Skip to main content

Genomic Designing for Biotic Stress Resistant Rice

  • Chapter
  • First Online:
Genomic Designing for Biotic Stress Resistant Cereal Crops

Abstract

Among major cereal crops, rice plays an important role in global food security as well as to the economic and social stability. Considering the impacts of global warming on agriculture and alarming yield losses due to biotic and abiotic stresses as well as the effect of the climate change on the future insect-pest scenario, effective utilization of advanced tools and techniques of insect-disease biotype/pathotype monitoring and surveillance, identification of stable resistance sources, molecular plant pathology to understand the pathotype/biotype-gene interactions, molecular biology and modern genomics tools to assist crop breeding develop resistant/tolerant varieties shall help researchers find stable solutions. The losses caused by biotic stresses are comparatively high and impart 37–70% yield losses or complete crop failure in many cases. Keeping this in mind, the chapter discusses the importance of rice in global food security, major and emerging biotic stresses in rice, genetic resources of resistant/tolerant genes, map-based gene cloning, trait mapping and major QTLs’ identification, conventional and genomic assisted breeding strategies to develop multiple biotic stress resistant rice varieties. Further, the chapter emphasizes on the efforts including genetic engineering, gene editing and nanotechnological approaches in imparting stable resistance to biotic stresses. The chapter also discusses about various available bioinformatics tools and brief account on social, political and regulatory issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbai R, VK Singh, Nachimuthu VV, Sinha P, Selvaraj R, Vipparla AK, Singh AK, Singh UM, Varshney RK, Kumar A (2019) Haplotype analysis of key genes governing grain yield and quality traits across 3 K RG panel reveals scope for the development of tailor-made rice with enhanced genetic gains. Plant Biotechnol J 17(8):1612–1622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agarwal P, Parida SK, Mahto A, Das S, Mathew IE, Malik N, Tyagi AK (2014) Expanding frontiers in plant transcriptomics in aid of functional genomics and molecular breeding. Biotechnol J 9:1480–1492

    Article  CAS  PubMed  Google Scholar 

  • Agarwal P, Parida SK, Raghuvanshi S, Kapoor S, Khurana P, Khurana JP, Tyagi AK (2016) Rice improvement through genome-based functional analysis and molecular breeding in India. Rice 9(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Bader N, Meier A, Geniza M, Gongora YS, Oard J, Jaiswal P (2019) Loss of premature stop codon in the Wall-Associated Kinase 91 (OsWAK91) gene confers sheath blight disease resistance in rice. bioRxiv 625509

    Google Scholar 

  • Alexandrov N, Tai S, Wang W, Mansueto L, Palis K, Fuentes RR, Ulat VJ, Chebotarov D, Zhang G, Li Z, Mauleon R (2015) SNP-Seek database of SNPs derived from 3000 rice genomes. Nucleic Acids Res 43(D1):D1023–D1027

    Article  CAS  PubMed  Google Scholar 

  • Allard RW, Bradshaw AD (1964) Implications of genotype-environmental interactions in applied plant breeding. Crop Sci 4:503–508

    Article  Google Scholar 

  • Andargie M, Li L, Feng A, Zhu X, Li J (2018) Mapping of the quantitative trait locus (QTL) conferring resistance to rice false smut disease. Curr Plant Biol 15:38–43

    Article  Google Scholar 

  • Antony G, Zhou J, Huang S, Li T, Liu B, White F et al (2010) Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. Plant Cell 22:3864–3876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arunakumari K, Durgarani CV, Satturu V, Sarikonda KR, Chittoor PDR, Vutukuri B, Laha GS, Nelli APK, Gattu S, Jamal M, Prasadbabu A (2016) Marker-assisted pyramiding of genes conferring resistance against bacterial blight and blast diseases into Indian rice variety MTU1010. Rice Sci 23(6):306–316

    Article  Google Scholar 

  • Ashizawa T, Takahashi M, Arai M, Arie T (2012) Rice false smut pathogen, Ustilaginoidea virens, invades through small gap at the apex of a rice spikelet before heading. J Gen Plant Pathol 78(4):255–259

    Article  Google Scholar 

  • Asibi AE, Chai Q, Coulter JA (2019) Rice blast: a disease with implications for global food security. Agronomy 9(8):451

    Article  CAS  Google Scholar 

  • Baba T, Katagiri S, Tanoue H, Tanaka R, Chiden Y, Saji S et al (2000) Construction and characterization of rice genomic libraries: PAC library of japonica variety, nipponbare and BAC library of indica variety, Kasalath. Bull NIAR 14:41–49

    CAS  Google Scholar 

  • Bal A, Samal P, Chakraborti M, Mukherjee AK, Ray S, Molla KA, Behera L, SamalR Sarangi S, Sahoo P, Behera M (2020) Stable quantitative trait locus (QTL) for sheath blight resistance from rice cultivar CR 1014. Euphytica 216(11):1–19

    Article  CAS  Google Scholar 

  • Bacterial leaf blight, IRRI Rice Knowledge bank, http://www.knowledgebank.irri.org/decision-tools/rice-doctor/rice-doctor-fact-sheets/item/bacterial-blight

  • Balachiranjeevi Ch, Mahadev Swamy HK, Kale RR, Hajira SK, Koushik MBVN, Bhadana VP, Hariprasad AS et al (2018) Marker-assisted pyramiding of two major, broad-spectrum bacterial blight resistance genes, Xa21 and Xa33 into an elite maintainer line of rice, DRR17B. PLoS One 10:

    Google Scholar 

  • Baliyan N, Malik R, Rani R, Mehta K, Vashisth U, Dhillon S, Boora KS (2018) Integrating marker-assisted background analysis with foreground selection for pyramiding bacterial blight resistance genes into Basmati rice. Comptes Rendus Biologies 341(1):1–8

    Article  PubMed  Google Scholar 

  • Baltes NJ, Hummel AW, Konecna E, Cegan R, Bruns AN, Bisaro DM, Voytas DF (2015) Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Nat Plants 1(10):1–4

    Article  CAS  Google Scholar 

  • Barnwal MK, Kotasthane A, Magculia N, Mukherjee PK, Savary S, Sharma AK, Singh HB, Singh US, Sparks AH, Variar M, Zaidi N (2013) A review on crop losses, epidemiology and disease management of rice brown spot to identify research priorities and knowledge gaps. Eur J Plant Pathol 136(3):443–457

    Article  Google Scholar 

  • Bentur JS, Rawat N, Divya D, Sinha DK, Agarrwal R, Atray I, Nair S (2016) Rice-gall midge interactions: battle for survival. J Insect Physiol 84:40–49

    Article  CAS  PubMed  Google Scholar 

  • Berger S, Chazli Y, Babu AF, Coste AT (2017) Azole resistance in Aspergillus fumigatus: a consequence of antifungal use in agriculture? Front Microbiol 8:1024

    Article  PubMed  PubMed Central  Google Scholar 

  • Beyer P, Al-Babili S, Ye X, Lucca P, Schaub P, Welsch R et al (2002) Golden rice: introducing the beta-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. J Nutr 132(3):506S–510S

    Article  PubMed  Google Scholar 

  • Bharathi Y, VijayaKumar S, Pasalu IC, Balachandran SM, Reddy VD, Rao KV (2011) Biotechnol J (152):63–71

    Google Scholar 

  • Bhasin H, Bhatia D, Raghuvanshi S, Lore JS, Sahi GK, Kaur B, Vikal Y, Singh K (2012) New PCR-based sequence-tagged site marker for bacterial blight resistance gene Xa38 of rice. Mol Breeding 30(1):607–611

    Google Scholar 

  • Birkett MA, Pickett JA (2014) Prospects of genetic engineering for robust insect resistance. Curr Opin Plant Biol 19:59–67

    Article  CAS  PubMed  Google Scholar 

  • Biswas C, Srivastava SSL, Biswas SK (2010) Effect of biotic, abiotic and botanical inducers on crop growth and severity of brown spot in rice. Indian Phytopathol 63(2):187

    Google Scholar 

  • Blanvillain-Baufum S, Reschke M, Sol M, Auguy F, DoucoureH Szurek B et al (2017) Targeted promoter editing for rice resistance to Xanthomonas oryzae pv. oryzae reveals differential activities for SWEET14-inducing TAL effectors. Plant Biotechnol J 15:306–317

    Article  CAS  Google Scholar 

  • Borba TCDO, Brondani RPV, Breseghello F, Coelho ASG, Mendonca JA, Rangel PHN, Brondani C (2010) Association mapping for yield and grain quality traits in rice (Oryza sativa L.). Genet Mol Biol 33(3):515–524

    Google Scholar 

  • Brar DS, Khush GS (1997) Alien gene introgression in rice. Plant Mol Biol 35:35–47

    Article  CAS  PubMed  Google Scholar 

  • Brar DS, Khush GS (2003) Utilization of wild species of genus Oryza in rice improvement. In: Nanda JS, Sharma SD (eds) Monograph on genus Oryza. Oxford & IBH Publishing, New Delhi, pp 283–309

    Google Scholar 

  • Brar DS, Virk PS, Jena KK, Khush GS (2009) Breeding for resistance to planthoppers in rice. In: Plant hoppers: new threats to the sustainability of intensive rice production systems in Asia. International Rice Research Institute, Los Banos, pp 401–409

    Google Scholar 

  • Buntjer JB, Sorensen AP, Peleman JD (2005) Haplotype diversity: the link between statistical and biological association. Trends Plant Sci 10(10):466–471

    Article  CAS  PubMed  Google Scholar 

  • Bush WS, Moore JH (2012) Genome-wide association studies. PLoS Comput Biol 8(12):

