Makarov, V., Havel, J. J., et al. (2015). Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science, 348(6230), 124–128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Garcia-Aranda, M., & Redondo, M. (2019). Immunotherapy: A challenge of breast Cancer treatment. Cancers (Basel), 11(12), 1822.

    Article  CAS  Google Scholar 

  15. Wang, Z., Liu, W., Chen, C., Yang, X., Luo, Y., & Zhang, B. (2019). Low mutation and neoantigen burden and fewer effector tumor infiltrating lymphocytes correlate with breast cancer metastasization to lymph nodes. Scientific Reports, 9(1), 253.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Swoboda, A., & Nanda, R. (2018). Immune checkpoint blockade for breast Cancer. Cancer Treatment and Research, 173, 155–165.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zheng, L. (2018). Immune defects in pancreatic cancer. Annals of Pancreatic Cancer, 1, 33.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Knepper, T. C., Montesion, M., Russell, J. S., Sokol, E. S., Frampton, G. M., Miller, V. A., et al. (2019). The genomic landscape of Merkel cell carcinoma and Clinicogenomic biomarkers of response to immune checkpoint inhibitor therapy. Clinical Cancer Research, 25(19), 5961–5971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gao, P., Lazare, C., Cao, C., Meng, Y., Wu, P., Zhi, W., et al. (2019). Immune checkpoint inhibitors in the treatment of virus-associated cancers. Journal of Hematology & Oncology, 12(1), 58.

    Article  Google Scholar 

  20. McDermott, D. F., Huseni, M. A., Atkins, M. B., Motzer, R. J., Rini, B. I., Escudier, B., et al. (2018). Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nature Medicine, 24(6), 749–757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Anagnostou, V., Smith, K. N., Forde, P. M., Niknafs, N., Bhattacharya, R., White, J., et al. (2017). Evolution of Neoantigen landscape during immune checkpoint blockade in non-Small cell lung Cancer. Cancer Discovery, 7(3), 264–276.

    Article  CAS  PubMed  Google Scholar 

  22. Sotillo, E., Barrett, D. M., Black, K. L., Bagashev, A., Oldridge, D., Wu, G., et al. (2015). Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discovery, 5(12), 1282–1295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zaretsky, J. M., Garcia-Diaz, A., Shin, D. S., Escuin-Ordinas, H., Hugo, W., Hu-Lieskovan, S., et al. (2016). Mutations associated with acquired resistance to PD-1 blockade in melanoma. The New England Journal of Medicine, 375(9), 819–829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sucker, A., Zhao, F., Real, B., Heeke, C., Bielefeld, N., Mabetaen, S., et al. (2014). Genetic evolution of T-cell resistance in the course of melanoma progression. Clinical Cancer Research, 20(24), 6593–6604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sade-Feldman, M., Jiao, Y. J., Chen, J. H., Rooney, M. S., Barzily-Rokni, M., Eliane, J. P., et al. (2017). Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nature Communications, 8(1), 1136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Zhang, Y., & Pastan, I. (2008). High shed antigen levels within tumors: An additional barrier to immunoconjugate therapy. Clinical Cancer Research, 14(24), 7981–7986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rosenberg, J. E., Flaig, T. W., Friedlander, T. W., Milowsky, M. I., Srinivas, S., Petrylak, D. P., et al. (2020). Study EV-103: Preliminary durability results of enfortumab vedotin plus pembrolizumab for locally advanced or metastatic urothelial carcinoma. Journal of Clinical Oncology, 38(6_suppl), 441.

    Article  Google Scholar 

  28. Wucherpfennig, K. W. (2019). Immune-Tumor interactions in resistance to cancer immunotherapy. Blood, 134(Supplement_1), SCI-45-SCI.

    Article  Google Scholar 

  29. Torres, N., Regge, M. V., Secchiari, F., Friedrich, A. D., Spallanzani, R. G., Raffo Iraolagoitia, X. L., et al. (2020). Restoration of antitumor immunity through anti-MICA antibodies elicited with a chimeric protein. Journal for Immunotherapy of Cancer, 8(1).

    Google Scholar 

  30. Mittal, D., Gubin, M. M., Schreiber, R. D., & Smyth, M. J. (2014). New insights into cancer immunoediting and its three component phases--elimination, equilibrium and escape. Current Opinion in Immunology, 27, 16–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Riaz, N., Havel, J. J., Makarov, V., Desrichard, A., Urba, W. J., Sims, J. S., et al. (2017). Tumor and microenvironment evolution during immunotherapy with Nivolumab. Cell, 171(4), 934–949. e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nicos, M., Krawczyk, P., Crosetto, N., & Milanowski, J. (2020). The role of Intratumor heterogeneity in the response of metastatic non-Small cell lung Cancer to immune checkpoint inhibitors. Frontiers in Oncology, 10, 569202.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lee, W. C., Diao, L., Wang, J., Zhang, J., Roarty, E. B., Varghese, S., et al. (2018). Multiregion gene expression profiling reveals heterogeneity in molecular subtypes and immunotherapy response signatures in lung cancer. Modern Pathology, 31(6), 947–955.

    Article  CAS  PubMed  Google Scholar 

  34. Ilie, M., Long-Mira, E., Bence, C., Butori, C., Lassalle, S., Bouhlel, L., et al. (2016). Comparative study of the PD-L1 status between surgically resected specimens and matched biopsies of NSCLC patients reveal major discordances: A potential issue for anti-PD-L1 therapeutic strategies. Annals of Oncology, 27(1), 147–153.

    Article  CAS  PubMed  Google Scholar 

  35. McLaughlin, J., Han, G., Schalper, K. A., Carvajal-Hausdorf, D., Pelekanou, V., Rehman, J., et al. (2016). Quantitative assessment of the heterogeneity of PD-L1 expression in non-Small-cell lung Cancer. JAMA Oncology, 2(1), 46–54.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kerr, K. M., & Nicolson, M. C. (2016). Non-Small cell lung Cancer, PD-L1, and the pathologist. Archives of Pathology & Laboratory Medicine, 140(3), 249–254.

    Article  Google Scholar 

  37. Buckanovich, R. J., Facciabene, A., Kim, S., Benencia, F., Sasaroli, D., Balint, K., et al. (2008). Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nature Medicine, 14(1), 28–36.

    Article  CAS  PubMed  Google Scholar 

  38. Chen, P. L., Roh, W., Reuben, A., Cooper, Z. A., Spencer, C. N., Prieto, P. A., et al. (2016). Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discovery, 6(8), 827–837.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Rini, B. I., Plimack, E. R., Stus, V., Gafanov, R., Hawkins, R., Nosov, D., et al. (2019). Pembrolizumab plus Axitinib versus Sunitinib for advanced renal-cell carcinoma. The New England Journal of Medicine, 380(12), 1116–1127.

    Article  CAS  PubMed  Google Scholar 

  40. Motz, G. T., Santoro, S. P., Wang, L. P., Garrabrant, T., Lastra, R. R., Hagemann, I. S., et al. (2014). Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nature Medicine, 20(6), 607–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhu, Y., An, X., Zhang, X., Qiao, Y., Zheng, T., & Li, X. (2019). STING: A master regulator in the cancer-immunity cycle. Molecular Cancer, 18(1), 152.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dai, P., Wang, W., Yang, N., Serna-Tamayo, C., Ricca, J. M., Zamarin, D., et al. (2017). Intratumoral delivery of inactivated modified vaccinia virus Ankara (iMVA) induces systemic antitumor immunity via STING and Batf3-dependent dendritic cells. Science Immunology, 2(11), eaal1713.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Andtbacka, R. H. I., Collichio, F., Harrington, K. J., Middleton, M. R., Downey, G., Ohrling, K., et al. (2019). Final analyses of OPTiM: A randomized phase III trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in unresectable stage III-IV melanoma. Journal for Immunotherapy of Cancer, 7(1), 145.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Schwarze, J. K., Awada, G., Cras, L., Tijtgat, J., Forsyth, R., Dufait, I., et al. (2020). Intratumoral combinatorial administration of CD1c (BDCA-1)(+) myeloid dendritic cells plus Ipilimumab and Avelumab in combination with intravenous low-dose Nivolumab in patients with advanced solid tumors: A phase IB clinical trial. Vaccines (Basel), 8(4), 670.

    Article  CAS  Google Scholar 

  45. Karlsson-Parra, A., Kovacka, J., Heimann, E., Jorvid, M., Zeilemaker, S., Longhurst, S., et al. (2018). Ilixadencel - an allogeneic cell-based anticancer immune primer for Intratumoral administration. Pharmaceutical Research, 35(8), 156.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Lu, S., Fang, J., Li, X., Cao, L., Zhou, J., Guo, Q., et al. (2020). Phase II study of savolitinib in patients (pts) with pulmonary sarcomatoid carcinoma (PSC) and other types of non-small cell lung cancer (NSCLC) harboring MET exon 14 skipping mutations (METex14+). Journal of Clinical Oncology, 38(15_suppl), 9519.

    Article  Google Scholar 

  47. Newman, J. H., Chesson, C. B., Herzog, N. L., Bommareddy, P. K., Aspromonte, S. M., Pepe, R., et al. (2020). Intratumoral injection of the seasonal flu shot converts immunologically cold tumors to hot and serves as an immunotherapy for cancer. Proceedings of the National Academy of Sciences of the United States of America, 117(2), 1119–1128.

    Article  CAS  PubMed  Google Scholar 

  48. Wei, F., Zhong, S., Ma, Z., Kong, H., Medvec, A., Ahmed, R., et al. (2013). Strength of PD-1 signaling differentially affects T-cell effector functions. Proceedings of the National Academy of Sciences of the United States of America, 110(27), E2480–E2489.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Xia, A., Zhang, Y., Xu, J., Yin, T., & Lu, X. J. (2019). T cell dysfunction in Cancer immunity and immunotherapy. Frontiers in Immunology, 10, 1719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wherry, E. J., & Kurachi, M. (2015). Molecular and cellular insights into T cell exhaustion. Nature Reviews. Immunology, 15(8), 486–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pauken, K. E., Sammons, M. A., Odorizzi, P. M., Manne, S., Godec, J., Khan, O., et al. (2016). Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science, 354(6316), 1160–1165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Thommen, D. S., Schreiner, J., Muller, P., Herzig, P., Roller, A., Belousov, A., et al. (2015). Progression of lung Cancer is associated with increased dysfunction of T cells defined by Coexpression of multiple inhibitory receptors. Cancer Immunology Research, 3(12), 1344–1355.

    Article  CAS  PubMed  Google Scholar 

  53. Gao, Z. W., Dong, K., & Zhang, H. Z. (2014). The roles of CD73 in cancer. BioMed Research International, 2014, 460654.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Huang, R. Y., Francois, A., McGray, A. R., Miliotto, A., & Odunsi, K. (2017). Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer. Oncoimmunology, 6(1), e1249561.

    Article  PubMed  CAS  Google Scholar 

  55. Nakamura, S., Kuroki, K., Ohki, I., Sasaki, K., Kajikawa, M., Maruyama, T., et al. (2009). Molecular basis for E-cadherin recognition by killer cell lectin-like receptor G1 (KLRG1). The Journal of Biological Chemistry, 284(40), 27327–27335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Joller, N., & Kuchroo, V. K. (2017). Tim-3, Lag-3, and TIGIT. Current Topics in Microbiology and Immunology, 410, 127–156.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Sivori, S., Della Chiesa, M., Carlomagno, S., Quatrini, L., Munari, E., Vacca, P., et al. (2020). Inhibitory receptors and checkpoints in human NK cells, Implications for the Immunotherapy of Cancer. Frontiers in Immunology, 11, 2156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. De Sousa, L. A., Leitner, J., Grabmeier-Pfistershammer, K., & Steinberger, P. (2018). Not all immune checkpoints are created equal. Frontiers in Immunology, 9, 1909.

    Article  CAS  Google Scholar 

  59. Scherpereel, A., Mazieres, J., Greillier, L., Lantuejoul, S., Do, P., Bylicki, O., et al. (2019). Nivolumab or nivolumab plus ipilimumab in patients with relapsed malignant pleural mesothelioma (IFCT-1501 MAPS2): A multicentre, open-label, randomised, non-comparative, phase 2 trial. The Lancet Oncology, 20(2), 239–253.

    Article  CAS  PubMed  Google Scholar 

  60. Paz-Ares, L., Ciuleanu, T. E., Cobo, M., Schenker, M., Zurawski, B., Menezes, J., et al. (2021). First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): An international, randomised, open-label, phase 3 trial. The Lancet Oncology, 22(2), 198–211.

    Article  CAS  PubMed  Google Scholar 

  61. Lebbe, C., Meyer, N., Mortier, L., Marquez-Rodas, I., Robert, C., Rutkowski, P., et al. (2019). Evaluation of two dosing regimens for Nivolumab in combination with Ipilimumab in patients with advanced melanoma: Results from the phase IIIb/IV CheckMate 511 trial. Journal of Clinical Oncology, 37(11), 867–875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Niu, J., Nagrial, A., Voskoboynik, M., Chung, H. C., Lee, D. H., Ahn, M., et al. (2020). 1410P safety and efficacy of vibostolimab, an anti-TIGIT antibody, plus pembrolizumab in patients with anti-PD-1/PD-L1-naive NSCLC. Annals of Oncology, 31.

    Google Scholar 

  63. Ahn, M. J., Niu, J., Kim, D. W., Rasco, D., Mileham, K. F., Chung, H. C., et al. (2020). 1400P Vibostolimab, an anti-TIGIT antibody, as monotherapy and in combination with pembrolizumab in anti-PD-1/PD-L1-refractory NSCLC. Annals of Oncology, 31, S887.

    Article  Google Scholar 

  64. Segal, N. H., He, A. R., Doi, T., Levy, R., Bhatia, S., Pishvaian, M. J., et al. (2018). Phase I study of single-agent Utomilumab (PF-05082566), a 4-1BB/CD137 agonist, in patients with advanced Cancer. Clinical Cancer Research, 24(8), 1816–1823.

    Article  CAS  PubMed  Google Scholar 

  65. Tolcher, A. W., Sznol, M., Hu-Lieskovan, S., Papadopoulos, K. P., Patnaik, A., Rasco, D. W., et al. (2017). Phase Ib study of Utomilumab (PF-05082566), a 4-1BB/CD137 agonist, in combination with Pembrolizumab (MK-3475) in patients with advanced solid tumors. Clinical Cancer Research, 23(18), 5349–5357.

    Article  CAS  PubMed  Google Scholar 

  66. Cohen, E. E. W., Pishvaian, M. J., Shepard, D. R., Wang, D., Weiss, J., Johnson, M. L., et al. (2019). A phase Ib study of utomilumab (PF-05082566) in combination with mogamulizumab in patients with advanced solid tumors. Journal for Immunotherapy of Cancer, 7(1), 342.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Fares, C. M., Van Allen, E. M., Drake, C. G., Allison, J. P., & Hu-Lieskovan, S. (2019). Mechanisms of resistance to immune checkpoint blockade: Why does checkpoint inhibitor immunotherapy not work for all patients? American Society of Clinical Oncology Educational Book, 39, 147–164.

    Article  PubMed  Google Scholar 

  68. Medina, P. J., & Adams, V. R. (2016). PD-1 pathway inhibitors: Immuno-oncology agents for restoring antitumor immune responses. Pharmacotherapy, 36(3), 317–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Markham, A., & Duggan, S. (2018). Cemiplimab: First Global Approval. Drugs, 78(17), 1841–1846.

    Article  CAS  PubMed  Google Scholar 

  70. Seidel, J. A., Otsuka, A., & Kabashima, K. (2018). Anti-PD-1 and anti-CTLA-4 therapies in Cancer: Mechanisms of action, efficacy, and limitations. Frontiers in Oncology, 8, 86.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Acharya, N., Sabatos-Peyton, C., & Anderson, A. C. (2020). Tim-3 finds its place in the cancer immunotherapy landscape. Journal for Immunotherapy of Cancer, 8(1), e000911.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Menguy, T., Briaux, A., Jeunesse, E., Giustiniani, J., Calcei, A., Guyon, T., et al. (2018). Anti-CD160, alone or in combination with bevacizumab, is a potent inhibitor of ocular neovascularization in rabbit and monkey models. Investigative Ophthalmology & Visual Science, 59(7), 2687–2698.

    Article  CAS  Google Scholar 

  73. Kuang, Z., Jing, H., Wu, Z., Wang, J., Li, Y., Ni, H., et al. (2020). Development and characterization of a novel anti-OX40 antibody for potent immune activation. Cancer Immunology, Immunotherapy, 69(6), 939–950.

    Article  CAS  PubMed  Google Scholar 

  74. Piechutta, M., & Berghoff, A. S. (2019). New emerging targets in cancer immunotherapy: The role of cluster of differentiation 40 (CD40/TNFR5). ESMO Open, 4(Suppl 3), e000510.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Heinhuis, K. M., Carlino, M., Joerger, M., Di Nicola, M., Meniawy, T., Rottey, S., et al. (2019). Safety, tolerability, and potential clinical activity of a glucocorticoid-induced TNF receptor-related protein agonist alone or in combination with Nivolumab for patients with advanced solid tumors: A phase 1/2a dose-escalation and cohort-expansion clinical trial. JAMA Oncology, 1–8.