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai L, Cao Y, Xu Z, Ma W, Zakria M, Zou L et al (2017) A transcription activator-like effector Tal7 of Xanthomonas oryzae pv. oryzicola activates rice gene Os09g29100 to suppress rice immunity. Sci Rep 7:5089

    Google Scholar 

  • Canovas FM, Dumas-Gaudot E, Recorbet G, Jorrin J, Mock HP, Rossignol M (2004) Plant proteome analysis. Proteomics 4:285–298

    Article  CAS  PubMed  Google Scholar 

  • Channamallikarjuna V, Sonah H, Prasad M, Rao GJN, Chand S, Upreti HC, Singh NK, Sharma TR (2010) Identification of major quantitative trait loci qSBR11-1 for sheath blight resistance in rice. Mol Breeding 25(1):155–166

    Google Scholar 

  • Chaudhary B (1999) Effect of blast disease on rice yield. Nepal Agri Res J 3:8–13

    Google Scholar 

  • Chauhan BS, Jabran K, Mahajan G (eds) (2017) Rice production worldwide, vol 247. Springer

    Google Scholar 

  • Cheema KK, Grewal NK, Vikal Y, Sharma R, Lore JS, Das A, Bhatia D, Mahajan R, Gupta V, Bharaj TS, Singh K (2008) A novel bacterial blight resistance gene from Oryza nivara mapped to 38 kb region on chromosome 4L and transferred to Oryza sativa L. Genet Res 90(5):397–407

    Article  CAS  Google Scholar 

  • Chen M, Presting G, Barbazuk WB, Goicoechea JL, Blackmon B, Fang G et al (2002) An integrated physical and genetic map of the rice genome. Plant Cell 14:537–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZX, Zhang YF, Feng F, Feng MH, Jiang W, Ma YY, Pan CH, Hua HL, Li GS, Pan XB, Zuo SM (2014) Improvement of japonica rice resistance to sheath blight by pyramiding qSB-9TQ and qSB-7TQ. Field Crops Res 161:118–127

    Article  Google Scholar 

  • Chen SY, Lai MH, Tung CW, Wu DH, Chang FY, Lin TC, Chung CL (2019a) Genome-wide association mapping of gene loci affecting disease resistance in the rice-Fusarium fujikuroi pathosystem. Rice 12(1):85

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Feng Z, Kang H, Zhao J, Chen T, Li Q, Gong H, Zhang Y, Chen X, Pan X, Liu W (2019b) Identification of new resistance loci against sheath blight disease in rice through genome-wide association study. Rice Sci 26(1):21–31

    Article  Google Scholar 

  • Chen S, Wang C, Yang J, Chen B, Wang W, Su J, Feng A, Zeng L, Zhu X (2020) Identification of the novel bacterial blight resistance gene Xa46(t) by mapping and expression analysis of the rice mutant H120. Sci Rep 10(1):1–11

    CAS  Google Scholar 

  • Chukwu SC, Rafii MY, Ramlee SI, Ismail SI, Oladosu Y, Okporie E, Onyishi G, Utobo E, Ekwu L, Swaray S, Jalloh M (2019) Marker-assisted selection and gene pyramiding for resistance to bacterial leaf blight disease of rice (Oryza sativa L.). Biotechnol Biotechnol Equip 33(1):440–455

    Google Scholar 

  • Cohn M, Bart RS, Shybut M, Dahlbeck D, Gomez M, Morbitzer R, Hou BH, Frommer WB, Lahaye T, Staskawicz BJ (2014) Xanthomonas axonopodis virulence is promoted by a transcription activator-like effector-mediated induction of a SWEET sugar transporter in cassava. Mol Plant Microbe Interact 27(11):1186–1198

    Article  CAS  PubMed  Google Scholar 

  • Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil Trans R Soc B: Biol Sci 363(1491):557–572

    Article  CAS  Google Scholar 

  • Couch BC, Kohn LM (2002) A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaportheoryzae, from M. grisea. Mycologia 94(4):683–693

    Google Scholar 

  • Courtois B, Audebert A, Dardou A, Roques S, Ghneim-Herrera T, Droc G, Frouin J, Rouan L, Goze E, Kilian A, Ahmadi N (2013) Genome-wide association mapping of root traits in a japonica rice panel. PLoS One 8(11):

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crossa J, Perez-Rodriguez P, Cuevas J, Montesinos-Lopez O, Jarquin D, De los Campos G, Burgueno J, Gonzalez-Camacho JM, Perez-Elizalde S, Beyene Y, Dreisigacker S (2017) Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci 22(11):961–975

    Google Scholar 

  • Das A, Soubam D, Singh PK, Thakur S, Singh NK, Sharma TR (2012) A novel blast resistance gene, Pi54rh cloned from wild species of rice, Oryza rhizomatis confers broad spectrum resistance to Magnaportheoryzae. Funct Integr Genom 12:215–228

    Article  CAS  Google Scholar 

  • Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu JR, Pan H, Read ND (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434(7036):980–986

    Article  CAS  PubMed  Google Scholar 

  • Deborde C, Moing A, Roch L, Jacob D, Rolin D, Giraudeau P (2017) Plant metabolism as studied by NMR spectroscopy. Progr Nuclear Magnet Reson Spectros 102:61–97

    Article  CAS  Google Scholar 

  • Deng Y, Zhai K, Xie Z, Yang D, Zhu X, Liu J, Wang X, Qin P, Yang Y, Zhang G, Li Q (2017) Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science 355(6328):962–965

    Article  CAS  PubMed  Google Scholar 

  • Depicker A, Sanders M, Meyer P (2005) Transgene silencing. In: Meyer P (ed) Plant epigenetics. Oxford Ames. Blackwell Publishing, Iowa, pp 1–32

    Google Scholar 

  • Deshpande N, Address KJ, Bluhm WF, Merino-Ott JC, Townsend-Merino W et al (2005) The RCSB protein data bank: a redesigned query system and relational database based on the mmCIF schema. Nucleic Acids Re 33:D233–D237

    Article  CAS  Google Scholar 

  • Dill GM, Caacob CA, Padgette SR (2008) Glyphosate-resistant crops: adoption, use and future considerations. Pest Manage Sci (64):326–331

    Google Scholar 

  • Dilla-Ermita CJ, Tandayu E, Juanillas VM, Detras J, Lozada DN, Dwiyanti MS, Cruz CV, Mbanjo EGN, Ardales E, Diaz MG, Mendioro M (2017) Genome-wide association analysis tracks bacterial leaf blight resistance loci in rice diverse germplasm. Rice 10(1):1–17

    Google Scholar 

  • Divya D, Himabindu K, Nair S, Bentur JS (2015) Cloning of a gene encoding LRR protein and its validation as candidate gall midge resistance gene, Gm4, in rice. Euphytica 203(1):185–195

    Google Scholar 

  • Dixit S, Singh UM, Singh AK, Alam S, Venkateshwarlu C, Nachimuthu VV, Yadav S, Abbai R, Selvaraj R, Devi MN, Ramayya PJ (2020) Marker assisted forward breeding to combine multiple biotic-abiotic stress resistance/tolerance in rice. Rice 13(1):1–15

    Article  Google Scholar 

  • Dokku P, Das KM, Rao GJN (2013) Pyramiding of four resistance genes of bacterial blight in Tapaswini, an elite rice cultivar, through marker-assisted selection. Euphytica 192(1):87–96

    Article  Google Scholar 

  • Du B, Chen R, Guo J, He G (2020) Current understanding of the genomic, genetic, and molecular control of insect resistance in rice. Mol Breed 40(2):24

    Article  CAS  Google Scholar 

  • Eagles HA, Bariana HS, Ogbonnaya FC et al (2001) Implementation of markers in Australian wheat breeding. Crop Pasture Sci 52(12):1349–1356

    Google Scholar 

  • Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eizenga G, Prasad B, Jackson A, Jia M (2013) Identification of rice sheath blight and blast quantitative trait loci in two different O. sativa/O. nivara advanced backcross populations. Mol Breed 31:889–907

    Article  Google Scholar 

  • Ellur RK, Khanna A, Yadav A, Pathania S, Rajashekara H, Singh VK, Krishnan SG, Bhowmick PK, Nagarajan M, Vinod KK, Prakash G (2016) Improvement of Basmati rice varieties for resistance to blast and bacterial blight diseases using marker assisted backcross breeding. Plant Sci 242:330–341

    Article  CAS  PubMed  Google Scholar 

  • Fagard M, Vaucheret H (2000) Transgene silencing in plants: how many mechanisms? Ann Rev Plant Mol Biol Physiol (51):167–194

    Google Scholar 

  • Famoso AN, Zhao K, Clark RT, Tung CW, Wright MH, Bustamante C, Kochian LV, McCouch SR (2011) Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping. PLoS Genet 7(8):e1002221

    Google Scholar 

  • Feng Z, Kang H, Li M, Zou L, Wang X, Zhao J, Wei L, Zhou N, Li Q, Lan Y, Zhang Y (2019) Identification of new rice cultivars and resistance loci against rice black-streaked dwarf virus disease through genome-wide association study. Rice 12(1):1–13

    Google Scholar 

  • Fischer R, Schillberg S, Buyel JF, Twyman RM (2013) Commercial aspects of pharmaceutical protein production in plants. Curr Pharm Des 19(31):5471–5477

    Article  CAS  PubMed  Google Scholar 

  • Francois JA et al (2002) Different approaches for multi-transgene-stacking in plants. Plant Sci (163):281–295

    Google Scholar 

  • Fukuoka S, Yamamoto SI, Mizobuchi R, Yamanouchi U, Ono K, Kitazawa N et al (2014) Multiple functional polymorphisms in a single disease resistance gene in rice enhance durable resistance to blast. Sci Rep 4:4550