    Google Scholar 

  76. Shang, B., Liu, Y., Jiang, S. J., & Liu, Y. (2015). Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: A systematic review and meta-analysis. Scientific Reports, 5, 15179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Taylor, N. A., Vick, S. C., Iglesia, M. D., Brickey, W. J., Midkiff, B. R., McKinnon, K. P., et al. (2017). Treg depletion potentiates checkpoint inhibition in claudin-low breast cancer. The Journal of Clinical Investigation, 127(9), 3472–3483.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Simpson, T. R., Li, F., Montalvo-Ortiz, W., Sepulveda, M. A., Bergerhoff, K., Arce, F., et al. (2013). Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. The Journal of Experimental Medicine, 210(9), 1695–1710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Whiteside, T. L. (2018). FOXP3+ Treg as a therapeutic target for promoting anti-tumor immunity. Expert Opinion on Therapeutic Targets, 22(4), 353–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Weber, R., Fleming, V., Hu, X., Nagibin, V., Groth, C., Altevogt, P., et al. (2018). Myeloid-derived suppressor cells hinder the anti-Cancer activity of immune checkpoint inhibitors. Frontiers in Immunology, 9, 1310.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Kumar, V., Patel, S., Tcyganov, E., & Gabrilovich, D. I. (2016). The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends in Immunology, 37(3), 208–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liao, W., Overman, M. J., Boutin, A. T., Shang, X., Zhao, D., Dey, P., et al. (2019). KRAS-IRF2 Axis drives immune suppression and immune therapy resistance in colorectal Cancer. Cancer Cell, 35(4), 559–572. e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gonzalez-Aparicio, M., & Alfaro, C. (2020). Significance of the IL-8 pathway for immunotherapy. Human Vaccines & Immunotherapeutics, 16(10), 2312–2317.

    Article  CAS  Google Scholar 

  84. Hanson, E. M., Clements, V. K., Sinha, P., Ilkovitch, D., & Ostrand-Rosenberg, S. (2009). Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cells. Journal of Immunology, 183(2), 937–944.

    Article  CAS  Google Scholar 

  85. Jia, Y., Liu, L., & Shan, B. (2020). Future of immune checkpoint inhibitors: Focus on tumor immune microenvironment. Annals of Translational Medicine, 8(17), 1095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Meyer, C., Cagnon, L., Costa-Nunes, C. M., Baumgaertner, P., Montandon, N., Leyvraz, L., et al. (2014). Frequencies of circulating MDSC correlate with clinical outcome of melanoma patients treated with ipilimumab. Cancer Immunology, Immunotherapy, 63(3), 247–257.

    Article  CAS  PubMed  Google Scholar 

  87. Weide, B., Martens, A., Zelba, H., Stutz, C., Derhovanessian, E., Di Giacomo, A. M., et al. (2014). Myeloid-derived suppressor cells predict survival of patients with advanced melanoma: Comparison with regulatory T cells and NY-ESO-1- or melan-A-specific T cells. Clinical Cancer Research, 20(6), 1601–1609.

    Article  CAS  PubMed  Google Scholar 

  88. Dehne, N., Mora, J., Namgaladze, D., Weigert, A., & Brune, B. (2017). Cancer cell and macrophage cross-talk in the tumor microenvironment. Current Opinion in Pharmacology, 35, 12–19.

    Article  CAS  PubMed  Google Scholar 

  89. Kluger, H. M., Tawbi, H. A., Ascierto, M. L., Bowden, M., Callahan, M. K., Cha, E., et al. (2020). Defining tumor resistance to PD-1 pathway blockade: recommendations from the first meeting of the SITC Immunotherapy Resistance Taskforce. Journal for Immunotherapy of Cancer, 8(1).

    Google Scholar 

  90. DeNardo, D. G., & Ruffell, B. (2019). Macrophages as regulators of tumour immunity and immunotherapy. Nature Reviews Immunology, 19(6), 369–382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Doedens, A. L., Stockmann, C., Rubinstein, M. P., Liao, D., Zhang, N., DeNardo, D. G., et al. (2010). Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Research, 70(19), 7465–7475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Arlauckas, S. P., Garris, C. S., Kohler, R. H., Kitaoka, M., Cuccarese, M. F., Yang, K. S., et al. (2017). In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy. Science Translational Medicine, 9(389), eaal3604.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Neubert, N. J., Schmittnaegel, M., Bordry, N., Nassiri, S., Wald, N., Martignier, C., et al. (2018). T cell-induced CSF1 promotes melanoma resistance to PD1 blockade. Science Translational Medicine, 10(436).

    Google Scholar 

  94. Zhu, Y., Knolhoff, B. L., Meyer, M. A., Nywening, T. M., West, B. L., Luo, J., et al. (2014). CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Research, 74(18), 5057–5069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Che, F., Heng, X., Zhang, H., Su, Q., Zhang, B., Chen, Y., et al. (2017). Novel B7-H4-mediated crosstalk between human non-Hodgkin lymphoma cells and tumor-associated macrophages leads to immune evasion via secretion of IL-6 and IL-10. Cancer Immunology, Immunotherapy, 66(6), 717–729.

    Article  CAS  PubMed  Google Scholar 

  96. De Henau, O., Rausch, M., Winkler, D., Campesato, L. F., Liu, C., Cymerman, D. H., et al. (2016). Overcoming resistance to checkpoint blockade therapy by targeting PI3Kgamma in myeloid cells. Nature, 539(7629), 443–447.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Fisher, J. P., Yan, M., Heuijerjans, J., Carter, L., Abolhassani, A., Frosch, J., et al. (2014). Neuroblastoma killing properties of Vdelta2 and Vdelta2-negative gammadeltaT cells following expansion by artificial antigen-presenting cells. Clinical Cancer Research, 20(22), 5720–5732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Raverdeau, M., Cunningham, S. P., Harmon, C., & Lynch, L. (2019). Gammadelta T cells in cancer: a small population of lymphocytes with big implications. Clinical & Translational Immunology, 8(10), e01080.

    Article  Google Scholar 

  99. Mao, Y., Yin, S., Zhang, J., Hu, Y., Huang, B., Cui, L., et al. (2016). A new effect of IL-4 on human gammadelta T cells: Promoting regulatory Vdelta1 T cells via IL-10 production and inhibiting function of Vdelta2 T cells. Cellular & Molecular Immunology, 13(2), 217–228.

    Article  CAS  Google Scholar 

  100. Wu, P., Wu, D., Ni, C., Ye, J., Chen, W., Hu, G., et al. (2014). gammadeltaT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity, 40(5), 785–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Daley, D., Zambirinis, C. P., Seifert, L., Akkad, N., Mohan, N., Werba, G., et al. (2016). Gammadelta T cells support pancreatic oncogenesis by restraining alphabeta T cell activation. Cell, 166(6), 1485–1499. e15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Li, Y., Li, G., Zhang, J., Wu, X., & Chen, X. (2020). The dual roles of human gammadelta T cells: Anti-tumor or tumor-promoting. Frontiers in Immunology, 11, 619954.

    Article  CAS  PubMed  Google Scholar 

  103. Ma, S., Li, X., Wang, X., Cheng, L., Li, Z., Zhang, C., et al. (2019). Current Progress in CAR-T cell therapy for solid tumors. International Journal of Biological Sciences, 15(12), 2548–2560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Capsomidis, A., Benthall, G., Van Acker, H. H., Fisher, J., Kramer, A. M., Abeln, Z., et al. (2018). Chimeric antigen receptor-engineered human Gamma Delta T cells: Enhanced cytotoxicity with retention of cross presentation. Molecular Therapy, 26(2), 354–365.

    Article  CAS  PubMed  Google Scholar 

  105. Freeman, P., & Mielgo, A. (2020). Cancer-associated fibroblast mediated inhibition of CD8+ cytotoxic T cell accumulation in Tumours: Mechanisms and therapeutic opportunities. Cancers (Basel), 12(9), 2687.

    Article  CAS  Google Scholar 

  106. Bertero, T., Oldham, W. M., Grasset, E. M., Bourget, I., Boulter, E., Pisano, S., et al. (2019). Tumor-stroma mechanics coordinate amino acid availability to sustain tumor growth and malignancy. Cell Metabolism, 29(1), 124–140. e10.

    Article  CAS  PubMed  Google Scholar 

  107. Sahai, E., Astsaturov, I., Cukierman, E., DeNardo, D. G., Egeblad, M., Evans, R. M., et al. (2020). A framework for advancing our understanding of cancer-associated fibroblasts. Nature Reviews. Cancer, 20(3), 174–186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chen, D. S., & Mellman, I. (2013). Oncology meets immunology: The cancer-immunity cycle. Immunity, 39(1), 1–10.