    Article  CAS  Google Scholar 

  • Garris AJ, McCouch SR, Kresovich S (2003) Population structure and its effect on haplotype diversity and linkage disequilibrium surrounding the xa5 locus of rice (Oryza sativa L.). Genetics 165(2):759–769

    Google Scholar 

  • Ge S, Sang T, Lu BR, Hong DY (1999) Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proc Nat Acad Sci 96(25):14400–14405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the ‘Gene-Jockeying’ tool. Microb Mol Biol Rev (67):16–37

    Google Scholar 

  • George MLC, Bustamam M, Cruz WT, Leach JE, Nelson RJ (1997) Movement of Xanthomonas oryzaepv. oryzae in Southeast Asia detected using PCR-based DNA fingerprinting. Phytopathol 87(3):302–309

    Google Scholar 

  • Gibbs RA, Weinstock GM (2003) Evolving methods for the assembly of large genomes. Cold Spring Harb Symp Quant Biol 68:189–194

    Article  CAS  PubMed  Google Scholar 

  • Gladieux P, Condon B, Ravel S, Soanes D, Maciel JLN, Nhani A, Chen L, Terauchi R, Lebrun MH, Tharreau D Mitchell T (2018) Gene flow between divergent cereal-and grass-specific lineages of the rice blast fungus Magnaportheoryzae. Mol Bio 9(1)

    Google Scholar 

  • Gunasekara JM, Jayasekera GA, Perera KL, Wickramasuriya AM (2017) Development of a Sri Lankan rice variety Bg 94-1 harbouring Cry2A gene of Bacillus thuringiensis resistant to rice leaffolder [Cnaphalocrocismedinalis (Guenee)]. J Natl Sci Found Sri Lanka 45:2

    Google Scholar 

  • Guo S, Zhang D, Lin X (2010) Identification and mapping of a novel bacterial blight resistance gene xa35(t) originated from Oryza minuta. Scientia Agricultura Sinica 43(13):2611–2618

    CAS  Google Scholar 

  • Guo J, Xu C, Wu D, Zhao Y, Qiu Y, Wang X, Ouyang Y, Cai B, Liu X, Jing S, Shangguan X (2018). Bph6 encodes an exocyst-localized protein and confers broad resistance to planthoppers in rice. Nat Genet 50(2):297–306

    Google Scholar 

  • Gupta V, Shamas N, Razdan VK, Sharma BC, Sharma R, Kaur K, Singh I, John D, Kumar A (2013) Foliar application of fungicides for the management of brown spot disease in rice (Oryza sativa L.) caused by Bipolarisoryzae. African J Agri Res 8(25):3303–3309

    Google Scholar 

  • Guvvala LD, Koradi P, Shenoy V, Marella LS (2013) Improvement of resistance to bacterial blight through marker assisted backcross breeding and field validation in rice (Oryza sativa). Res J Biol 1:52–66

    Google Scholar 

  • Han Y, Zhang K, Yang J, Zhang N, Fang A, Zhang Y, Liu Y, Chen Z, Hsiang T, Sun W (2015) Differential expression profiling of the early response to Ustilaginoidea virens between false smut resistant and susceptible rice varieties. BMC Genom 16(1):1–15

    Article  CAS  Google Scholar 

  • Han Y, Li D, Yang J, Huang F, Sheng H, Sun W (2020) Mapping quantitative trait loci for disease resistance to false smut of rice. Phytopathol Res 2(1):1–11

    Article  Google Scholar 

  • Harlan JR, de Wet JM (1971) Toward a rational classification of cultivated plants. Taxon 20(4):509–517

    Article  Google Scholar 

  • Hasan MM, Rafii MY, Ismail MR, Mahmood M, Rahim HA, Alam MA, Ashkani S, Malek MA, Latif MA (2015) Marker-assisted backcrossing: a useful method for rice improvement. Biotechnol Equipment 29(2):237–254

    Article  Google Scholar 

  • Hayles J, Johnson L, Worthley C, Losic D (2017) Nanopesticides: a review of current research and perspectives. New Pestic Soil Sens:193–225

    Google Scholar 

  • He J, Zhao X, Laroche A, Lu ZX, Liu H, Li Z (2014) Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci 5:484

    Article  PubMed  PubMed Central  Google Scholar 

  • He S, Schulthess AW, Mirdita V, Zhao Y, Korzun V, Bothe R, Ebmeyer E, Reif JC, Jiang Y (2016) Genomic selection in a commercial winter wheat population. Theor Appl Genet 129(3):641–651

    Article  CAS  PubMed  Google Scholar 

  • He C, Xiao Y, Yu J, Li J, Meng Q, Qing X, Xiao G (2019) Pyramiding Xa21, Bph14, and Bph15 genes into the elite restorer line Yuehui9113 increases resistance to bacterial blight and the brown planthopper in rice. Crop Prot 115:31–39

    Google Scholar 

  • He L, Zou L, Huang Q, Sheng X, Wu W, Hu J (2020) Development of InDel markers of Bph3 and pyramiding of four brown planthopper resistance genes into an elite rice variety. Mol Breed 40(10):1–11

    Article  CAS  Google Scholar 

  • Himabindu K, Suneetha K, Sama VSAK, Bentur JS (2010) A new rice gall midge resistance gene in the breeding line CR57-MR1523, mapping with flanking markers and development of NILs. Euphytica 174(2):179–187

    Article  CAS  Google Scholar 

  • Hiremath SS (2018) Identification of potential donors and association mapping for false smut resistance in rice germplasm. Doctoral dissertation, Punjab Agricultural University, Ludhiana

    Google Scholar 

  • Hittalmani S, Parco A, Mew TV, Zeigler RS, Huang N (2000) Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor Appl Genet 100(7):1121–1128

    Article  CAS  Google Scholar 

  • Hoffmann WH (2007) Strategies for managing a portfolio of alliances. Strat Manag J 28(8):827–856

    Article  Google Scholar 

  • Hossain MK, Jena KK, Bhuiyan MAR, Wickneswari R (2016) Association between QTLs and morphological traits toward sheath blight resistance in rice (Oryza sativa L.). Breed Sci 66:613–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • https://www.statista.com. Accessed on 3 Nov 2020

  • Hu J, Li X, Wu C, Yang C, Hua H, Gao G, Xiao J, He Y (2012) Pyramiding and evaluation of the brown planthopper resistance genes Bph14 and Bph15 in hybrid rice. Mol Breed 29(1):61–69

    Article  CAS  Google Scholar 

  • Hua LX, Liang LQ, He XY, Wang L, Zhang WS et al (2015) Development of a marker specific for the rice blast resistance gene Pi39 in the Chinese cultivar Q15 and its use in genetic improvement. Biotechnol Equipment 29(3):448–456

    Article  CAS  Google Scholar 

  • Huang X, Han B (2014) Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol 65:531–551

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42(11):961

    Article  CAS  PubMed  Google Scholar 

  • Huang D, Qiu Y, Zhang Y, Huang F, Meng J, Wei S, Li R, Chen B (2013) Fine mapping and characterization of BPH27, a brown planthopper resistance gene from wild rice (Oryza rufipogon Griff.). Theor Appl Genet 126(1):219–229

    Google Scholar 

  • Hutin M, Sabot F, Ghesquiere A, Koebnik R, Szurek B (2015) A knowledge-based molecular screen uncovers a broad-spectrum OsSWEET14 resistance allele to bacterial blight from wild rice. Plant J 84:694–703

    Article  CAS  PubMed  Google Scholar 

  • Ishiguro K (2001) Review of research in Japan on the roles of silicon in conferring resistance against rice blast. Studies Plant Sci 8:277–291

    Article  CAS  Google Scholar 

  • Jairin J, Phengrat K, Teangdeerith S, Vanavichit A, Toojinda T (2007) Mapping of a broad-spectrum brown planthopper resistance gene, Bph3, on rice chromosome 6. Mol Breed 19(1):35–44

    Article  CAS  Google Scholar 

  • Jairin J, Teangdeerith S, Leelagud P, Kothcharerk J, Sansen K, Yi M, Vanavichit A, Toojinda T (2009) Development of rice introgression lines with brown planthopper resistance and KDML105 grain quality characteristics through marker-assisted selection. Field Crops Res 110(3):263–271

    Article  Google Scholar 

  • Jamaloddin M, Durga Rani CV, Swathi G, Anuradha C, Vanisri S, Rajan CPD, Krishnam Raju S, Bhuvaneshwari V, Jagadeeswar R, Laha GS, Prasad MS (2020) Marker assisted gene pyramiding (MAGP) for bacterial blight and blast resistance into mega rice variety ‘Tellahamsa’. PloS One 15(6):e0234088

    Google Scholar 

  • Jena KK, Jeung JU, Lee JH, Choi HC, Brar DS (2006) High-resolution mapping of a new brown planthopper (BPH) resistance gene, Bph18 (t), and marker-assisted selection for BPH resistance in rice (Oryza sativa L.). Theor Appl Genet 112(2):288–297

    Google Scholar 

  • Jena KK, Kim SM (2010) Current status of brown planthopper (BPH) resistance and genetics. Rice 3(2–3):161–171

    Article  Google Scholar 

  • Jena KK, Multani GS, Khush GS (1991) Monogenic alien addition lines of Oryza australiensis and alien gene transfer. Rice Genet II:728

    Google Scholar 

  • Jena KK, Hechanova SL, Verdeprado H, Prahalada GD, Kim SR (2017) Development of 25 near-isogenic lines (NILs) with ten BPH resistance genes in rice (Oryza sativa L.): production, resistance spectrum, and molecular analysis. Theor Appl Genet 130(11):2345–2360

    Google Scholar 

  • Ji ZJ, Yang SD, Zeng YX, Liang Y, Yang CD, Qian Q (2016) Pyramiding blast, bacterial blight and brown planthopper resistance genes in rice restorer lines. J Integr Agric 15(7):1432–1440