    Article  PubMed  CAS  Google Scholar 

  109. Karagiannis, G. S., Poutahidis, T., Erdman, S. E., Kirsch, R., Riddell, R. H., & Diamandis, E. P. (2012). Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue. Molecular Cancer Research, 10(11), 1403–1418.

    Article  CAS  PubMed  Google Scholar 

  110. Kumar, V., Donthireddy, L., Marvel, D., Condamine, T., Wang, F., Lavilla-Alonso, S., et al. (2017). Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors. Cancer Cell, 32(5), 654–668. e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Falcone, I., Conciatori, F., Bazzichetto, C., Ferretti, G., Cognetti, F., Ciuffreda, L., et al. (2020). Tumor microenvironment: Implications in melanoma resistance to targeted therapy and immunotherapy. Cancers (Basel), 12(10), 2870.

    Article  CAS  Google Scholar 

  112. Cohen, N., Shani, O., Raz, Y., Sharon, Y., Hoffman, D., Abramovitz, L., et al. (2017). Fibroblasts drive an immunosuppressive and growth-promoting microenvironment in breast cancer via secretion of Chitinase 3-like 1. Oncogene, 36(31), 4457–4468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chakravarthy, A., Khan, L., Bensler, N. P., Bose, P., & De Carvalho, D. D. (2018). TGF-beta-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure. Nature Communications, 9(1), 4692.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Lan, Y., Zhang, D., Xu, C., Hance, K. W., Marelli, B., Qi, J., et al. (2018). Enhanced preclinical antitumor activity of M7824, a bifunctional fusion protein simultaneously targeting PD-L1 and TGF-beta. Science Translational Medicine, 10(424), eaan5488.

    Article  PubMed  CAS  Google Scholar 

  115. Yu, L., Liu, Q., Huo, J., Wei, F., & Guo, W. (2020). Cancer-associated fibroblasts induce immunotherapy resistance in hepatocellular carcinoma animal model. Cellular and Molecular Biology (Noisy-le-Grand, France), 66(2), 36–40.

    Article  Google Scholar 

  116. Zagorulya, M., Duong, E., & Spranger, S. (2020). Impact of anatomic site on antigen-presenting cells in cancer. Journal for Immunotherapy of Cancer, 8(2), e001204.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Broz, M. L., Binnewies, M., Boldajipour, B., Nelson, A. E., Pollack, J. L., Erle, D. J., et al. (2014). Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell, 26(5), 638–652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Spranger, S., Dai, D., Horton, B., & Gajewski, T. F. (2017). Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell, 31(5), 711–723. e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Peng, Q., Qiu, X., Zhang, Z., Zhang, S., Zhang, Y., Liang, Y., et al. (2020). PD-L1 on dendritic cells attenuates T cell activation and regulates response to immune checkpoint blockade. Nature Communications, 11(1), 4835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. DeVito, N. C., Plebanek, M. P., Theivanthiran, B., & Hanks, B. A. (2019). Role of tumor-mediated dendritic cell Tolerization in immune evasion. Frontiers in Immunology, 10, 2876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kantoff, P. W., Higano, C. S., Shore, N. D., Berger, E. R., Small, E. J., Penson, D. F., et al. (2010). Sipuleucel-T immunotherapy for castration-resistant prostate cancer. The New England Journal of Medicine, 363(5), 411–422.

    Article  CAS  PubMed  Google Scholar 

  122. Ku, J., Wilenius, K., Larsen, C., Guzman, K. D., Yoshinaga, S., Turner, J. S., et al. (2018). Survival after sipuleucel-T (SIP-T) and low-dose ipilimumab (IPI) in men with metastatic, progressive, castrate-resistant prostate cancer (M-CRPC). Journal of Clinical Oncology, 36(6_suppl), 368.

    Article  Google Scholar 

  123. Dorff, T. B., Acoba, J., Pal, S., Scholz, M., Tamura, D., Huang, J., et al. (2020). Assessing different sequencing regimens of atezolizumab (atezo) and sipuleucel-T (sipT) in patients who have asymptomatic or minimally symptomatic metastatic castrate-resistant prostate cancer. Journal of Clinical Oncology, 38, 141. (abstr).

    Article  Google Scholar 

  124. Rajput, M. K. S., Kesharwani, S. S., Kumar, S., Muley, P., Narisetty, S., & Tummala, H. (2018). Dendritic cell-targeted Nanovaccine delivery system prepared with an immune-active polymer. ACS Applied Materials & Interfaces, 10(33), 27589–27602.

    Article  CAS  Google Scholar 

  125. Tel, J., Aarntzen, E. H., Baba, T., Schreibelt, G., Schulte, B. M., Benitez-Ribas, D., et al. (2013). Natural human plasmacytoid dendritic cells induce antigen-specific T-cell responses in melanoma patients. Cancer Research, 73(3), 1063–1075.

    Article  CAS  PubMed  Google Scholar 

  126. Schreibelt, G., Bol, K. F., Westdorp, H., Wimmers, F., Aarntzen, E. H., Duiveman-de Boer, T., et al. (2016). Effective clinical responses in metastatic melanoma patients after vaccination with primary myeloid dendritic cells. Clinical Cancer Research, 22(9), 2155–2166.

    Article  CAS  PubMed  Google Scholar 

  127. Urban-Wojciuk, Z., Khan, M. M., Oyler, B. L., Fahraeus, R., Marek-Trzonkowska, N., Nita-Lazar, A., et al. (2019). The role of TLRs in anti-cancer immunity and tumor rejection. Frontiers in Immunology, 10, 2388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Pradere, J. P., Dapito, D. H., & Schwabe, R. F. (2014). The Yin and Yang of toll-like receptors in cancer. Oncogene, 33(27), 3485–3495.

    Article  CAS  PubMed  Google Scholar 

  129. Pavlick, A., Blazquez, A. B., Meseck, M., Lattanzi, M., Ott, P. A., Marron, T. U., et al. (2020). Combined vaccination with NY-ESO-1 protein, poly-ICLC, and Montanide improves humoral and cellular immune responses in patients with high-risk melanoma. Cancer Immunology Research, 8(1), 70–80.

    Article  CAS  PubMed  Google Scholar 

  130. Diab, A., Haymaker, C., Bernatchez, C., Andtbacka, R., Shaheen, M., Johnson, D., et al. (2018). 1245PDIntratumoral (IT) injection of the TLR9 agonist tilsotolimod (IMO-2125) in combination with ipilimumab (ipi) triggers durable responses in PD-1 inhibitor refractory metastatic melanoma (rMM): Results from a multicenter, phase I/II study. Annals of Oncology, 29.

    Google Scholar 

  131. Milhem M, Gonzales R, Medina T, Kirkwood JM, Buchbinder E, Mehmi I, et al. Abstract CT144: Intratumoral toll-like receptor 9 (TLR9) agonist, CMP-001, in combination with pembrolizumab can reverse resistance to PD-1 inhibition in a phase Ib trial in subjects with advanced melanoma. Cancer Research. 2018;78(13 Supplement):CT144-CT.

    Google Scholar 

  132. Ciciola, P., Cascetta, P., Bianco, C., Formisano, L., & Bianco, R. (2020). Combining immune checkpoint inhibitors with anti-Angiogenic agents. Journal of Clinical Medicine, 9(3), 675.

    Article  CAS  PubMed Central  Google Scholar 

  133. Georganaki, M., van Hooren, L., & Dimberg, A. (2018). Vascular targeting to increase the efficiency of immune checkpoint blockade in Cancer. Frontiers in Immunology, 9, 3081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Alfaro, C., Suarez, N., Gonzalez, A., Solano, S., Erro, L., Dubrot, J., et al. (2009). Influence of bevacizumab, sunitinib and sorafenib as single agents or in combination on the inhibitory effects of VEGF on human dendritic cell differentiation from monocytes. British Journal of Cancer, 100(7), 1111–1119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gabrilovich, D. I., Chen, H. L., Girgis, K. R., Cunningham, H. T., Meny, G. M., Nadaf, S., et al. (1996). Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nature Medicine, 2(10), 1096–1103.

    Article  CAS  PubMed  Google Scholar 

  136. Curiel, T. J., Wei, S., Dong, H., Alvarez, X., Cheng, P., Mottram, P., et al. (2003). Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nature Medicine, 9(5), 562–567.

    Article  CAS  PubMed  Google Scholar 

  137. Wada, J., Suzuki, H., Fuchino, R., Yamasaki, A., Nagai, S., Yanai, K., et al. (2009). The contribution of vascular endothelial growth factor to the induction of regulatory T-cells in malignant effusions. Anticancer Research, 29(3), 881–888.