    Article  CAS  Google Scholar 

  • Jia Y, Jia MH, Wang X, Liu G (2012) Indica and japonica crosses resulting in linkage block and recombination suppression on rice chromosome 12. PLoS One 7(8):e43066

    Google Scholar 

  • Jia J, Li H, Zhang X, Li Z, Qiu L (2017) Genomics-based plant germplasm research (GPGR). Crop J 5(2):166–174

    Article  Google Scholar 

  • Jiang GL (2013) Plant marker-assisted breeding and conventional breeding: challenges and perspectives. Adv Crop Sci Technol 1:

    Google Scholar 

  • Johnson SR, Lange BM (2015) Open-access metabolomics databases for natural product research: present capabilities and future potential. Front Bioengg Biotechnol 3:22

    Google Scholar 

  • Johnston SA, Anziano PQ, Shark K, Sanford JC, Butow RA (1988). Mitochondrial transformation in yeast by bombardment with microprojectiles. Sci (240):1538–1541

    Google Scholar 

  • Kannahi M, Dhivya S, Senthilkumar R (2016) Biological control on rice false smut disease using Trichoderma species. Int J Pure App Biosci 4(2):311–316

    Article  Google Scholar 

  • Karlovsky P (2011) Biological detoxification of the mycotoxin deoxynivalenol and its use in genetically engineered crops and feed additives. Appl Microbiol Biotechnol 91:491–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticlebased delivery systems for sustainable agriculture. Int J Biol Macromol 77:36–51

    Article  CAS  PubMed  Google Scholar 

  • Katiyar SK, Tan Y, Huang B, Chandel G, Xu Y, Zhang Y, Xie Z, Bennett J (2001) Molecular mapping of gene Gm-6(t) which confers resistance against four biotypes of Asian rice gall midge in China. Theor Appl Genet 103(6–7):953–961

    Article  CAS  Google Scholar 

  • Kaur Y, Lore JS, Pannu PPS (2015) Evaluation of rice genotypes for resistance against false smut. Plant Disease Res 30(1):46–49

    Google Scholar 

  • Khan AA, Sinha AP (2005) Comparative antagonistic potential of some biocontrol agents against sheath blight of rice. Indian Phytopathol 58(1):41–45

    Google Scholar 

  • Khan MAI, Ali MA, Monsur MA, Kawasaki-Tanaka A, Hayashi N, Yanagihara S, Obara M, Mia MAT, Latif MA, Fukuta Y (2016) Diversity and distribution of rice blast (PyriculariaoryzaeCavara) races in Bangladesh. Plant Dis 100(10):2025–2033

    Article  CAS  PubMed  Google Scholar 

  • Khanna A, Sharma V, Ellur RK, Shikari AB, Krishnan SG, Singh UD, Prakash G, Sharma TR, Rathour R, Variar M, Prashanthi SK (2015) Development and evaluation of near-isogenic lines for major blast resistance gene (s) in Basmati rice. Theor Appl Genet 128(7):1243–1259

    Article  CAS  PubMed  Google Scholar 

  • Khush GS (1997) Origin, dispersal, cultivation and variation of rice. Plant Mol Biol 35:25–34

    Article  CAS  PubMed  Google Scholar 

  • Kim SM, Reinke RF (2019) A novel resistance gene for bacterial blight in rice, Xa43(t) identified by GWAS, confirmed by QTL mapping using a bi-parental population. PloS one 14(2):e0211775

    Google Scholar 

  • Kim DY, Kadam A, Shinde S, Saratale RG, Patra J, Ghodake G (2018) Recent developments in nanotechnology transforming the agricultural sector: a transition replete with opportunities. J Sci Food Agric 98:849–864

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi N, Telebanco-Yanoria MJ, Tsunematsu H, Kato H, Imbe T, Fukuta Y (2007) Development of new sets of international standard differential varieties for blast resistance in rice (Oryza sativa L.). Japan Agri Res Quart: JARQ 41(1):31–37

    Google Scholar 

  • Kongcharoen N, Kaewsalong N, Dethoup T (2020) Efficacy of fungicides in controlling rice blast and dirty panicle diseases in Thailand. Sci Rep 10(1):1–7

    Article  CAS  Google Scholar 

  • Kreye C, Bouman BAM, Reversat G, Fernandez L, Cruz CV, Elazegui F, Faronilo JE, Llorca L (2009) Biotic and abiotic causes of yield failure in tropical aerobic rice. Field Crop Res 112(1):97–106

    Article  Google Scholar 

  • Kumar VA, Balachiranjeevi CH, Naik SB, Rambabu R, Rekha G, Harika G, Hajira SK, Pranathi K, Vijay S, Anila M, Mahadevaswamy HK (2016) Marker-assisted improvement of the elite restorer line of rice, RPHR-1005 for resistance against bacterial blight and blast diseases. J Genet 95(4):895–903

    Article  CAS  PubMed  Google Scholar 

  • Kumar VA, Balachiranjeevi CH, Naik SB, Rekha G, Rambabu R, Harika G, Pranathi K, Hajira SK, Anila M, Kousik M, Kale R (2017) Markerassisted pyramiding of bacterial blight and gall midge resistance genes into RPHR-1005, the restorer line of the popular rice hybrid DRRH-3. Mol Breeding 37(7):1–14

    Google Scholar 

  • Kumar K, Sarao PS, Bhatia D, Neelam K, Kaur A, Mangat GS, Brar DS, Singh K (2018) High-resolution genetic mapping of a novel brown planthopper resistance locus, Bph34 in Oryza sativa L. X Oryza nivara (Sharma and Shastry) derived interspecific F2 population. Theor Appl Genet 131(5):1163–1171

    Google Scholar 

  • Ladhalakshmi D, Laha GS, Singh R, Karthikeyan A, Mangrauthia SK, Sundaram RM, Thukkaiyannan P, Viraktamath BC (2012) Isolation and characterization of Ustilaginoidea virens and survey of false smut disease of rice in India. Phytoparasitica 40(2):171–176

    Article  CAS  Google Scholar 

  • Lakshmi PV, Amudhan S, Bindu KH, Cheralu C, Bentur JS (2006) A new biotype of the Asian rice gall midge Orseoliaoryzae (Diptera: Cecidomyiidae) characterized from the Warangal population in Andhra Pradesh, India. Int J Trop Insect Sci 26(3):207–211

    Google Scholar 

  • Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392

    Article  CAS  PubMed  Google Scholar 

  • Li H, Rasheed A, Hickey LT, He Z (2018). Fast-forwarding genetic gain. Trends Plant Sci(23):184–186

    Google Scholar 

  • Li W, Chern M, Yin J, Wang J, Chen X (2019a) Recent advances in broad-spectrum resistance to the rice blast disease. Curr Opin Plant Biol 50:114–120

    Google Scholar 

  • Li Z, Xue Y, Zhou H, Li Y, Usman B, Jiao X, Wang X, Liu F, Qin B, Li R, Qiu Y (2019b) High-resolution mapping and breeding application of a novel brown planthopper resistance gene derived from wild rice (Oryza. rufipogon Griff). Rice 12(1):41

    Google Scholar 

  • Li-Byarlay H, Li Y, Stroud H, Feng S, Newman TC, Kaneda M, Hou KK, Worley KC, Elsik CG, Wickline SA (2013) RNA interference knockdown of DNA methyl-transferase 3 affects gene alternative splicing in the honey bee. Proc Natl Acad Sci USA 110:12750–12755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CY, Togashi K (2002) Genetic improvement in the presence of genotype by environment interaction. Anim Sci J 73:3–11

    Article  CAS  Google Scholar 

  • Lin HA, Chen SY, Chang FY, Tung CW, Chen YC, Shen WC, Chen RS, Wu CW, Chung CL (2018) Genome-wide association study of rice genes and loci conferring resistance to Magnaportheoryzae isolates from Taiwan. BotStudies 59(1):32

    Google Scholar 

  • Listgarten J, Lippert C, Kadie CM, Davidson RI, Eskin E, Heckerman D (2012) Improved linear mixed models for genome-wide association studies. Nat Methods 9(6):525–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu G, Lu G, Zeng L, Wang GL (2002) Two broad-spectrum blast resistance genes, Pi9(t) and Pi2(t), are physically linked on rice chromosome 6. Mol Genet Genomics 267:472–480

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Jia Y, McClung A, Oard JH, Lee FN, Correll JC (2013) Confirming QTLs and finding additional loci responsible for resistance to rice sheath blight disease. Plant Dis 97(1):113–117

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Chen L, Liu Y, Dai H, He J, Kang H, Pan G, Huang J, Qiu Z, Wang Q, Hu J (2016) Marker assisted pyramiding of two brown planthopper resistance genes, Bph3 and Bph27(t), into elite rice cultivars. Rice 9(1):27

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu MH, Kang H, Xu Y, Peng Y, Wang D, Gao L, Wang X, Ning Y, Wu J, Liu W, Li C (2020) Genome-wide association study identifies an NLR gene that confers partial resistance to Magnaportheoryzae in rice. Plant Biotechnol J 18(6):1376–1383

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Chen L, Fu D, Lou Q, Mei H, Xiong L, Li M, Xu X, Mei X, Luo L (2014) Dissection of additive, epistatic effect and QTL x environment interaction of quantitative trait loci for sheath blight resistance in rice. Hereditas 151(2–3):28–37

    Google Scholar 

  • Loan LC, Ngan VTT, Du PV (2006) Preliminary evaluation on resistance genes against rice bacterial leaf blight in Can Tho Province-Vietnam. Omonrice 14:44–47