    CAS  PubMed  Google Scholar 

  138. Muller, W. A. (2011). Mechanisms of leukocyte transendothelial migration. Annual Review of Pathology, 6, 323–344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Allen, E., Jabouille, A., Rivera, L. B., Lodewijckx, I., Missiaen, R., Steri, V., et al. (2017). Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Science Translational Medicine, 9(385), eaak9679.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Hack, S. P., Zhu, A. X., & Wang, Y. (2020). Augmenting anticancer immunity through combined targeting of Angiogenic and PD-1/PD-L1 pathways: Challenges and opportunities. Frontiers in Immunology, 11, 598877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ribeiro, A. L., & Okamoto, O. K. (2015). Combined effects of pericytes in the tumor microenvironment. Stem Cells International, 2015, 868475.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Pieper, C., Marek, J. J., Unterberg, M., Schwerdtle, T., & Galla, H. J. (2014). Brain capillary pericytes contribute to the immune defense in response to cytokines or LPS in vitro. Brain Research, 1550, 1–8.

    Article  CAS  PubMed  Google Scholar 

  143. Winkler, E. A., Bell, R. D., & Zlokovic, B. V. (2011). Central nervous system pericytes in health and disease. Nature Neuroscience, 14(11), 1398–1405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hamzah, J., Jugold, M., Kiessling, F., Rigby, P., Manzur, M., Marti, H. H., et al. (2008). Vascular normalization in Rgs5-deficient tumours promotes immune destruction. Nature, 453(7193), 410–414.

    Article  CAS  PubMed  Google Scholar 

  145. Bose, A., Barik, S., Banerjee, S., Ghosh, T., Mallick, A., Bhattacharyya Majumdar, S., et al. (2013). Tumor-derived vascular pericytes anergize Th cells. Journal of Immunology, 191(2), 971–981.

    Article  CAS  Google Scholar 

  146. Nagarsheth, N., Wicha, M. S., & Zou, W. (2017). Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nature Reviews. Immunology, 17(9), 559–572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Berraondo, P., Sanmamed, M. F., Ochoa, M. C., Etxeberria, I., Aznar, M. A., Perez-Gracia, J. L., et al. (2019). Cytokines in clinical cancer immunotherapy. British Journal of Cancer, 120(1), 6–15.

    Article  CAS  PubMed  Google Scholar 

  148. Zou, W., Wolchok, J. D., & Chen, L. (2016). PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Science Translational Medicine, 8(328), 328rv4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Pages, F., Berger, A., Camus, M., Sanchez-Cabo, F., Costes, A., Molidor, R., et al. (2005). Effector memory T cells, early metastasis, and survival in colorectal cancer. The New England Journal of Medicine, 353(25), 2654–2666.

    Article  CAS  PubMed  Google Scholar 

  150. Nagarsheth, N., Peng, D., Kryczek, I., Wu, K., Li, W., Zhao, E., et al. (2016). PRC2 epigenetically silences Th1-type chemokines to suppress effector T-cell trafficking in Colon Cancer. Cancer Research, 76(2), 275–282.

    Article  CAS  PubMed  Google Scholar 

  151. Peng, D., Kryczek, I., Nagarsheth, N., Zhao, L., Wei, S., Wang, W., et al. (2015). Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature, 527(7577), 249–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Lindblad, K. E., Thompson, J., Gui, G., Valdez, J., Worthy, T., Tekleab, H., et al. (2018). Pembrolizumab and Decitabine for Refractory or Relapsed Acute Myeloid Leukemia. Blood, 132(Supplement 1), 1437.

    Article  Google Scholar 

  153. Yan, M., Jene, N., Byrne, D., Millar, E. K., O'Toole, S. A., McNeil, C. M., et al. (2011). Recruitment of regulatory T cells is correlated with hypoxia-induced CXCR4 expression, and is associated with poor prognosis in basal-like breast cancers. Breast Cancer Research, 13(2), R47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Righi, E., Kashiwagi, S., Yuan, J., Santosuosso, M., Leblanc, P., Ingraham, R., et al. (2011). CXCL12/CXCR4 blockade induces multimodal antitumor effects that prolong survival in an immunocompetent mouse model of ovarian cancer. Cancer Research, 71(16), 5522–5534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Lee, H. J., Kim, S. W., Kim, H. Y., Li, S., Yun, H. J., Song, K. S., et al. (2009). Chemokine receptor CXCR4 expression, function, and clinical implications in gastric cancer. International Journal of Oncology, 34(2), 473–480.

    CAS  PubMed  Google Scholar 

  156. Gil, M., Komorowski, M. P., Seshadri, M., Rokita, H., McGray, A. J., Opyrchal, M., et al. (2014). CXCL12/CXCR4 blockade by oncolytic virotherapy inhibits ovarian cancer growth by decreasing immunosuppression and targeting cancer-initiating cells. Journal of Immunology, 193(10), 5327–5337.

    Article  CAS  Google Scholar 

  157. Zeng, Y., Li, B., Liang, Y., Reeves, P. M., Qu, X., Ran, C., et al. (2019). Dual blockade of CXCL12-CXCR4 and PD-1-PD-L1 pathways prolongs survival of ovarian tumor-bearing mice by prevention of immunosuppression in the tumor microenvironment. The FASEB Journal, 33(5), 6596–6608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Fridlender, Z. G., Buchlis, G., Kapoor, V., Cheng, G., Sun, J., Singhal, S., et al. (2010). CCL2 blockade augments cancer immunotherapy. Cancer Research, 70(1), 109–118.

    Article  CAS  PubMed  Google Scholar 

  159. Bonapace, L., Coissieux, M. M., Wyckoff, J., Mertz, K. D., Varga, Z., Junt, T., et al. (2014). Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature, 515(7525), 130–133.

    Article  CAS  PubMed  Google Scholar 

  160. Long, H., Xie, R., Xiang, T., Zhao, Z., Lin, S., Liang, Z., et al. (2012). Autocrine CCL5 signaling promotes invasion and migration of CD133+ ovarian cancer stem-like cells via NF-kappaB-mediated MMP-9 upregulation. Stem Cells, 30(10), 2309–2319.

    Article  CAS  PubMed  Google Scholar 

  161. Kang, S., Xie, J., Ma, S., Liao, W., Zhang, J., & Luo, R. (2010). Targeted knock down of CCL22 and CCL17 by siRNA during DC differentiation and maturation affects the recruitment of T subsets. Immunobiology, 215(2), 153–162.

    Article  CAS  PubMed  Google Scholar 

  162. Kumai, T., Nagato, T., Kobayashi, H., Komabayashi, Y., Ueda, S., Kishibe, K., et al. (2015). CCL17 and CCL22/CCR4 signaling is a strong candidate for novel targeted therapy against nasal natural killer/T-cell lymphoma. Cancer Immunology, Immunotherapy, 64(6), 697–705.

    Article  CAS  PubMed  Google Scholar 

  163. Yoshie, O., & Matsushima, K. (2015). CCR4 and its ligands: From bench to bedside. International Immunology, 27(1), 11–20.

    Article  CAS  PubMed  Google Scholar 

  164. Sugiyama, D., Nishikawa, H., Maeda, Y., Nishioka, M., Tanemura, A., Katayama, I., et al. (2013). Anti-CCR4 mAb selectively depletes effector-type FoxP3+CD4+ regulatory T cells, evoking antitumor immune responses in humans. Proceedings of the National Academy of Sciences of the United States of America, 110(44), 17945–17950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Marshall, L. A., Marubayashi, S., Jorapur, A., Jacobson, S., Zibinsky, M., Robles, O., et al. (2020). Tumors establish resistance to immunotherapy by regulating Treg recruitment via CCR4. Journal for Immunotherapy of Cancer, 8(2).

    Google Scholar 

  166. Highfill, S. L., Cui, Y., Giles, A. J., Smith, J. P., Zhang, H., Morse, E., et al. (2014). Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy. Science Translational Medicine, 6(237), 237ra67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Dominguez, C., McCampbell, K. K., David, J. M., & Palena, C. (2017). Neutralization of IL-8 decreases tumor PMN-MDSCs and reduces mesenchymalization of claudin-low triple-negative breast cancer. JCI Insight., 2(21), e94296.

    Article  PubMed Central  Google Scholar 

  168. Sanmamed, M. F., Perez-Gracia, J. L., Schalper, K. A., Fusco, J. P., Gonzalez, A., Rodriguez-Ruiz, M. E., et al. (2017). Changes in serum interleukin-8 (IL-8) levels reflect and predict response to anti-PD-1 treatment in melanoma and non-small-cell lung cancer patients. Annals of Oncology, 28(8), 1988–1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Bilusic, M., Heery, C. R., Collins, J. M., Donahue, R. N., Palena, C., Madan, R. A., et al. (2019). Phase I trial of HuMax-IL8 (BMS-986253), an anti-IL-8 monoclonal antibody, in patients with metastatic or unresectable solid tumors. Journal for Immunotherapy of Cancer, 7(1), 240.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Tauriello, D. V. F., Palomo-Ponce, S., Stork, D., Berenguer-Llergo, A., Badia-Ramentol, J., Iglesias, M., et al. (2018). TGFbeta drives immune evasion in genetically reconstituted colon cancer metastasis. Nature, 554(7693), 538–543.