    Google Scholar 

  • Long W, Yuan Z, Fan F, Dan D, Pan G, Sun H, Zhang Z, Li N, Li S (2020) Genome-wide association analysis of resistance to rice false smut. Mol Breed 40(5)

    Google Scholar 

  • Lore JS, Pannu PPS, Jain J, Hunjan MS, Kaur R, Mangat GS (2013) Susceptibility of rice hybrids and inbred cultivars to false smut under field conditions. Indian Phytopathol 66(4):397–399

    Google Scholar 

  • Louwaars NP (2018) Plant breeding and diversity: a troubled relationship? Euphytica (214):114

    Google Scholar 

  • Luo Y, Zakaria S, Basyah B, Ma T, Li Z, YangJ Yin Z (2014) Marker-assisted breeding of Indonesia local rice variety Siputeh for semi-dwarf phonetype, good grain quality and disease resistance to bacterial blight. Rice 7(1):33

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo Y, Ma T, Zhang A, Ong KH, Luo Z, Li Z, Yang J, Yin Z (2017) Marker-assisted breeding of Chinese elite rice cultivar 9311 for disease resistance to rice blast and bacterial blight and tolerance to submergence. MolBreed 37(8):106

    Google Scholar 

  • Lv W, Du B, Shangguan X, Zhao Y, Pan Y, Zhu L, He Y, He G (2014) BAC and RNA sequencing reveal the brown planthopper resistance gene BPH15 in a recombination cold spot that mediates a unique defense mechanism. BMC Genom 15(1):674

    Article  Google Scholar 

  • MacManus PS, Stockwell VO, Sundin GW, Jones AL (2002) Antibiotic use in plant agriculture. Ann Rev Phytopathol 40(1):443–465

    Article  CAS  Google Scholar 

  • Magar PB, Acharya B, Pandey B (2015) Use of chemical fungicides for the management of rice blast (Pyricularia grisea) disease at Jyotinagar, Chitwan, Nepal. Intl J Appl Sci Biotechnol 3(3):474–478

    Article  CAS  Google Scholar 

  • Mateu-Andres I, De Paco L (2005) Allozymic differentiation of the Antirrhinum majus and A. siculum species groups. Ann Bot 95(3):465–473

    Google Scholar 

  • Mather KA, Caicedo AL, Polato NR, Olsen KM, McCouch S, Purugganan MD (2007) The extent of linkage disequilibrium in rice (Oryza sativa L.). Genetics 177(4):2223–2232

    Google Scholar 

  • Matsumoto K, Ota Y, Seta S, Nakayama Y, Ohno T, Mizobuchi R, Sato H (2017) Identification of QTLs for rice brown spot resistance in backcross inbred lines derived from a cross between Koshihikari and CH45. Breed Sci 67(5):540–543

    Article  PubMed  PubMed Central  Google Scholar 

  • McCouch SR, Zhao K, Wright M, Tung CW, Ebana K, Thomson M, Reynolds A, Wang D, DeClerck G, Ali ML, McClung A (2010) Development of genome-wide SNP assays for rice. Breed Sci 60(5):524–535

    Article  Google Scholar 

  • McKeand SE, Eriksson G, Roberds JH (1997) Genotype by environment interaction for index traits that combine growth and wood density in loblolly pine. Theor Appl Genet 94:1015–1022

    Article  Google Scholar 

  • Mgonja EM, Balimponya EG, Kang H, Bellizzi M, Park CH, Li Y, Mabagala R, Sneller C, Correll J, Opiyo S, Talbot NJ (2016) Genome-wide association mapping of rice resistance genes against Magnaportheoryzae isolates from four African countries. Phytopathol 106(11):1359–1365

    Article  CAS  Google Scholar 

  • Mgonja EM, Park CH, Kang H, Balimponya EG, Opiyo S, Bellizzi M, Mutiga SK, Rotich F, Ganeshan VD, Mabagala R, Sneller C (2017) Genotyping-by-sequencing-based genetic analysis of African rice cultivars and association mapping of blast resistance genes against Magnaportheoryzae populations in Africa. Phytopathol 107(9):1039–1046

    Article  CAS  Google Scholar 

  • Michel S, Ametz C, Gungor H, Epure D, Grausgruber H, Loschenberger F, Buerstmayr H (2016) Genomic selection across multiple breeding cycles in applied bread wheat breeding. Theor Appl Genet 129(6):1179–1189

    Article  PubMed  PubMed Central  Google Scholar 

  • Midha S, Bansal K, Kumar S, Girija AM, Mishra D, Brahma K, Laha GS, SundaramRM, Sonti RV, Patil PB (2017) Population genomic insights into variation and evolution of Xanthomonas oryzaepv. oryzae. Sci Reports 7(1):1–13

    Google Scholar 

  • Miller DG, Raman A (2019) Host-plant relations of gall-inducing insects. Ann Entomol Soc Am 112(1):1–19

    Article  CAS  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  CAS  PubMed  Google Scholar 

  • Mizobuchi R, Fukuoka S, Tsushima S, Yano M, Sato H (2016) QTLs for resistance to major rice diseases exacerbated by global warming: brown spot, bacterial seedling rot, and bacterial grain rot. Rice 9(1):23

    Article  PubMed  PubMed Central  Google Scholar 

  • Molla KA, Karmakar S, Molla J, Bajaj P, Varshney RK, Datta SK, Datta K (2020) Understanding sheath blight resistance in rice: the road behind and the road ahead. Plant Biotechnol J 18(4):895–915

    Article  PubMed  PubMed Central  Google Scholar 

  • Mondini L, Noorani A, Pagnotta MA (2009) Assessing plant genetic diversity by molecular tools. Diversity 1(1):19–35

    Article  CAS  Google Scholar 

  • Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol (147):969–977

    Google Scholar 

  • MorishimaH Oka HI (1960) The pattern of interspecific variation in the genus Oryza: its quantitative representation by statistical methods. Evolution 14:153–165

    Google Scholar 

  • Muthayya S, Sugimoto JD, Montgomery S, Maberly GF (2014) An overview of global rice production, supply, trade, and consumption. Ann New York Acad Sci 1324(1):7–14

    Article  Google Scholar 

  • Myint KKM, Fujita D, Matsumura M, Sonoda T, Yoshimura A, Yasui H (2012) Mapping and pyramiding of two major genes for resistance to the brown planthopper (Nilaparvatalugens [Stal]) in the rice cultivar ADR52. Theor Appl Genet 124(3):495–504

    Article  CAS  PubMed  Google Scholar 

  • Naqvi S, Farré G, Sanahuja G, Capell T, Zhu C, Christou P (2010) When more is better: multigene engineering in plants. Trends Plant Sci 15(1):48–56

    Article  CAS  PubMed  Google Scholar 

  • Natarajkumar P, Sujatha K, Laha GS, Viraktamath BC, Reddy CS, Mishra B et al (2010) Identification of a dominant bacterial blight resistance gene from Oryza nivara and its molecular mapping. Rice Genet Newsl 25:54–56

    Google Scholar 

  • Neelam K, Mahajan R, Gupta V, Bhatia D, Gill BK, Komal R, Lore JS, Mangat GS, Singh K (2020) High-resolution genetic mapping of a novel bacterial blight resistance gene xa-45(t) identified from Oryza glaberrima and transferred to Oryza sativa. Theor Appl Genet 133(3):689–705

    Article  CAS  PubMed  Google Scholar 

  • Nelson JC, Oard JH, Groth D, Utomo HS, Jia Y, Liu G, Moldenhauer KAK et al (2012) Sheath-blight resistance QTLs in japonica rice germplasm. Euphytica 184:23–34

    Article  Google Scholar 

  • Nelson R, Wiesner-Hanks T, Wisser R, Balint-Kurti P (2018) Navigating complexity to breed disease-resistant crops. Nat Rev Genet 19(1):21

    Article  CAS  PubMed  Google Scholar 

  • Nessa B, Salam MU, Haque AM, Biswas JK, Kabir MS, MacLeod WJ, D’Antuono M, Barman HN, Latif MA, Galloway J (2015) Spatial pattern of natural spread of rice false smut (Ustilaginoidea virens) disease in fields. Am J Agri Biol Sci 10(1):63–73

    Article  Google Scholar 

  • Nguyen HT, Vu QH, Van Mai T, Nguyen TT, Vu LD, Nguyen TT, Nguyen LV, Vu HTT, Nong HT, Dinh TN, Toshitsugu N (2018) Marker-assisted selection of Xa21 conferring resistance to bacterial leaf blight in indica rice cultivar LT2. Rice Sci 25(1):52–56

    Article  CAS  Google Scholar 

  • Ni D, Song F, Ni J, Zhang A, Wang C, Zhao K et al (2015) Marker-assisted selection of two-line hybrid rice for disease resistance to rice blast and bacterial blight. Field Crop Res 184:1–8

    Article  Google Scholar 

  • Noda T, Li C, Li J, Ohiai H, Ise K, Kaku H (2001) Pathogenic diversity of Xanthomonas oryzaepv.oryzae strains from Yunnan province, China. Japan Agri Res Quart: JARQ 35(2):97–103

    Google Scholar 

  • Nordborg M, Tavare S (2002) Linkage disequilibrium: what history has to tell us. Trends Genet 18(2):83–90

    Article  CAS  PubMed  Google Scholar 

  • Normile D (2008) Reinventing rice to feed the world. Science 321(5887):330–333

    Article  CAS  PubMed  Google Scholar 

  • Osusky M, Zhou GQ, Osuska L, Hancock RE, Kay WW, Misra S (2000) Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. Nat Biotechnol 18:1162–1166

    Article  CAS  PubMed  Google Scholar 

  • Pagliaccia D, Urak RZ, Wong F, Douhan LI, Greer CA, Vidalakis G, Douhan GW (2018) Genetic structure of the rice blast pathogen (Magnaportheoryzae) over a decade in North Central California rice fields. Microb Eco 75(2):310–317

    Article  CAS  Google Scholar 

  • Pan Y, Huang L, Song S, Hu M, Chang S, Lv Q, Li Y, Wang T, Ouyang X, Xiao Y, Fu X (2019) Identification of brown planthopper resistance gene Bph32 in the progeny of a rice dominant genic male sterile recurrent population using genome-wide association study and RNA-seq analysis. Mol Breed 39(5):72

    Article  CAS  Google Scholar 

  • Parkinson H, Sarkans U, Shojatalab M, Abeygunawardena N, Contrino S et al (2005) Array Express—a public repository for microarray gene expression data at the EBI. Nucleic Acids Res 33:D553–D555

    Article  CAS  PubMed  Google Scholar 

  • Perez-Massot E, Banakar R, Gomez-Galera S, Zorrilla-Lopez U, Sanahuja G, Arjo G et al (2013) The contribution of transgenic plants to better health through improved nutrition: opportunities and constraints. Genes Nutri 8(1):29–41

    Article  Google Scholar 

  • Plant hopper-IRRI Rice Knowledge Bank http://www.knowledgebank.irri.org/training/fact-sheets/pest-management/insects/item/planthopper

  • Pradhan SK, Nayak DK, Mohanty S, Behera L, Barik SR, Pandit E, LenkaS Anandan A (2015) Pyramiding of three bacterial blight resistance genes for broad-spectrum resistance in deepwater rice variety, Jalmagna. Rice 8(1):19

    Article  PubMed Central  Google Scholar 

  • Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, Dai L, Han B, Wang GL (2006) The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site–leucine-rich repeat protein and is a member of a multigene family in rice. Genet 172(3):1901–1914

    Article  CAS  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz M (2010) Genetic engineering of algae for enhanced biofuel production Euk Cell (9):486–501

    Google Scholar 

  • Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5(2):94–100

    Article  CAS  PubMed  Google Scholar 

  • Rahman ML, Jiang W, Chu SH, Qiao Y, Ham TH, Woo MO, Lee J, Khanam MS, Chin JH, Jeung JU, Brar DS (2009) High-resolution mapping of two rice brown planthopper resistance genes, Bph20 (t) and Bph21 (t), originating from Oryza minuta. Theor Appl Genet 119(7):1237–1246

    Google Scholar 

  • Ramegowda V, Senthil-Kumar M (2015) The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J Plant Physiol 176:47–54

    Article  CAS  PubMed  Google Scholar 

  • Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8(6):

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinke R, Kim SM, Kim BK (2018) Developing japonica rice introgression lines with multiple resistance genes for brown planthopper, bacterial blight, rice blast, and rice stripe virus using molecular breeding. Mol Genet Genom 293(6):1565–1575

    Article  CAS  Google Scholar 

  • Ren J, Gao F, Wu X, Lu X, Zeng L, Lv J, Su X, Luo H, Ren G (2016) Bph32, a novel gene encoding an unknown SCR domain-containing protein, confers resistance against the brown planthopper in rice. Sci Rep 6:1–14

    Article  CAS  Google Scholar 

  • Richa K, Tiwari IM, Devanna BN, Botella JR, Sharma V, Sharma TR (2017) Novel chitinase gene LOC_Os11g47510 from indica rice Tetep provides enhanced resistance against sheath blight pathogen Rhizoctonia solani in rice. Front Plant Sci 8:596

    Article  PubMed  PubMed Central  Google Scholar 

  • Ronald PC, Albano B, Tabien R, Abenes L, Wu KS, McCouch S, Tanksley SD (1992) Genetic and physical analysis of the rice bacterial blight disease resistance locus, Xa21. Mol Gen Genet MGG 236(1):113–120

    Article  CAS  PubMed  Google Scholar 

  • Sabar M, Akhter M, Bibi T, Riaz A, Haider Z, Khan AR, Bibi A (2019) Basmati rice lines development carrying multiple bacterial blight resistance genes pyramided using the marker-assisted backcross breeding approach. Mol Breed 39(11):155

    Article  CAS  Google Scholar 

  • Sagare DB, Abbai R, Jain A, Jayadevappa PK, Dixit S, Singh AK, Challa V, Alam S, Singh UM, Yadav S, Sandhu N (2020) More and more of less and less: Is genomics-based breeding of dry direct-seeded rice (DDSR) varieties the need of hour? Plant Biotechnol J 18(11):2173–2186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salgotra RK, Sajad MZ (2020) Rediscovery of genetic and genomic resources for future food security. Springer, pp 1–376. ISBN: 978-981-15-0155-5

    Google Scholar 

  • Sama VS, Rawat N, Sundaram RM, Himabindu K, Naik BS, Viraktamath BC, Bentur JS (2014) A putative candidate for the recessive gall midge resistance gene gm3 in rice identified and validated. Theor Appl Genet 127(1):113–124

    Article  CAS  PubMed  Google Scholar 

  • Sandhu N, Dixit S, SwamyBP Raman A, Kumar S, Singh SP, Yadaw RB, Singh ON, Reddy JN, Anandan A, Yadav S (2019) Marker assisted breeding to develop multiple stress tolerant varieties for flood and drought prone areas. Rice 12:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanford JC, Klein TM, Wolf ED, Allen N (1987) Delivery of substances into cells and tissues using a particle bombardment process. Particulate Sci Technol 5(1):27–37

    Article  CAS  Google Scholar 

  • Sardesai N, Rajyashri KR, Behura SK, Nair S, Mohan M (2001) Genetic, physiological and molecular interactions of rice and its major dipteran pest, gall midge. Plant Cell Tissue Organ Cult 64(2–3):115–131

    Article  CAS  Google Scholar 

  • Sato H, Ando I, Hirabayashi H, Takeuchi Y, Arase S, Kihara J, Kato H, Imbe T, Nemoto H (2008) QTL analysis of brown spot resistance in rice (Oryza sativa L.). Breed Sci 58(1):93–96

    Google Scholar 

  • Sato H, Matsumoto K, Ota C, Yamakawa T, Kihara J, Mizobuchi R (2015) Confirming a major QTL and finding additional loci responsible for field resistance to brown spot (Bipolarisoryzae) in rice. Breed Sci 5(2):170–175

    Article  Google Scholar 

  • Savary S, Willocquet L, Elazegui FA, Castilla NP, Teng PS (2000) Rice pest constraints in tropical Asia: quantification of yield losses due to rice pests in a range of production situations. Plant Dis 84(3):357–369

    Article  PubMed  Google Scholar 

  • Savary S, Castilla NP, Elazegui FA, Teng PS (2005) Multiple effects of two drivers of agricultural change, labour shortage and water scarcity, on rice pest profiles in tropical Asia. Field Crop Res 91(2–3):271

    Google Scholar 

  • Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A (2019) The global burden of pathogens and pests on major food crops. Nature Eco Evo 3:430–439

    Article  Google Scholar 

  • Schneider M, Bairoch A, Wu CH, Apweiler R (2005) Plant protein annotation in the UniProt Knowledgebase. Plant Physiol 138:59–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schouten HJ, Krens FA, Jacobsen E (2006) Cisgenic plants are similar to traditionally bred plants: international regulations for genetically modified organisms should be altered to exempt cisgenesis. EMBO Report 7:750–753

    Article  CAS  Google Scholar 

  • Schulthess AW, Wang Y, Miedaner T, Wilde P, Reif JC, Zhao Y (2016) Multiple-trait-and selection indices-genomic predictions for grain yield and protein content in rye for feeding purposes. Theor Appl Genet 129(2):273–287

    Article  CAS  PubMed  Google Scholar 

  • Shabana YM, Abdel-Fattah GM, Ismail AE, Rashad YM (2008) Control of brown spot pathogen of rice (Bipolarisoryzae) using some phenolic antioxidants. Brazilian J Microbiol 39(3):438–444

    Article  CAS  Google Scholar 

  • Sharma NP, Torii A, Takumi S, Mori N, Nakamura C (2004) Marker-assisted pyramiding of brown planthopper (Nilaparvata lugens Stal) resistance genes Bph1 and Bph2 on rice chromosome 12. Hereditas 140(1):61–69

    Article  PubMed  Google Scholar 

  • Shibata D, Liu YG (2000) Agrobacterium-mediated plant transformation with large DNA fragments. Trends Plant Sci 5:354–357

    Article  CAS  PubMed  Google Scholar 

  • Shikari AB, Khanna A, Krishnan SG, Singh UD, Rathour R, Tonapi V, Sharma TR, Nagarajan M, Prabhu KV, Singh AK (2013) Molecular analysis and phenotypic validation of blast resistance genes Pita and Pita2 in landraces of rice (Oryza sativa L.). Indian J Genet 73(2):131–141

    Google Scholar 

  • Silva J, Scheffler B, Sanabria Y, De Guzman C, Galam D, Farmer A, Woodward J, May G, Oard J (2012) Identification of candidate genes in rice for resistance to sheath blight disease by whole genome sequencing. Theor Appl Genet 124(1):63–74

    Google Scholar 

  • Singh AK, Singh RN (2015) Screening for resistance to false smut (Ustilaginoidea virens). Plant Dis Res 30(1):46–49

    Google Scholar 

  • Singh N, Jayaswal PK, Panda K, Mandal P, Kumar V, Singh B, Mishra S, Singh Y, Singh R, Rai V, Gupta A (2015) Single-copy gene based 50 K SNP chip for genetic studies and molecular breeding in rice. Sci Rep 5:11600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slatkin M (2008) Linkage disequilibrium-understanding the evolutionary past and mapping the medical future. Nat Rev Genet 9(6):477–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Sci 270(5243):1804–1806