    Article  CAS  PubMed  Google Scholar 

  171. Mariathasan, S., Turley, S. J., Nickles, D., Castiglioni, A., Yuen, K., Wang, Y., et al. (2018). TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature, 554(7693), 544–548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Feun, L. G., Li, Y. Y., Wu, C., Wangpaichitr, M., Jones, P. D., Richman, S. P., et al. (2019). Phase 2 study of pembrolizumab and circulating biomarkers to predict anticancer response in advanced, unresectable hepatocellular carcinoma. Cancer, 125(20), 3603–3614.

    Article  CAS  PubMed  Google Scholar 

  173. Gachpazan, M., Kashani, H., Hassanian, S. M., Khazaei, M., Khorrami, S., Ferns, G. A., et al. (2019). Therapeutic potential of targeting transforming growth factor-beta in colorectal Cancer: Rational and progress. Current Pharmaceutical Design, 25(38), 4085–4089.

    Article  CAS  PubMed  Google Scholar 

  174. Santini, V., Valcarcel, D., Platzbecker, U., Komrokji, R. S., Cleverly, A. L., Lahn, M. M., et al. (2019). Phase II study of the ALK5 inhibitor Galunisertib in very low-, low-, and intermediate-risk myelodysplastic syndromes. Clinical Cancer Research, 25(23), 6976–6985.

    Article  CAS  PubMed  Google Scholar 

  175. Wick, A., Desjardins, A., Suarez, C., Forsyth, P., Gueorguieva, I., Burkholder, T., et al. (2020). Phase 1b/2a study of galunisertib, a small molecule inhibitor of transforming growth factor-beta receptor I, in combination with standard temozolomide-based radiochemotherapy in patients with newly diagnosed malignant glioma. Investigational New Drugs, 38(5), 1570–1579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Grenga, I., Donahue, R. N., Gargulak, M. L., Lepone, L. M., Roselli, M., Bilusic, M., et al. (2018). Anti-PD-L1/TGFbetaR2 (M7824) fusion protein induces immunogenic modulation of human urothelial carcinoma cell lines, rendering them more susceptible to immune-mediated recognition and lysis. Urologic Oncology, 36(3), 93 e1- e11.

    Article  CAS  Google Scholar 

  177. Burvenich, I. J. G., Goh, Y. W., Guo, N., Gan, H. K., Rigopoulos, A., Cao, D., et al. (2021). Radiolabelling and preclinical characterization of (89)Zr-Df-radiolabelled bispecific anti-PD-L1/TGF-betaRII fusion protein bintrafusp alfa. European Journal of Nuclear Medicine and Molecular Imaging.

    Google Scholar 

  178. Strauss, J., Heery, C. R., Schlom, J., Madan, R. A., Cao, L., Kang, Z., et al. (2018). Phase I trial of M7824 (MSB0011359C), a bifunctional fusion protein targeting PD-L1 and TGFbeta, in advanced solid tumors. Clinical Cancer Research, 24(6), 1287–1295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Paz-Ares, L., Kim, T. M., Vicente, D., Felip, E., Lee, D. H., Lee, K. H., et al. (2020). Bintrafusp alfa, a bifunctional fusion protein targeting TGF-beta and PD-L1, in second-line treatment of patients with NSCLC: Results from an expansion cohort of a phase 1 trial. Journal of Thoracic Oncology, 15(7), 1210–1222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Strauss, J., Gatti-Mays, M. E., Cho, B. C., Hill, A., Salas, S., McClay, E., et al. (2020). Bintrafusp alfa, a bifunctional fusion protein targeting TGF-beta and PD-L1, in patients with human papillomavirus-associated malignancies. Journal for Immunotherapy of Cancer, 8(2), e001395.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Cho, B. C., Daste, A., Ravaud, A., Salas, S., Isambert, N., McClay, E., et al. (2020). Bintrafusp alfa, a bifunctional fusion protein targeting TGF-beta and PD-L1, in advanced squamous cell carcinoma of the head and neck: Results from a phase I cohort. Journal for Immunotherapy of Cancer, 8(2), e000664.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Sato, T., Terai, M., Tamura, Y., Alexeev, V., Mastrangelo, M. J., & Selvan, S. R. (2011). Interleukin 10 in the tumor microenvironment: A target for anticancer immunotherapy. Immunologic Research, 51(2–3), 170–182.

    Article  CAS  PubMed  Google Scholar 

  183. Saraiva, M., & O'Garra, A. (2010). The regulation of IL-10 production by immune cells. Nature Reviews. Immunology, 10(3), 170–181.

    Article  CAS  PubMed  Google Scholar 

  184. Llopiz, D., Ruiz, M., Silva, L., & Sarobe, P. (2018). Enhancement of antitumor vaccination by targeting dendritic cell-related IL-10. Frontiers in Immunology, 9, 1923.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Zhao, S., Wu, D., Wu, P., Wang, Z., & Huang, J. (2015). Serum IL-10 predicts worse outcome in Cancer patients: A meta-analysis. PLoS One, 10(10), e0139598.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Rivas, J. R., Liu, Y., Alhakeem, S. S., Eckenrode, J. M., Marti, F., Collard, J. P., et al. (2021). Interleukin-10 suppression enhances T-cell antitumor immunity and responses to checkpoint blockade in chronic lymphocytic leukemia. bioRxiv, 2020.07.15.204560.

    Google Scholar 

  187. Garcia-Diaz, A., Shin, D. S., Moreno, B. H., Saco, J., Escuin-Ordinas, H., Rodriguez, G. A., et al. (2017). Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Reports, 19(6), 1189–1201.

    Article  CAS  PubMed  Google Scholar 

  188. Mocellin, S., Pasquali, S., Rossi, C. R., & Nitti, D. (2010). Interferon alpha adjuvant therapy in patients with high-risk melanoma: A systematic review and meta-analysis. Journal of the National Cancer Institute, 102(7), 493–501.

    Article  CAS  PubMed  Google Scholar 

  189. Terawaki, S., Chikuma, S., Shibayama, S., Hayashi, T., Yoshida, T., Okazaki, T., et al. (2011). IFN-alpha directly promotes programmed cell death-1 transcription and limits the duration of T cell-mediated immunity. Journal of Immunology, 186(5), 2772–2779.

    Article  CAS  Google Scholar 

  190. Knupfer, H., & Preiss, R. (2010). Serum interleukin-6 levels in colorectal cancer patients--a summary of published results. International Journal of Colorectal Disease, 25(2), 135–140.

    Article  PubMed  Google Scholar 

  191. Johnson, D. E., O'Keefe, R. A., & Grandis, J. R. (2018). Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nature Reviews. Clinical Oncology, 15(4), 234–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Zhang, N., Zeng, Y., Du, W., Zhu, J., Shen, D., Liu, Z., et al. (2016). The EGFR pathway is involved in the regulation of PD-L1 expression via the IL-6/JAK/STAT3 signaling pathway in EGFR-mutated non-small cell lung cancer. International Journal of Oncology, 49(4), 1360–1368.

    Article  CAS  PubMed  Google Scholar 

  193. Zerdes, I., Wallerius, M., Sifakis, E. G., Wallmann, T., Betts, S., Bartish, M., et al. (2019). STAT3 activity promotes programmed-death ligand 1 expression and suppresses immune responses in breast Cancer. Cancers (Basel), 11(10), 1479.

    Article  CAS  Google Scholar 

  194. Angevin, E., Tabernero, J., Elez, E., Cohen, S. J., Bahleda, R., van Laethem, J. L., et al. (2014). A phase I/II, multiple-dose, dose-escalation study of siltuximab, an anti-interleukin-6 monoclonal antibody, in patients with advanced solid tumors. Clinical Cancer Research, 20(8), 2192–2204.

    Article  CAS  PubMed  Google Scholar 

  195. Fizazi, K., De Bono, J. S., Flechon, A., Heidenreich, A., Voog, E., Davis, N. B., et al. (2012). Randomised phase II study of siltuximab (CNTO 328), an anti-IL-6 monoclonal antibody, in combination with mitoxantrone/prednisone versus mitoxantrone/prednisone alone in metastatic castration-resistant prostate cancer. European Journal of Cancer, 48(1), 85–93.