    Google Scholar 

  • Sparks A, Nelson A, Castilla N (2012) Where rice pests and diseases do the most damage. Rice Today 11(4):26–27

    Google Scholar 

  • Sreewongchai T, Toojinda T, Thanintorn N, Kosawang C, Vanavichit A, Tharreau D, Sirithunya P (2010) Development of elite indica rice lines with wide spectrum of resistance to Thai blast isolates by pyramiding multiple resistance QTLs. Plant Breed 129(2):176–180

    Article  CAS  Google Scholar 

  • Stahle DW, Cook ER, Burnette DJ, Villanueva J, Cerano J, Burns JN, Griffin D, Cook BI, Acuna R, Torbenson MC, Szejner P (2016) The Mexican drought atlas: tree-ring reconstructions of the soil moisture balance during the late pre-Hispanic, colonial, and modern eras. Quat Sci Reviews 149:34–60

    Article  Google Scholar 

  • Suh JP, Yang SJ, Jeung JU, Pamplona A, Kim JJ, Lee JH, Hong HC, Yang CI, Kim YG, Jena KK (2011) Development of elite breeding lines conferring Bph18 gene-derived resistance to brown planthopper (BPH) by marker-assisted selection and genome-wide background analysis in japonica rice (Oryza sativa L.). Field Crop Res 120(2):215–222

    Google Scholar 

  • Suh JP, Jeung JU, Noh TH, Cho YC, Park SH, Park HS, Shin MS, Kim CK, Jena KK (2013) Development of breeding lines with three pyramided resistance genes that confer broad-spectrum bacterial blight resistance and their molecular analysis in rice. Rice 6(1):5

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun L, Su C, Wang C, Zhai H, Wan J (2005) Mapping of a major resistance gene to the brown planthopper in the rice cultivar Rathu Heenati. Breeding Sci 55(4):391–396

    Google Scholar 

  • Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytologist 203(1):32–43

    Article  PubMed  Google Scholar 

  • Swings J, Van den Mooter M, Vauterin L, Hoste B, Gillis M, Mew TW, Kersters K (1990) Reclassification of the causal agents of bacterial blight (Xanthomonas campestris pv. oryzae) and bacterial leaf streak (Xanthomonas campestris pv. oryzicola) of Rice as Pathovars of Xanthomonas oryzae (ex Ishiyama 1922) sp. nov., nom. rev. Intl J Syst Evol Microbiol 40(3):309–311

    Google Scholar 

  • Taguchi-Shiobara F, Ozaki H, Sato H, Maeda H, Kojima Y, Ebitani T, Yano M (2013) Mapping and validation of QTLs for rice sheath blight resistance. Breed Sci 63:301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan GX, Ren X, Weng QM, Shi ZY, Zhu LL, He GC (2004) Mapping of a new resistance gene to bacterial blight in rice line introgressed from Oryza officinalis. Acta Genetica Sinica 31:724–729

    Google Scholar 

  • Tanksley SD, Ganal MW, Martin GB (1995) Chromosome landing: a paradigm for map-based gene cloning in plants with large genomes. Trends Genet 11(2):63–68

    Article  CAS  PubMed  Google Scholar 

  • Thuan NTN, Bigirimana J, Roumen E, Van Der SD, Hofte M (2006) Molecular and pathotype analysis of the rice blast fungus in North Vietnam. Eur J Plant Pathol 114(4):381–396

    Article  CAS  Google Scholar 

  • Tyagi AK, Khurana JP (2003) Plant molecular biology and biotechnology research in the post-recombinant DNA era. Adv Biochem Eng Biotechnol 84:91–121

    CAS  PubMed  Google Scholar 

  • Tyagi AK, Khurana JP, Khurana P, Raghuvanshi S, Gaur A, Kapur A, Gupta V, Kumar D, Ravi V, Vij S, Khurana P (2004) Structural and functional analysis of rice genome. J Genet 83(1):79–99

    Article  CAS  PubMed  Google Scholar 

  • Udayashankar AC, Nayaka SC, Reddy MS, Srinivas C (2011) Plant growth-promoting rhizobacteria mediate induced systemic resistance in rice against bacterial leaf blight caused by Xanthomonas oryzaepv. oryzae. Biol Control 59(2):114–122

    Google Scholar 

  • Uppala S, Zhou XG (2018) Field efficacy of fungicides for management of sheath blight and narrow brown leaf spot of rice. Crop Prot 104:72–77

    Article  CAS  Google Scholar 

  • USDA (2018) Economic research service. https://www.ers.usda.gov/topics/crops/rice/

  • Valent B, Chumley FG (1991) Molecular genetic analysis of the rice blast fungus Magnaporthe grisea. Ann Rev Phytopathol 29(1):443–467

    Article  CAS  Google Scholar 

  • Van Esse HP, Reuber TL, Van Does D (2019) Genetic modification to improve disease resistance in crops. New Phytol 225:70–86

    Article  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Tuberosa R (2007) Genomics-assisted crop improvement: an overview. In: Genomics-assisted crop improvement. Springer, Dordrecht, pp 1–12

    Google Scholar 

  • Varshney RK, Hoisington DA, Tyagi AK (2006) Advances in cereal genomics and applications in crop breeding. Trends Biotechnol 24:490–499

    Article  CAS  PubMed  Google Scholar 

  • Vaucheret H, Fagard M (2001) Transcriptional gene silencing in plants: targets, inducers and regulators. Trends Genet 17:29–35

    Article  CAS  PubMed  Google Scholar 

  • Venkanna V, Hari Y, Rukminidevi K, Chandra BS, Raju J, Malathi S, Reddy PR (2018) Markers assisted selection for pyramiding of gallmidge resistance genes in kavya, a popular rice variety. Intl J Curr Microbiol Appl Sci 7(4):745–753

    Article  CAS  Google Scholar 

  • Volante A, Tondelli A, Aragona M, Valente MT, Biselli C, Desiderio F, Bagnaresi P, Matic S, Gullino ML, Infantino A, Spadaro D (2017) Identification of bakanae disease resistance loci in japonica rice through genome wide association study. Rice 10(1):1–16

    Google Scholar 

  • Wang C, Wen G, Lin X, Liu X, Zhang D (2009) Identification and fine mapping of the new bacterial blight resistance gene, Xa31(t), in rice. Eur J Plant Pathol 123(2):235–240

    Article  CAS  Google Scholar 

  • Wang MB, Masuta C, Smith NA, Shimura H (2012a) RNA silencing and plant viral diseases. Mol Plant Microbe Interact 25:275–1285

    Article  Google Scholar 

  • Wang Y, Pinson SRM, Fjellstrom RG, Tabien RE (2012b) Phenotypic gain from introgression of two QTL, qSB9-2 and qSB12-1, for rice sheath blight resistance. Mol Breed 30(1):293–303

    Article  CAS  Google Scholar 

  • Wang C, Yang Y, Yuan X, Xu Q, Feng Y, Yu H, et al (2014) Genome-wide association study of blast resistance in indica rice. BMC Plant Biol 18(14):311. https://doi.org/10.1186/s12870-014-0311-6

  • Wang X, Jia M, Ghai P, Lee F, Jia Y (2015) Genome-wide association of rice blast disease resistance and yield-related components of rice. Mol Plant Microbe Interact 28:1383–1392

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, Liu YG, Zhao K (2016a) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PloS one 11(4):

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Wang C, Liu P, Lei P, Hao W, Gao Y et al (2016b) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One 11:

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang BH, Ebbole DJ, Wang ZH (2017) The arms race between Magnaportheoryzae and rice: diversity and interaction of Avr and R genes. J Integrat Agri 16(12):2746–2760

    Article  Google Scholar 

  • Weltzien E, Christinck A (2008) Participatory plant breeding: developing improved and relevant crop varieties with farmers. In: Agricultural systems: agroecology and rural innovation for development, pp 211–251

    Google Scholar 

  • Werner K, Friedt W, Ordon F (2005) Strategies for pyramiding resistance genes against the barley yellow mosaic virus complex (BaMMV, BaYMV, BaYMV-2). Mol Breed 16(1):45–55

    Article  CAS  Google Scholar 

  • Whalon ME, Wingerd BA (2003) Bt: mode of action and use. Arch Insect Biochem Physiol 54:200–211

    Article  CAS  PubMed  Google Scholar 

  • Wheeler DL, Smith-White B, Chetvernin V, Resenchuk S, Dombrowski SM et al (2005) Plant genome resources at the national center for biotechnology information. Plant Physiol 138:1280–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willocquet L, Noel M, Hamilton RS, Savary S (2012) Susceptibility of rice to sheath blight: an assessment of the diversity of rice germplasm according to genetic groups and morphological traits. Euphytica 183(2):227–241

    Article  Google Scholar 

  • Win KM, Korinsak S, Sirithunya P, Lanceras-Siangliw J, Jamboonsri W, Da T, Patarapuwadol S, Toojinda T (2013) Marker assisted introgression of multiple genes for bacterial blight resistance into aromatic Myanmar rice MK-75. Field Crop Res 154:164–171

    Article  Google Scholar 

  • Worrall EA, Hamid A, Mody KT, Mitter N, Pappu HR (2018) Nanotechnology for plant disease management. Agronomy 8(12):285

    Article  CAS  Google Scholar 

  • Wright AV, Nunez JK, Doudna JA (2016) Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 164:29–44

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Yu L, Pan C, Dai Z, Li Y, Xiao N et al (2016) Development of near-isogenic lines with different alleles of Piz locus and analysis of their breeding effect under Yangdao 6 background. Mol Breed 36(2):12

    Article  CAS  Google Scholar 

  • Wu Y, Xiao N, Chen Y, Yu L, Pan C, Li Y, Zhang X, Huang N et al (2019) Comprehensive evaluation of resistance effects of pyramiding lines with different broad-spectrum resistance genes against Magnaportheoryzae in rice (Oryza sativa L.). Rice 12(1):11

    Google Scholar 

  • Xiao N, Wu Y, Pan C, Yu L, Chen Y, Liu G (2017) Improving of rice blast resistances in japonica by pyramiding major R genes. Front Plant Sci 7:1918

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao S, Wang B, Liu Y, Miao T, Zhang H, Wen P (2019) Genome-wide association study and linkage analysis on resistance to rice black-streaked dwarf virus disease. Mol Breed 39(5):73

    Article  CAS  Google Scholar 

  • Xie LJ, Chen QF, Chen MX, Yu LJ, Huang L, Chen L et al (2015) Unsaturation of very-long-chain ceramides protects plant from hypoxia-induced damages by modulating ethylene signaling in Arabidopsis. PLoS Genet 11(3):1005143

    Google Scholar 

  • Xu J (2013) Pyramiding of two BPH resistance genes and Stv-bi gene using marker-assisted selection in japonica rice. Crop Breed Appl Biotechnol 13(2):99–106

    Article  CAS  Google Scholar 

  • Xu Y, Wang X, Ding X, Zheng X, Yang Z, Xu C, Hu Z (2018) Genomic selection of agronomic traits in hybrid rice using an NCII population. Rice 11(1):1–10

    Article  Google Scholar 

  • Yadav S, Anuradha G, Kumar RR, Vemireddy LR, Sudhakar R, DonempudiK, Venkata D, Jabeen F, Narasimhan YK, Marathi B, Siddiq EA (2015) Identification of QTLs and possible candidate genes conferring sheath blight resistance in rice (Oryza sativa L.). SpringerPlus 4(1):175

    Google Scholar 

  • Yamamoto T, Nagasaki H, Yonemaru JI, Ebana K, Nakajima M, Shibaya T, Yano M (2010) Fine definition of the pedigree haplotypes of closely related rice cultivars by means of genome-wide discovery of single-nucleotide polymorphisms. BMC Genom 11(1):1–14

    Article  CAS  Google Scholar 

  • Yang TJ, Yu Y, Nah G, Atkins M, Lee S, Frisch DA et al (2003) Construction and utility of 10-kb libraries for efficient clone-gap closure for rice genome sequencing. Theor Appl Genet 107:652–660

    Article  CAS  PubMed  Google Scholar 

  • Yang JH, Liu HX, Zhu GM, Pan YL, Xu LP, Guo JH (2008a) Diversity analysis of antagonists from rice-associated bacteria and their application in biocontrol of rice diseases. J Appl Microbiol 104(1):91–104

    CAS  PubMed  Google Scholar 

  • Yang W, Peters JI, Williams RO (2008b) Inhaled nanoparticles-a current review. Int J Pharm 356:239–247

    Article  CAS  PubMed  Google Scholar 

  • Yang FL, Li XG, Zhu F, Lei CL (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Triboliumcastaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57:10156–10162

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Li RB, Li YR, Huang FK, Chen YZ, Huang SS et al (2012) Genetic mapping of bph20(t) and bph21(t) loci conferring brown planthopper resistance to NilaparvatalugensStal in rice (Oryza sativa L.). Euphytica 183(2):161–71

    Google Scholar 

  • Yang N, Lu Y, Yang X, Huang J, Zhou Y, Ali F, Wen W (2014) Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genet 10(9):e1004573

    Google Scholar 

  • Yap R, Hsu YC, Wu YP, Lin YR,Kuo CW (2016) Multiplex PCR genotyping for five bacterial blight resistance genes applied to marker‐assisted selection in rice (Oryza sativa). Plant Breed 135(3):309–317

    Google Scholar 

  • Yasala AK, Rawat N, Sama VK, Himabindu K, Sundaram RM, Bentur JS (2012) In silico analysis for gene content in rice genomic regions mapped for the gall midge resistance genes. Plant Omics 5(4):405–413

    CAS  Google Scholar 

  • Yasmin S, Hafeez FY, Mirza MS, Rasul M, Arshad HM, Zubair M, Iqbal M (2017) Biocontrol of bacterial leaf blight of rice and profiling of secondary metabolites produced by rhizospheric Pseudomonas aeruginosa BRp3. Front Microbiol 8:1895

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Sci 287(5451):303–305

    Google Scholar 

  • Yonemaru JI, Choi SH, Sakai H, Ando T, Shomura A, Yano M, Wu J, Fukuoka S (2015) Genome-wide indel markers shared by diverse Asian rice cultivars compared to Japanese rice cultivar ‘Koshihikari’. Breed Sci 65(3):249–256

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17(2):155–160

    Article  CAS  PubMed  Google Scholar 

  • Yugander A, Sundaram RM, Ladhalakshmi D, Hajira SK, Prakasam V, Prasad MS, Madhav MS, Babu VR, Laha GS (2017) Virulence profiling of Xanthomonas oryzaepv. oryzae isolates, causing bacterial blight of rice in India. Eur J Plant Pathol 149(1):171–191

    Google Scholar 

  • Zanao Junior LA, Rodrigues FA, Fontes RLF, Korndorfer GH, Neves JCL (2009) Rice resistance to brown spot mediated by silicon and its interaction with manganese. J Phytopathol 157(2):73–78

    Article  CAS  Google Scholar 

  • Zaw M, San Aye S, Matsumoto M (2016) Genetic characteristics of Pyricularia grisea and their pathotypes in Myanmar. Bull Inst Trop Agri, Kyushu Univ 39(1):103–111

    Google Scholar 

  • Zeng Y, Ji Z, Yang C (2014) The way to a more precise sheath blight resistance QTL in rice. Euphytica 203:33

    Article  CAS  Google Scholar 

  • Zhang H, Wu Z, Wang C, Li Y, Xu JR (2014) Germination and infectivity of micro conidia in the rice blast fungus Magnaportheoryzae. Nat Commun 5:4518

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Lin SC, Zhao BY, Wang CL, Yang WC, Zhou YL, Li DY, Chen CB, Zhu LH (1998) Identification and tagging a new gene for resistance to bacterial blight (Xanthomonas oryzae pv. oryzae) from O. rufipogon. Rice Genet Newsl 15:138–142

    Google Scholar 

  • Zhang F, Zeng D, Zhang CS, Lu JL, Chen TJ, Xie JP, Zhou YL (2019) Genome-wide association analysis of the genetic basis for sheath blight resistance in rice. Rice 12(1):1–13

    Google Scholar 

  • Zhao Y, Huang J, Wang Z, Jing S, Wang Y, Ouyang Y, Cai B, Xin XF, Liu X, Zhang C, Pan Y (2016) Allelic diversity in an NLR gene BPH9 enables rice to combat planthopper variation. Proc Natl Acad Sci 113(45):12850–12855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Wang X, Jia Y, Minkenberg B, Wheatley M, Fan J, Jia MH, Famoso A, Edwards JD, Wamishe Y, Valent B (2018) The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance. Nat Commun 9(1):1–2

    Google Scholar 

  • Zheng CK, Wang CL, Yu YJ, Liang YT, Zhao KJ (2009) Identification and molecular mapping of Xa32(t), a novel resistance gene for bacterial blight (Xanthomonas oryzaepv. oryzae) in rice. Acta Agronomica Sinica 35:1173–1180

    Google Scholar 

  • Zhou E, Jia Y, Singh P, Correll J, Lee F (2007) Instability of the Magnaportheoryzae a virulence gene AVR Pita alters virulence. Fungal Genet Biol 44:1024–1034

    Article  CAS  PubMed  Google Scholar 

  • Zhou YL, Xie XW, Zhang F, Wang S, Liu XZ, Zhu LH, Xu JL, Gao YM, Li ZK (2014) Detection of quantitative resistance loci associated with resistance to rice false smut (Ustilaginoidea virens) using introgression lines. Plant Pathol 63(2):365–372

    Article  CAS  Google Scholar 

  • Zhou J, Peng Z, Long J, Sosso D, Liu B, Eom JS et al (2015) Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J 82:632–643

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Wang X, Mo Y, Li Y, Yan L, Li Z, Shu W et al (2020) Genetic analysis and fine mapping of the gall midge resistance gene Gm5 in rice (Oryza sativa L.). Theor Appl Genet:1–13

    Google Scholar 

  • Zhu Q, Ge S (2005) Phylogenetic relationships among A-genome species of the genus Oryza revealed by intron sequences of four nuclear genes. New Phytologist 167(1):249–265

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. The Plant Genome 1(1):5–20

    Article  CAS  Google Scholar 

  • Zhu D, Kang H, Li Z, Liu M, Zhu X, Wang Y, Wang D, Wang Z, Liu W, Wang GL (2016) A genome-wide association study of field resistance to Magnaporthe oryzae in rice. Rice 9(1):1–9

    Google Scholar 

  • Zuo S, Zhang L, Wang H, Yin Y, Zhang Y, Chen Z, MaY Pan X (2008) Prospect of the QTL-qSB-9Tq utilized in molecular breeding program of japonica rice against sheath blight. J Genet Genom 35(8):499–505

    Article  CAS  Google Scholar 

  • Zuo S, Zhang Y, Yin Y, Li G, Zhang G, Wang H, Chen Z, Pan X (2014) Fine-mapping of qSB-9TQ, a gene conferring major quantitative resistance to rice sheath blight. Mol Breed 34(4):2191–2203

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sagare, D.B. et al. (2021). Genomic Designing for Biotic Stress Resistant Rice. In: Kole, C. (eds) Genomic Designing for Biotic Stress Resistant Cereal Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-75879-0_1

Download citation

Publish with us

Policies and ethics