    Article  CAS  PubMed  Google Scholar 

  196. Dorff TB, Goldman B, Pinski JK, Mack PC, Lara PN, Jr., Van Veldhuizen PJ, Jr., et al. Clinical and correlative results of SWOG S0354: A phase II trial of CNTO328 (siltuximab), a monoclonal antibody against interleukin-6, in chemotherapy-pretreated patients with castration-resistant prostate cancer. Clinical Cancer Research 2010;16(11):3028–3034.

    Google Scholar 

  197. Zakiryanova, G. K., Wheeler, S., & Shurin, M. R. (2018). Oncogenes in immune cells as potential therapeutic targets. Immunotargets and Therapy, 7, 21–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Chen, M., Pockaj, B., Andreozzi, M., Barrett, M. T., Krishna, S., Eaton, S., et al. (2018). JAK2 and PD-L1 amplification enhance the dynamic expression of PD-L1 in triple-negative breast Cancer. Clinical Breast Cancer, 18(5), e1205–e1e15.

    Article  CAS  PubMed  Google Scholar 

  199. Kaufman, P., Glaspy, J., Zhang, W., Koustenis, A., Chen, Y., & Brufsky, A. (2020). Abstract OT2–02-05: A randomized trial of abemaciclib in combination with fulvestrant compared to chemotherapy in women with HR+, HER2- advanced breast cancer with visceral metastases. Cancer Research, 80(4 Supplement), OT2–02-5-OT2–5.

    Google Scholar 

  200. Loi, S., Dushyanthen, S., Beavis, P. A., Salgado, R., Denkert, C., Savas, P., et al. (2016). RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast Cancer: Therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clinical Cancer Research, 22(6), 1499–1509.

    Article  CAS  PubMed  Google Scholar 

  201. Liu, L., Mayes, P. A., Eastman, S., Shi, H., Yadavilli, S., Zhang, T., et al. (2015). The BRAF and MEK inhibitors Dabrafenib and Trametinib: Effects on immune function and in combination with immunomodulatory antibodies targeting PD-1, PD-L1, and CTLA-4. Clinical Cancer Research, 21(7), 1639–1651.

    Article  CAS  PubMed  Google Scholar 

  202. Shin, M. H., Kim, J., Lim, S. A., Kim, J., & Lee, K. M. (2020). Current insights into combination therapies with MAPK inhibitors and immune checkpoint blockade. International Journal of Molecular Sciences, 21(7), 2531.

    Article  CAS  PubMed Central  Google Scholar 

  203. Ribas, A., Algazi, A., Ascierto, P. A., Butler, M. O., Chandra, S., Gordon, M., et al. (2020). PD-L1 blockade in combination with inhibition of MAPK oncogenic signaling in patients with advanced melanoma. Nature Communications, 11(1), 6262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Rozeman, E. A., Versluis, J. M., Sikorska, K., Lacroix, R., Grijpink-Ongering, L. G., Heeres, B., et al. (2020). The IMPemBra trial, a phase II study comparing pembrolizumab with intermittent/short-term dual MAPK pathway inhibition plus pembrolizumab in melanoma patients harboring the BRAFV600 mutation. Journal of Clinical Oncology, 38(15_suppl), 10021.

    Article  Google Scholar 

  205. George, S., Miao, D., Demetri, G. D., Adeegbe, D., Rodig, S. J., Shukla, S., et al. (2017). Loss of PTEN is associated with resistance to anti-PD-1 checkpoint blockade therapy in metastatic uterine Leiomyosarcoma. Immunity, 46(2), 197–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Peng, W., Chen, J. Q., Liu, C., Malu, S., Creasy, C., Tetzlaff, M. T., et al. (2016). Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discovery, 6(2), 202–216.

    Article  CAS  PubMed  Google Scholar 

  207. Sullivan, R. J., Hong, D. S., Tolcher, A. W., Patnaik, A., Shapiro, G., Chmielowski, B., et al. (2018). Initial results from first-in-human study of IPI-549, a tumor macrophage-targeting agent, combined with nivolumab in advanced solid tumors. Journal of Clinical Oncology, 36(15_suppl), 3013.

    Article  Google Scholar 

  208. Zhan, T., Rindtorff, N., & Boutros, M. (2017). Wnt signaling in cancer. Oncogene, 36(11), 1461–1473.

    Article  CAS  PubMed  Google Scholar 

  209. Spranger, S., Bao, R., & Gajewski, T. F. (2015). Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature, 523(7559), 231–235.

    Article  CAS  PubMed  Google Scholar 

  210. Ruiz de Galarreta, M., Bresnahan, E., Molina-Sanchez, P., Lindblad, K. E., Maier, B., Sia, D., et al. (2019). Beta-Catenin activation promotes immune escape and resistance to Anti-PD-1 therapy in Hepatocellular Carcinoma. Cancer Discovery, 9(8), 1124–1141.

    Article  CAS  PubMed  Google Scholar 

  211. Liu, C., Zheng, S., Jin, R., Wang, X., Wang, F., Zang, R., et al. (2020). The superior efficacy of anti-PD-1/PD-L1 immunotherapy in KRAS-mutant non-small cell lung cancer that correlates with an inflammatory phenotype and increased immunogenicity. Cancer Letters, 470, 95–105.

    Article  CAS  PubMed  Google Scholar 

  212. Torralvo, J., Friedlaender, A., Achard, V., & Addeo, A. (2019). The activity of immune checkpoint inhibition in KRAS mutated non-small cell lung Cancer: A single Centre experience. Cancer Genomics & Proteomics, 16(6), 577–582.

    Article  CAS  Google Scholar 

  213. Hanggi, K., & Ruffell, B. (2019). Oncogenic KRAS drives immune suppression in colorectal Cancer. Cancer Cell, 35(4), 535–537.

    Article  CAS  PubMed  Google Scholar 

  214. Hamarsheh, S., Gross, O., Brummer, T., & Zeiser, R. (2020). Immune modulatory effects of oncogenic KRAS in cancer. Nature Communications, 11(1), 5439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Chen, N., Fang, W., Lin, Z., Peng, P., Wang, J., Zhan, J., et al. (2017). KRAS mutation-induced upregulation of PD-L1 mediates immune escape in human lung adenocarcinoma. Cancer Immunology, Immunotherapy, 66(9), 1175–1187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Sumimoto, H., Takano, A., Teramoto, K., & Daigo, Y. (2016). RAS-mitogen-activated protein kinase signal is required for enhanced PD-L1 expression in human lung cancers. PLoS One, 11(11), e0166626.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Coelho, M. A., de Carne, T. S., Rana, S., Zecchin, D., Moore, C., Molina-Arcas, M., et al. (2017). Oncogenic RAS signaling promotes tumor Immunoresistance by stabilizing PD-L1 mRNA. Immunity, 47(6), 1083–1099. e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Zdanov, S., Mandapathil, M., Abu Eid, R., Adamson-Fadeyi, S., Wilson, W., Qian, J., et al. (2016). Mutant KRAS conversion of conventional T cells into regulatory T cells. Cancer Immunology Research, 4(4), 354–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Skoulidis, F., Goldberg, M. E., Greenawalt, D. M., Hellmann, M. D., Awad, M. M., Gainor, J. F., et al. (2018). STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discovery, 8(7), 822–835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Lee, C. K., Man, J., Lord, S., Links, M., Gebski, V., Mok, T., et al. (2017). Checkpoint inhibitors in metastatic EGFR-mutated non-small cell lung Cancer-a meta-analysis. Journal of Thoracic Oncology, 12(2), 403–407.

    Article  PubMed  Google Scholar 

  221. Rittmeyer, A., Barlesi, F., Waterkamp, D., Park, K., Ciardiello, F., von Pawel, J., et al. (2017). Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet, 389(10066), 255–265.

    Article  PubMed  Google Scholar 

  222. Gainor, J. F., Shaw, A. T., Sequist, L. V., Fu, X., Azzoli, C. G., Piotrowska, Z., et al. (2016). EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-Small cell lung Cancer: A retrospective analysis. Clinical Cancer Research, 22(18), 4585–4593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Dong, Z. Y., Zhang, J. T., Liu, S. Y., Su, J., Zhang, C., Xie, Z., et al. (2017). EGFR mutation correlates with uninflamed phenotype and weak immunogenicity, causing impaired response to PD-1 blockade in non-small cell lung cancer. Oncoimmunology, 6(11), e1356145.

    Article  PubMed  PubMed Central  Google Scholar 

  224. Ji, M., Liu, Y., Li, Q., Li, X., Ning, Z., Zhao, W., et al. (2016). PD-1/PD-L1 expression in non-small-cell lung cancer and its correlation with EGFR/KRAS mutations. Cancer Biology & Therapy, 17(4), 407–413.

    Article  CAS  Google Scholar 

  225. Yu, S., Liu, D., Shen, B., Shi, M., & Feng, J. (2018). Immunotherapy strategy of EGFR mutant lung cancer. American Journal of Cancer Research, 8(10), 2106–2115.

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Wu, L., Du, H., Li, Y., Qu, P., & Yan, C. (2011). Signal transducer and activator of transcription 3 (Stat3C) promotes myeloid-derived suppressor cell expansion and immune suppression during lung tumorigenesis. The American Journal of Pathology, 179(4), 2131–2141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Thress, K. S., Jacobs, V., Angell, H. K., Yang, J. C., Sequist, L. V., Blackhall, F., et al. (2017). Modulation of biomarker expression by Osimertinib: Results of the paired tumor biopsy cohorts of the AURA phase I trial. Journal of Thoracic Oncology, 12(10), 1588–1594.

    Article  PubMed  Google Scholar 

  228. Oxnard, G. R., Yang, J. C., Yu, H., Kim, S. W., Saka, H., Horn, L., et al. (2020). TATTON: A multi-arm, phase Ib trial of osimertinib combined with selumetinib, savolitinib, or durvalumab in EGFR-mutant lung cancer. Annals of Oncology, 31(4), 507–516.

    Article  CAS  PubMed  Google Scholar 

  229. Munn, D. H., & Mellor, A. L. (2013). Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends in Immunology, 34(3), 137–143.

    Article  CAS  PubMed  Google Scholar 

  230. Stockinger, B., Hirota, K., Duarte, J., & Veldhoen, M. (2011). External influences on the immune system via activation of the aryl hydrocarbon receptor. Seminars in Immunology, 23(2), 99–105.

    Article  CAS  PubMed  Google Scholar 

  231. Pallotta, M. T., Orabona, C., Volpi, C., Vacca, C., Belladonna, M. L., Bianchi, R., et al. (2011). Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells. Nature Immunology, 12(9), 870–878.

    Article  CAS  PubMed  Google Scholar 

  232. Mitchell, T. C., Hamid, O., Smith, D. C., Bauer, T. M., Wasser, J. S., Olszanski, A. J., et al. (2018). Epacadostat plus Pembrolizumab in patients with advanced solid tumors: Phase I results from a multicenter, open-label phase I/II trial (ECHO-202/KEYNOTE-037). Journal of Clinical Oncology, 36(32), 3223–3230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Long, G. V., Dummer, R., Hamid, O., Gajewski, T. F., Caglevic, C., Dalle, S., et al. (2019). Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): A phase 3, randomised, double-blind study. The Lancet Oncology, 20(8), 1083–1097.

    Article  CAS  PubMed  Google Scholar 

  234. Ghiringhelli, F., Bruchard, M., Chalmin, F., & Rebe, C. (2012). Production of adenosine by ectonucleotidases: A key factor in tumor immunoescape. Journal of Biomedicine & Biotechnology, 2012, 473712.

    Article  CAS  Google Scholar 

  235. Helenius, M., Jalkanen, S., & Yegutkin, G. (2012). Enzyme-coupled assays for simultaneous detection of nanomolar ATP, ADP, AMP, adenosine, inosine and pyrophosphate concentrations in extracellular fluids. Biochimica et Biophysica Acta, 1823(10), 1967–1975.

    Article  CAS  PubMed  Google Scholar 

  236. Jin, D., Fan, J., Wang, L., Thompson, L. F., Liu, A., Daniel, B. J., et al. (2010). CD73 on tumor cells impairs antitumor T-cell responses: A novel mechanism of tumor-induced immune suppression. Cancer Research, 70(6), 2245–2255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Chen, S., Fan, J., Zhang, M., Qin, L., Dominguez, D., Long, A., et al. (2019). CD73 expression on effector T cells sustained by TGF-beta facilitates tumor resistance to anti-4-1BB/CD137 therapy. Nature Communications, 10(1), 150.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  238. Borodovsky, A., Barbon, C. M., Wang, Y., Ye, M., Prickett, L., Chandra, D., et al. (2020). Small molecule AZD4635 inhibitor of A2AR signaling rescues immune cell function including CD103(+) dendritic cells enhancing anti-tumor immunity. Journal for Immunotherapy of Cancer, 8(2).

    Google Scholar 

  239. Allard, B., Pommey, S., Smyth, M. J., & Stagg, J. (2013). Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs. Clinical Cancer Research, 19(20), 5626–5635.

    Article  CAS  PubMed  Google Scholar 

  240. Beavis, P. A., Slaney, C. Y., Milenkovski, N., Henderson, M. A., Loi, S., Stagg, J., et al. (2015). CD73: A potential biomarker for anti-PD-1 therapy. Oncoimmunology, 4(11), e1046675.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  241. Overman, M. J., LoRusso, P., Strickler, J. H., Patel, S. P., Clarke, S. J., Noonan, A. M., et al. (2018). Safety, efficacy and pharmacodynamics (PD) of MEDI9447 (oleclumab) alone or in combination with durvalumab in advanced colorectal cancer (CRC) or pancreatic cancer (panc). Journal of Clinical Oncology, 36(15_suppl), 4123.

    Article  Google Scholar 

  242. Bendell, J., Bauer, T., Patel, M., Falchook, G., Karlix, J. L., Lim, E., et al. (2019). Abstract CT026: Evidence of immune activation in the first-in-human Phase Ia dose escalation study of the adenosine 2a receptor antagonist, AZD4635, in patients with advanced solid tumors. Cancer Research, 79(13 Supplement), CT026–CT0CT.

    Article  Google Scholar 

  243. Tumeh, P. C., Hellmann, M. D., Hamid, O., Tsai, K. K., Loo, K. L., Gubens, M. A., et al. (2017). Liver metastasis and treatment outcome with anti-PD-1 monoclonal antibody in patients with melanoma and NSCLC. Cancer Immunology Research, 5(5), 417–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Benechet, A. P., De Simone, G., Di Lucia, P., Cilenti, F., Barbiera, G., Le Bert, N., et al. (2019). Dynamics and genomic landscape of CD8(+) T cells undergoing hepatic priming. Nature, 574(7777), 200–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Frelaut, M., Le Tourneau, C., & Borcoman, E. (2019). Hyperprogression under immunotherapy. International Journal of Molecular Sciences, 20(11), 2674.

    Article  CAS  PubMed Central  Google Scholar 

  246. Kamada, T., Togashi, Y., Tay, C., Ha, D., Sasaki, A., Nakamura, Y., et al. (2019). PD-1(+) regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proceedings of the National Academy of Sciences of the United States of America, 116(20), 9999–10008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Champiat, S., Dercle, L., Ammari, S., Massard, C., Hollebecque, A., Postel-Vinay, S., et al. (2017). Hyperprogressive disease is a new pattern of progression in Cancer patients treated by anti-PD-1/PD-L1. Clinical Cancer Research, 23(8), 1920–1928.

    Article  CAS  PubMed  Google Scholar 

  248. Ferrara, R., Mezquita, L., Texier, M., Lahmar, J., Audigier-Valette, C., Tessonnier, L., et al. (2018). Hyperprogressive disease in patients with advanced non-Small cell lung Cancer treated with PD-1/PD-L1 inhibitors or with single-agent chemotherapy. JAMA Oncology, 4(11), 1543–1552.

    Article  PubMed  PubMed Central  Google Scholar 

  249. Kanjanapan, Y., Day, D., Wang, L., Al-Sawaihey, H., Abbas, E., Namini, A., et al. (2019). Hyperprogressive disease in early-phase immunotherapy trials: Clinical predictors and association with immune-related toxicities. Cancer, 125(8), 1341–1349.

    Article  CAS  PubMed  Google Scholar 

  250. Lo Russo, G., Moro, M., Sommariva, M., Cancila, V., Boeri, M., Centonze, G., et al. (2019). Antibody-fc/FcR interaction on macrophages as a mechanism for Hyperprogressive disease in non-small cell lung Cancer subsequent to PD-1/PD-L1 blockade. Clinical Cancer Research, 25(3), 989–999.

    Article  CAS  PubMed  Google Scholar 

  251. Stein, R. G., Ebert, S., Schlahsa, L., Scholz, C. J., Braun, M., Hauck, P., et al. (2019). Cognate nonlytic interactions between CD8(+) T cells and breast Cancer cells induce Cancer stem cell-like properties. Cancer Research, 79(7), 1507–1519.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohamad A. Salkeni or James L. Gulley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salkeni, M.A., Shin, J.Y., Gulley, J.L. (2021). Resistance to Immunotherapy: Mechanisms and Means for Overcoming. In: Naing, A., Hajjar, J. (eds) Immunotherapy. Advances in Experimental Medicine and Biology, vol 1342. Springer, Cham. https://doi.org/10.1007/978-3-030-79308-1_2

Download citation

Publish with us

Policies and ethics